Г-convergence of integral functionals with degenerate integrands in periodically perforated domains

We consider a sequence of integral functionals with degenerate integrands in perforated domains of periodic structure. We establish the ¡-convergence of the sequence under consideration to an integral functional defined on a limit weighted Sobolev space. A representation formula for the integrand of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Kovalevsky, A.A., Rudakova, O.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Назва видання:Труды Института прикладной математики и механики
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/123904
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Г-convergence of integral functionals with degenerate integrands in periodically perforated domains / A.A. Kovalevsky, O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2009. — Т. 19. — С. 101-109. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-123904
record_format dspace
spelling irk-123456789-1239042017-09-14T03:03:06Z Г-convergence of integral functionals with degenerate integrands in periodically perforated domains Kovalevsky, A.A. Rudakova, O.A. We consider a sequence of integral functionals with degenerate integrands in perforated domains of periodic structure. We establish the ¡-convergence of the sequence under consideration to an integral functional defined on a limit weighted Sobolev space. A representation formula for the integrand of the ¡-limit functional is given. 2009 Article Г-convergence of integral functionals with degenerate integrands in periodically perforated domains / A.A. Kovalevsky, O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2009. — Т. 19. — С. 101-109. — Бібліогр.: 16 назв. — англ. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/123904 517.9 en Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a sequence of integral functionals with degenerate integrands in perforated domains of periodic structure. We establish the ¡-convergence of the sequence under consideration to an integral functional defined on a limit weighted Sobolev space. A representation formula for the integrand of the ¡-limit functional is given.
format Article
author Kovalevsky, A.A.
Rudakova, O.A.
spellingShingle Kovalevsky, A.A.
Rudakova, O.A.
Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
Труды Института прикладной математики и механики
author_facet Kovalevsky, A.A.
Rudakova, O.A.
author_sort Kovalevsky, A.A.
title Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
title_short Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
title_full Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
title_fullStr Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
title_full_unstemmed Г-convergence of integral functionals with degenerate integrands in periodically perforated domains
title_sort г-convergence of integral functionals with degenerate integrands in periodically perforated domains
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/123904
citation_txt Г-convergence of integral functionals with degenerate integrands in periodically perforated domains / A.A. Kovalevsky, O.A. Rudakova // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2009. — Т. 19. — С. 101-109. — Бібліогр.: 16 назв. — англ.
series Труды Института прикладной математики и механики
work_keys_str_mv AT kovalevskyaa gconvergenceofintegralfunctionalswithdegenerateintegrandsinperiodicallyperforateddomains
AT rudakovaoa gconvergenceofintegralfunctionalswithdegenerateintegrandsinperiodicallyperforateddomains
first_indexed 2025-07-09T00:30:05Z
last_indexed 2025-07-09T00:30:05Z
_version_ 1837127184813129728
fulltext ISSN 1683-4720 Труды ИПММ НАН Украины. 2009. Том 19 УДК 517.9 c©2009. A.A. Kovalevsky, O.A. Rudakova Γ-CONVERGENCE OF INTEGRAL FUNCTIONALSWITH DEGENERATE INTEGRANDS IN PERIODICALLY PERFORATED DOMAINS We consider a sequence of integral functionals with degenerate integrands in perforated domains of periodic structure. We establish the Γ-convergence of the sequence under consideration to an integral functional defined on a limit weighted Sobolev space. A representation formula for the integrand of the Γ-limit functional is given. 1. Introduction. In this article we consider a sequence of integral functionals with degenerate integrands in perforated domains of periodic structure. We establish the Γ- convergence of the sequence under consideration to an integral functional defined on a limit weighted Sobolev space. At the same time a representation formula for the integrand of the Γ-limit functional is given. We note that the Γ-convergence of functionals plays an important part in the study of convergence of solutions to variational problems (see for instance [1], [3], [5], [8], [15] and [16]). In particular, the questions related to the investigation of convergence of minimizers and minimum values of functionals defined on variable weighted Sobolev spaces were studied in [10]–[13]. The Γ-convergence of quadratic integral functionals having periodic quickly oscillating coefficients and defined on a fixed weighted Sobolev space was proved in [2]. In the nonweighted case the Γ-convergence of integral functionals associated with different kinds of periodically perforated domains was established for instance in [6] and [9]. Moreover, in the nonweighted case representation formulae for coefficients of the homogenized problem corresponding to the Neumann variational problems for quadratic integral functionals in periodically perforated domains were given in [4]. Finally, we emphasize that the integral functionals under consideration in the present article combine the following three features: their domains of definition depend on a parameter; their integrands, having a quickly oscillating component, depend on the same parameter; the integrands have a fixed weighted multiplier. 2. Preliminaries. Let Ω be a bounded domain of Rn (n > 2), p ∈ (1, n), and let ν be a nonnegative function on Ω with the properties: ν > 0 almost everywhere in Ω and ν ∈ L1 loc(Ω), ( 1 ν )1/(p−1) ∈ L1 loc(Ω). (2.1) We denote by Lp(ν, Ω) the set of all measurable functions u : Ω → R such that the function ν|u|p is summable in Ω. Lp(ν, Ω) is a Banach space with the norm ‖u‖Lp(ν,Ω) = (∫ Ω ν|u|p dx )1/p . 101 A.A. Kovalevsky, O.A. Rudakova We note that by virtue of Young’s inequality and the second inclusion of (2.1) we have Lp(ν,Ω) ⊂ L1 loc(Ω). We denote by W 1,p(ν, Ω) the set of all functions u ∈ Lp(ν, Ω) such that for every i ∈ {1, . . . , n} there exists the weak derivative Diu, Diu ∈ Lp(ν, Ω). W 1,p(ν, Ω) is a reflexive Banach space with the norm ‖u‖1,p,ν = (∫ Ω ν|u|p dx + n∑ i=1 ∫ Ω ν|Diu|p dx )1/p . Due to the first inclusion of (2.1) we have C∞ 0 (Ω) ⊂ W 1,p(ν, Ω). We denote by ◦ W 1,p(ν, Ω) the closure of the set C∞ 0 (Ω) in W 1,p(ν,Ω). Next, let {Ωs} be a sequence of domains of Rn which are contained in Ω. By analogy with the spaces introduced above we define the functional spaces corres- ponding to the domains Ωs. Let s ∈ N. We denote by Lp(ν,Ωs) the set of all measurable functions u : Ωs → R such that the function ν|u|p is summable in Ωs. Lp(ν, Ωs) is a Banach space with the norm ‖u‖Lp(ν,Ωs) = (∫ Ωs ν|u|p dx )1/p . By virtue of the second inclusion of (2.1) we have Lp(ν,Ωs) ⊂ L1 loc(Ωs). We denote by W 1,p(ν, Ωs) the set of all functions u ∈ Lp(ν,Ωs) such that for every i ∈ {1, . . . , n} there exists the weak derivative Diu, Diu ∈ Lp(ν, Ωs). W 1,p(ν, Ωs) is a Banach space with the norm ‖u‖1,p,ν,s = (∫ Ωs ν|u|p dx + n∑ i=1 ∫ Ωs ν|Diu|p dx )1/p . We denote by C̃∞ 0 (Ωs) the set of all restrictions on Ωs of functions from C∞ 0 (Ω). Due to the first inclusion of (2.1) we have C̃∞ 0 (Ωs) ⊂ W 1,p(ν, Ωs). We denote by W̃ 1,p 0 (ν,Ωs) the closure of the set C̃∞ 0 (Ωs) in W 1,p(ν, Ωs). We observe that if u ∈ ◦ W 1,p(ν, Ω) and s ∈ N, then u|Ωs ∈ W̃ 1,p 0 (ν, Ωs). Definition 2.1. If s ∈ N, qs is the mapping from ◦ W 1,p(ν, Ω) into W̃ 1,p 0 (ν,Ωs) such that for every function u ∈ ◦ W 1,p(ν, Ω), qsu = u|Ωs . Definition 2.2. Let for every s ∈ N, Is be a functional on W̃ 1,p 0 (ν,Ωs), and let I be a functional on ◦ W 1,p(ν,Ω). We say that the sequence {Is} Γ-converges to the functional I if the following conditions are satisfied: (i) for every function u ∈ ◦ W 1,p(ν, Ω) there exists a sequence ws ∈ W̃ 1,p 0 (ν,Ωs) such that lim s→∞ ‖ws − qsu‖Lp(ν,Ωs) = 0 and lim s→∞ Is(ws) = I(u); (ii) for every function u ∈ ◦ W 1,p(ν, Ω) and every sequence us ∈ W̃ 1,p 0 (ν,Ωs) such that lim s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0 we have lim inf s→∞ Is(us) > I(u). 102 Γ-convergence of integral functionals The given definition was introduced in [10], and the corresponding Γ-compactness theorem for integral functionals was established in [10] and [13]. Further, we shall use the following notation: for every i ∈ {1, . . . , n}, ei is the unit vector of the ith axis in Rn; for every y ∈ Rn and ρ > 0, B(y, ρ) = {x ∈ Rn : |x−y| < ρ}; for every y ∈ Rn and t ∈ N, Qt(y) = {x ∈ Rn : |xi − yi| < 1/(2t), i = 1, . . . , n}. For every i ∈ {1, . . . , n} we set Qi − = {x ∈ ∂Q1(0) : xi = −1/2}, Qi + = {x ∈ ∂Q1(0) : xi = 1/2}. Clearly, if i ∈ {1, . . . , n} and x ∈ Qi−, we have x + ei ∈ Qi +. For every function v ∈ C1(Q1(0)) we denote by v̄ the unique continuous extension of v on Q1(0). By C1 per(Q1(0)) we denote the set of all functions v ∈ C1(Q1(0)) such that for every i ∈ {1, . . . , n} and x ∈ Qi−, v̄(x + ei) = v̄(x). Next, we fix r ∈ (0, 1/2) and set Π = Q1(0) \ B(0, r). By C1 per(Π) we denote all functions v ∈ C1(Π) such that v = w|Π, where w ∈ C1 per(Q1(0)). Finally, by W 1,p per(Π) we denote the closure of the set C1 per(Π) in W 1,p(Π). Let ĉ1, ĉ2 > 0, ĉ > 0, and let f̂ : Rn×Rn → R be a Carathéodory function such that the following conditions are satisfied: for every ξ ∈ Rn the function f̂(·, ξ) is 1-periodic; (2.2) for almost every x ∈ Rn the function f̂(x, ·) is convex in Rn; (2.3) for almost every x ∈ Rn and every ξ ∈ Rn, ĉ1|ξ|p − ĉ 6 f̂(x, ξ) 6 ĉ2|ξ|p + ĉ. (2.4) Let f̃ : Rn → R be the function such that for every ξ ∈ Rn, f̃(ξ) = inf v∈W 1,p per (Π) ∫ Π f̂(x, ξ +∇v)dx. From (2.4) it follows that for every ξ ∈ Rn, −ĉmeasΠ 6 f̃(ξ) 6 (ĉ2|ξ|p + ĉ)measΠ. (2.5) We also observe that owing to (2.3) the function f̃ is convex in Rn. 3. Statement of the main result. We shall assume that ν ∈ L1(Ω). We define b = ĉν and for every s ∈ N we set ψs = b|Ωs . Moreover, we set ē = 1 2 n∑ i=1 ei. 103 A.A. Kovalevsky, O.A. Rudakova Now let for every s ∈ N, fs : Ωs × Rn → R be the function such that for every (x, ξ) ∈ Ωs × Rn, fs(x, ξ) = ν(x)f̂(sx− ē, ξ). Clearly, for every s ∈ N and ξ ∈ Rn the function fs(·, ξ) is measurable in Ωs. Moreover, owing to conditions (2.3) and (2.4) the following assertions hold true: for every s ∈ N and almost every x ∈ Ωs the function fs(x, ·) is convex in Rn; for every s ∈ N, almost every x ∈ Ωs and every ξ ∈ Rn we have ĉ1ν(x)|ξ|p − ψs(x) 6 fs(x, ξ) 6 ĉ2ν(x)|ξ|p + ψs(x). (3.1) Let for every s ∈ N, Js : W̃ 1,p 0 (ν, Ωs) → R be the functional such that for every u ∈ W̃ 1,p 0 (ν,Ωs), Js(u) = ∫ Ωs fs(x,∇u)dx. We denote by F the set of all functions f : Ω×Rn → R satisfying the conditions: for every ξ ∈ Rn the function f(·, ξ) is measurable in Ω; for almost every x ∈ Ω the function f(x, ·) is convex in Rn; for almost every x ∈ Ω and every ξ ∈ Rn we have −b(x) 6 f(x, ξ) 6 ĉ2ν(x)|ξ|p + b(x). Definition 3.1. If f ∈ F , Jf : ◦ W 1,p(ν, Ω) → R is the functional such that for every u ∈ ◦ W 1,p(ν,Ω), Jf (u) = ∫ Ω f(x,∇u)dx. Let f̄ : Ω× Rn → R be the function such that for every (y, ξ) ∈ Ω× Rn, f̄(y, ξ) = ν(y)f̃(ξ). Observe that due to (2.5) and the convexity of the function f̃ we have f̄ ∈ F . In what follows we shall suppose that Ω = {x ∈ Rn : |xi| < 1, i = 1, . . . , n}. For every s ∈ N we set Z̃s = {z ∈ Ω : szi − 1/2 ∈ Z, i = 1, . . . , n}. We have ∀ s ∈ N, ⋃ z∈Z̃s Qs(z) = Ω, (3.2) ∀ s ∈ N, ∀ z, z′ ∈ Z̃s, z 6= z′, Qs(z) ∩Qs(z′) = ∅. (3.3) We shall assume that the domains Ωs have the following structure: for every s ∈ N, Ωs = Ω \ ⋃ z∈Z̃s B(z, r/s). 104 Γ-convergence of integral functionals Theorem 3.2. Suppose that the function ν is positive and continuous in Ω \ {0}. Then the sequence {Js} Γ-converges to the functional J f̄ . 4. Scheme of the proof of Theorem 3.2. Step 1. For every k ∈ N we set Ω(k) = {x ∈ Rn : |xi| < 1− 1/(2k), i = 1, . . . , n} \Q2k(0). Evidently, {Ω(k)} is a sequence of nonempty open sets of Rn, and the following assertions hold true: for every k ∈ N, Ω(k) ⊂ Ω(k+1) ⊂ Ω; meas(Ω \ Ω(k)) → 0; for every k ∈ N the functions ν and b are bounded in Ω(k). These assertions along with the properties of the functions b, ψs and fs provide the fulfilment of all the conditions under which in [13] Theorem 2 on the Γ-compactness of a sequence of integral functionals was proved. Thus, some necessary constructions given in the proof of this theorem may be utilized. These ones are as follows. A. For every t ∈ N we set Yt = {y ∈ Rn : tyi ∈ Z, i = 1, . . . , n}. Observe that ∀ t ∈ N, ⋃ y∈Yt Qt(y) = Rn; ∀ t ∈ N, ∀ y, y′ ∈ Yt, y 6= y′, Qt(y) ∩Qt(y′) = ∅. For every t ∈ N we define Y ′ t = {y ∈ Yt : Qt(y) ⊂ Ω}. Obviously, there exists t0 ∈ N such that for every t ∈ N, t > t0, the set Y ′ t is nonempty. Let for every t ∈ N, t > t0, s ∈ N and y ∈ Y ′ t , Vt,s(y) = { u ∈ W̃ 1,p 0 (ν, Ωs) : ∫ Qt(y)∩Ωs ν|u|p dx 6 t−n−3p } . Now for every t ∈ N, t > t0, s ∈ N, y ∈ Y ′ t and ξ ∈ Rn we set Ft,s(y, ξ) = tn inf u∈Vt,s(y) ∫ Qt(y)∩Ωs fs(x, ξ +∇u)dx. B. Let {s̄k} ⊂ N be an arbitrary increasing sequence. From (3.1) and the convexity of the functions fs(x, ·) for almost every x ∈ Ωs it follows that there exist an increasing sequence {sj} ⊂ {s̄k} and a sequence of functions Φt : Rn ×Rn → R such that for every t ∈ N, t > t0, y ∈ Y ′ t and ξ ∈ Rn we have lim j→∞ Ft,sj (y, ξ) = Φt(y, ξ). (3.4) C. Let for every t ∈ N and y ∈ Ω such that Qt(y) ⊂ Ω, χt,y : Ω → R be the characteristic function of the set Qt(y). For every k, t ∈ N we set Yk,t = {y ∈ Yt : Qt(y) ⊂ Ω(k)}. Let us give the following definition: if k, t ∈ N and Yk,t 6= ∅, H (k) t is the function on Ω× Rn such that for every pair (x, ξ) ∈ Ω× Rn, H (k) t (x, ξ) = ∑ y∈Yk,t χt,y(x)Φt(y, ξ); 105 A.A. Kovalevsky, O.A. Rudakova if k, t ∈ N and Yk,t = ∅, H (k) t is the function on Ω × Rn such that for every pair (x, ξ) ∈ Ω× Rn, H (k) t (x, ξ) = 0. D. In accordance with the considerations given within steps 4–11 of the proof of Theorem 2 in [13] there exist an increasing sequence {ti} ⊂ N and a Carathéodory function f : Ω× Rn → R such that f ∈ F and the following assertions hold: k ∈ N, ξ ∈Rn, ϕ ∈ L∞(Ω) ⇒ lim i→∞ ∫ Ω(k) H (k) ti (·, ξ)ϕ dx = ∫ Ω(k) f(·, ξ)ϕdx; (3.5) the sequence {Jsj} Γ-converges to the functional Jf . (3.6) Now the aim is to prove that for almost every x ∈ Ω and every ξ ∈ Rn, f(x, ξ) = f̄(x, ξ). Step 2. Taking into account the inclusions ν ∈ L1(Ω) and f ∈ F , we establish that there exists a set E ⊂ Ω with measure zero such that for every z ∈ Ω \E and ξ ∈ Rn, τn ∫ Qτ (z) f(·, ξ)dx → f(z, ξ). (3.7) Step 3. We fix z0 ∈ Ω \ (E ∪ {0}) and ξ ∈ Rn. Clearly, there exists τ0 ∈ N such that 0 /∈ Qτ0(z0) and Qτ0(z0) ⊂ Ω. Then there exists k ∈ N such that Qτ0(z0) ⊂ Ω(k). Since the function ν is positive and continuous in Ω \ {0}, there exists Mk > 0 such that ∀x ∈ Ω(k), 1/Mk 6 ν(x) 6 Mk. (3.8) We fix ε > 0. Due to the continuity of ν in Ω \ {0} there exists δ > 0 such that for every x′, x′′ ∈ Ω(k), |x′ − x′′| 6 δ, we have |ν(x′)− ν(x′′)| 6 ε. (3.9) Let τ ∈ N, τ > τ0 + 1 + n/δ. We fix t ∈ N such that t > max{t0, 2τ(τ − 1)} and define Xt = {y ∈ Yt : Qt(y) ∩Qτ (z0) 6= ∅}. It is easy to see that Xt 6= ∅. Step 4. We fix y ∈ Xt and take a function w ∈ W 1,p per(Π) such that f̃(ξ) = ∫ Π f̂(x, ξ +∇w)dx. (3.10) The existence of such a function follows from (2.3), (2.4) and the known results on the existence of minimizers of functionals (see for instance [14]). Finally, we fix s0 ∈ N such that 2ns−p 0 Mk ∫ Π |w|p dx 6 t−n−3p, and after that fix s ∈ N, s > max{s0, 2t}. Let ws : Ωs → R be a function such that ws(x) = s−1w(s(x− z)) if z ∈ Z̃s and x ∈ Qs(z) \B(z, r/s). 106 Γ-convergence of integral functionals Taking into account assertions (3.2) and (3.3) and the inclusion w ∈ W 1,p per(Π), we establish that ws ∈ W 1,p(Ωs). Then involving into consideration the function wsϕt, where ϕt is a function in C∞ 0 (Ω) such that ϕt = 1 in Qt(y), we obtain the inequality Ft,s(y, ξ) 6 tn ∫ Qt(y)∩Ωs fs(x, ξ +∇ws)dx. (3.11) Using the definitions of the functions ws, fs and f̄ along with (2.2), (2.4) and (3.8)–(3.11), we get Ft,s(y, ξ)− f̄(y, ξ) 6 2nn(ĉ2/ĉ1 + 1)(|f̃(ξ)|+ ĉ)Mk(ε + ts−1). (3.12) Step 5. With the use of the definition of Ft,s(y, ξ), properties of the function fs and (3.8) we establish that there exists a function vs ∈ C̃∞ 0 (Ωs) such that vs = 0 in Ωs \Qt(y) and ∫ Qt(y)∩Ωs fs(x, ξ +∇vs)dx 6 t−nFt,s(y, ξ) + ĉ3(1 + |ξ|p)Mkt −n−1, (3.13) where ĉ3 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ. Step 6. By means of the function vs we construct a function belonging to C1 per(Π). We need this in order to obtain a suitable estimate from below for the left-hand side of inequality (3.13). First, we observe that due to the inclusion vs ∈ C̃∞ 0 (Ωs) there exists a function v ∈ C1(Rn) such that supp v ⊂ Ω and vs = v|Ωs . We define Z̃ ′s = {z ∈ Z̃s : Qs(z)∩Qt(y) 6= ∅}. Owing to (3.2) the set Z̃ ′s is nonempty. We denote by n′s the number of elements of the set Z̃ ′s. For every z ∈ Z̃ ′s we define the function gs,z : Π → R by gs,z(x) = sv(s−1x + z), x ∈ Π, and after that we set gs = 1 n′s ∑ z∈Z̃′s gs,z. With the use of considerations analogous to those given in the proof of Lemma 2.2.1 of [7] we establish that gs ∈ C1 per(Π). Therefore, gs ∈ W 1,p per(Π). Then, taking into account the definitions of the functions f̃ and gs and (2.3), we get f̃(ξ) 6 ∫ Π f̂(x, ξ +∇gs)dx 6 1 n′s ∑ z∈Z̃′s ∫ Π f̂(x, ξ +∇gs,z)dx. (3.14) Moreover, using (2.2), (2.4), (3.8) and (3.9), we obtain that for every z ∈ Z̃ ′s, ν(y) ∫ Π f̂(x, ξ +∇gs,z)dx 6 sn ∫ Qs(z)\B(z,r/s) fs(x, ξ +∇vs)dx + εĉ2Mks n ∫ Qs(z)\B(z,r/s) ν|ξ +∇vs|p dx + εĉM2 k . (3.15) 107 A.A. Kovalevsky, O.A. Rudakova From (3.13)–(3.15), taking into account (3.1), (3.8) and the definitions of f̄ and Ft,s(y, ξ), we get the inequality f̄(y, ξ)− Ft,s(y, ξ) 6 ĉ4(1 + |ξ|p)M2 k (ε + t−1 + ts−1), (3.16) where ĉ4 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ. Step 7. From (2.5), (3.12) and (3.16) we deduce that |Ft,s(y, ξ)− f̄(y, ξ)| 6 ĉ5(1 + |ξ|p)M2 k (ε + t−1 + ts−1), where ĉ5 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ. Hence, taking into account that s is an arbitrary natural number greater than or equal to max{s0, 2t} and using (3.4), we infer that for every y ∈ Xt, |Φt(y, ξ)− f̄(y, ξ)| 6 ĉ5(1 + |ξ|p)M2 k (ε + t−1). (3.17) Step 8. Taking into account the definition of the function H (k) t and the equality ∑ y∈Xt meas[Qτ (z0) ∩Qt(y)] = τ−n, (3.18) we obtain that ∣∣∣∣ ∫ Qτ (z0) H (k) t (·, ξ)dx− f̄(z0, ξ)τ−n ∣∣∣∣ 6 ∑ y∈Xt |Φt(y, ξ)− f̄(y, ξ)|meas[Qτ (z0) ∩Qt(y)] + ∑ y∈Xt |f̄(y, ξ)− f̄(z0, ξ)|meas[Qτ (z0) ∩Qt(y)]. Hence, taking into account (3.17), (3.18), (3.9), the inequality τ > 1 + n/δ and the definition of the function f̄ , we derive that for every t ∈ N, t > max{t0, 2τ(τ − 1)}, ∣∣∣∣ ∫ Qτ (z0) H (k) t (·, ξ)dx− f̄(z0, ξ)τ−n ∣∣∣∣ 6 (ĉ5 + 1)(1 + |ξ|p + |f̃(ξ)|)M2 k (ε + t−1)τ−n. This and (3.5) imply that for every τ ∈ N, τ > τ0 + 1 + n/δ, ∣∣∣∣τn ∫ Qτ (z0) f(·, ξ)dx− f̄(z0, ξ) ∣∣∣∣ 6 (ĉ5 + 1)(1 + |ξ|p + |f̃(ξ)|)M2 kε. Hence, using (3.7) and after that taking into account the arbitrariness of ε > 0, we obtain f(z0, ξ) = f̄(z0, ξ). Thus, for almost every x ∈ Ω and every ξ ∈ Rn we have f(x, ξ) = f̄(x, ξ). Therefore, Jf = J f̄ . From this and (3.6) it follows that the sequence {Jsj} Γ-converges to the functional J f̄ . 108 Γ-convergence of integral functionals Step 9. The result obtained allows us to affirm that the following assertion holds true: for every increasing sequence {s̄k} ⊂ N there exists an increasing sequence {sj} ⊂ {s̄k} such that the sequence {Jsj} Γ-converges to the functional J f̄ . Hence we deduce the conclusion of the theorem. 1. Dal Maso G. An introduction to Г-convergence. – Boston: Birkhäuser, 1993. – 337p. 2. De Arcangelis R., Donato P. Homogenization in weighted Sobolev spaces // Ricerche Mat. – 1985. – 34, №2. – P.289-308. 3. De Giorgi E., Franzoni T. Su un tipo di convergenza variazionale // Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8). – 1975. – 58, №6. – P.842-850. 4. Khruslov E.Ya. Asymptotic behavior of the solutions of the second boundary value problem in the case of the refinement of the boundary of the domain // Mat. Sb. – 1978. – 106, №4. – P.604-621. 5. Kovalevskii A.A. Some problems connected with the problem of averaging variational problems for functionals with a variable domain. – Current analysis and its applications. – Kiev: Naukova Dumka, 1989. – P.62-70. 6. Kovalevskii А.А. Conditions for Γ-convergence and homogenization of integral functionals with different domains // Dokl. Akad. Nauk Ukrain. SSR. – 1991. – №4. – P.5-8. 7. Kovalevskii A.A. The questions of convergence and homogenization for nonlinear elliptic operators and integral functionals with varying domain of definition: Thesis for the Degree Doct. Sci. Phys. Math. – Donetsk: Inst. Prikl. Mat. Mekh. Nats. Akad. Nauk Ukrainy. – 1994. – 266p. 8. Kovalevskii А.А. On the Γ-convergence of integral functionals defined on weakly connected Sobolev spaces // Ukrainian Mаth. J. – 1996. – 48, №5. – P.683-698. 9. Kovalevskii A.A. Averaging of integral functionals associated with domains of periodic structure of framework type with thin channels // Ukrainian Mаth. J. – 2000. – 52, №5. – P.703-714. 10. Kovalevskii A.A., Rudakova O.A. On the Γ-compactness of integral functionals with degenerate integrands // Nelinejnye granichnye zadachi. – 2005. – 15. – P.149-153. 11. Kovalevskii A.A., Rudakova O.A. On the strong connectedness of weighted Sobolev spaces and the compactness of sequences of their elements // Tr. Inst. Prikl. Mat. Mekh. Nats. Akad. Nauk Ukrainy. – 2006. – 12. – P.85-99. 12. Kovalevsky A.A., Rudakova O.A. Variational problems with pointwise constraints and degeneration in variable domains // Differ. Equ. Appl. – 2009. – 1, №4. – P.517-559. 13. Rudakova O.A. On the Γ-convergence of integral functionals defined on different weighted Sobolev spaces // Ukrain. Mat. Zh. – 2009. – 61, №1. – P.99-115. 14. Vainberg M.M. Variational method and method of monotone operators in the theory of nonlinear equations. – New York–Toronto: Halsted Press, 1973. – 356p. 15. Zhikov V.V. Questions of convergence, duality and averaging for functionals of the calculus of variations // Izv. Akad. Nauk SSSR Ser. Mat. – 1983. – 47, №5. – P.961-998. 16. Zhikov V.V. Passage to the limit in nonlinear variational problems // Mat. Sb. – 1992. – 183, №8. – P.47-84. Ин-т прикл. математики и механики НАН Украины, Донецк alexkvl@iamm.ac.donetsk.ua, rudakova@iamm.ac.donetsk.ua Получено 01.12.09 109 титул Научное издание Том 19 содержание Том 19 Донецк, 2009 Основан в 1997г.