Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле

Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отоб...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
1. Verfasser: Харламов, М.П.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2004
Schriftenreihe:Механика твердого тела
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/123738
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле / М.П. Харламов // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 47-58. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отображения, порожденного гремя интегралами в инволюции. Оно состоит из инвариантных подмножеств, на которых индуцированная динамическая система почти всюду гамильтонова с двумя степенями свободы. Критическому множеству сопоставлен его образ - бифуркационная диаграмма в пространстве консгант первых интегралов, которая лежит в объединении грех поверхностей. Две из них заданы явными уравнениями, а последняя - параметрическими, в которых роль параметров играю! постоянная одного из общих интегралов и кратный корень многочлена, обобщающего резольвенту Эйлера второго многочлена Ковалевской. Проведена аналогия с классами Аппельрота в задаче о движении волчка Ковалевской виоле силы тяжести.