The Beltrami equations and lower Q-homeomorphisms

In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Kovtonyuk, D.A., Petkov, I.V., Ryazanov, V.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Труды Института прикладной математики и механики
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/123958
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Beltrami equations and lower Q-homeomorphisms / D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 21. — С. 114-117. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-123958
record_format dspace
spelling irk-123456789-1239582017-09-16T03:03:43Z The Beltrami equations and lower Q-homeomorphisms Kovtonyuk, D.A. Petkov, I.V. Ryazanov, V.I. In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of singularities of such solutions. В работе показано, что любое гомеоморфное W1,1loc решение уравнения Бельтрами ∂f = μ∂f является так называемым нижним <3-гомеоморфизмом с Q(z) = Kμ(z) где Kμ(z) - коэффициент дилатации этого уравнения. На этой основе развита теория граничного поведения и устранимость сингулярностей таких решений. У роботі показано, що будь-який гомеоморфний W1,1loc розв'язок рівняння Бельтрамі ∂f = μ∂f є так званим нижнім (^-гомеоморфізмом зQ(z) = Kμ(z), де Kμ(z) - коефіцієнт дилатації цього рівняння. На цій основі розвинуто теорію граничної поведінки і усунення сингулярностей таких розв'язків. 2010 Article The Beltrami equations and lower Q-homeomorphisms / D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 21. — С. 114-117. — Бібліогр.: 13 назв. — англ. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/123958 517.5 en Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of singularities of such solutions.
format Article
author Kovtonyuk, D.A.
Petkov, I.V.
Ryazanov, V.I.
spellingShingle Kovtonyuk, D.A.
Petkov, I.V.
Ryazanov, V.I.
The Beltrami equations and lower Q-homeomorphisms
Труды Института прикладной математики и механики
author_facet Kovtonyuk, D.A.
Petkov, I.V.
Ryazanov, V.I.
author_sort Kovtonyuk, D.A.
title The Beltrami equations and lower Q-homeomorphisms
title_short The Beltrami equations and lower Q-homeomorphisms
title_full The Beltrami equations and lower Q-homeomorphisms
title_fullStr The Beltrami equations and lower Q-homeomorphisms
title_full_unstemmed The Beltrami equations and lower Q-homeomorphisms
title_sort beltrami equations and lower q-homeomorphisms
publisher Інститут прикладної математики і механіки НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/123958
citation_txt The Beltrami equations and lower Q-homeomorphisms / D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 21. — С. 114-117. — Бібліогр.: 13 назв. — англ.
series Труды Института прикладной математики и механики
work_keys_str_mv AT kovtonyukda thebeltramiequationsandlowerqhomeomorphisms
AT petkoviv thebeltramiequationsandlowerqhomeomorphisms
AT ryazanovvi thebeltramiequationsandlowerqhomeomorphisms
AT kovtonyukda beltramiequationsandlowerqhomeomorphisms
AT petkoviv beltramiequationsandlowerqhomeomorphisms
AT ryazanovvi beltramiequationsandlowerqhomeomorphisms
first_indexed 2025-07-09T00:36:18Z
last_indexed 2025-07-09T00:36:18Z
_version_ 1837127570962776064
fulltext ISSN 1683-4720 Труды ИПММ НАН Украины. 2010. Том 21 UDK 517.5 c©2010. D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov THE BELTRAMI EQUATIONS AND LOWER Q-HOMEOMORPHISMS In this article it is shown that each homeomorphic W 1,1 loc solution to the Beltrami equation ∂f = µ ∂f is the so-called lower Q-homeomorphism with Q(z) = Kµ(z) where Kµ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of singularities of such solutions. Key words:Beltrami equations, lower Q-homeomorphism 1. Introduction. In this paper we present applications of our results on the so-called lower Q-homeomorphisms in the monograph [9] to the study of the boundary behavior of solutions for the Beltrami equations with degeneration. Let D be a domain in the complex plane C, i.e., a connected and open subset of C, and let µ : D → C be a measurable function with |µ(z)| < 1 a.e. (almost everywhere) in D. The Beltrami equation is the equation of the form fz = µ(z)fz (1) where fz = ∂f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, and fx and fy are partial derivatives of f in x and y, correspondingly. The function µ is called the complex coefficient and Kµ(z) = 1 + |µ(z)| 1− |µ(z)| (2) the dilatation quotient for the equation (1). The Beltrami equation (1) is said to be degenerate if ess sup Kµ(z) = ∞. The existence theorem for homeomorphic W 1,1 loc solutions was established to many degenerate Beltrami equations, see, e.g., the recent monographs [1] and [9] and the surveys [6] and [13]. A continuous mapping γ of an open subset ∆ of the real axis R or a circle into D is called a dashed line, see, e.g., Section 6.3 in [9]. Recall that every open set ∆ in R consists of a countable collection of mutually disjoint intervals. This is the motivation for the term. Given a family Γ of dashed lines γ in complex plane C, a Borel function % : C→ [0,∞] is called admissible for Γ, write % ∈ admΓ, if ∫ γ % ds > 1 (3) for every γ ∈ Γ. The (conformal) modulus of Γ is the quantity M(Γ) = inf %∈admΓ ∫ C %2(z) dm(z) (4) 114 The Beltrami equations and lower Q-homeomorphisms where dm(z) corresponds to the Lebesgue measure in C. We say that a property P holds for a.e. (almost every) γ ∈ Γ if a subfamily of all lines in Γ for which P fails has the modulus zero, cf. [3]. Later on, we also say that a Lebesgue measurable function % : C → [0,∞] is extensively admissible for Γ, write % ∈ ext admΓ, if (3) holds for a.e. γ ∈ Γ, see, e.g., Section 9.2 in [9]. The following concept was motivated by Gehring’s ring definition of quasiconforma- lity in [4]. Given domains D and D′ in C = C ∪ {∞}, z0 ∈ D \ {∞}, and a measurable function Q : D → (0,∞), we say that a homeomorphism f : D → D′ is a lower Q-homeomorphism at the point z0 if M(fΣε) > inf %∈ext adm Σε ∫ D∩Rε %2(x) Q(x) dm(x) (5) for every ring Rε = {z ∈ C : ε < |z − z0| < ε0}, ε ∈ (0, ε0), ε0 ∈ (0, d0), where d0 = sup z∈D |z − z0|, and Σε denotes the family of all intersections of the circles S(r) = S(z0, r) = {z ∈ C : |z − z0| = r}, r ∈ (ε, ε0), with the domain D. The notion can be extended to the case z0 = ∞ ∈ D in the standard way by applying the inversion T with respect to the unit circle in C, T (x) = z/|z|2, T (∞) = 0, T (0) = ∞. Namely, a homeomorphism f : D → D′ is a lower Q-homeomorphism at ∞ ∈ D if F = f ◦ T is a lower Q∗-homeomorphism with Q∗ = Q ◦ T at 0. We also say that a homeomorphism f : D → C is a lower Q-homeomorphism in ∂D if f is a lower Q-homeomorphism at every point z0 ∈ ∂D. Further we show that each homeomorphic W 1,1 loc solution of the Beltrami equation (1) is a lower Q-homeomorphism with Q(z) = Kµ(z) and, thus, the whole theory of the boundary behavior in [7], see also Chapter 9 in [9], can be applied to such solutions. In other words, in the plane this holds for homeomorphisms with finite distortion by Iwaniec, see, e.g., related references in the monographs [1] and [9]. 2. The main result. Theorem. Let f be a homeomorphic W 1,1 loc solution of the Beltrami equation (1). Then f is a lower Q-homeomorphism at each point z0 ∈ D with Q(z) = Kµ(z). Proof. Let B be a (Borel) set of all points z in D where f has a total differential with Jf (z) 6= 0 a.e. It is known that B is the union of a countable collection of Borel sets Bl, l = 1, 2, . . . , such that fl = f |Bl is a bi-Lipschitz homeomorphism, see e.g. Lemma 3.2.2 in [2]. With no loss of generality, we may assume that the Bl are mutually disjoint. Denote also by B∗ the set of all points z ∈ D where f has a total differential with f ′(z) = 0. 115 D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov Note that the set B0 = D \ (B∪B∗) has the Lebesgue measure zero in C by Gehring- Lehto-Menchoff theorem, see [5] and [11]. Hence by Theorem 2.11 in [8], see also Lemma 9.1 in [9], length(γ∩B0) = 0 for a.e. paths γ in D. Let us show that length(f(γ)∩f(B0)) = 0 for a.e. circle γ centered at z0. The latter follows from absolute continuity of f on closed subarcs of γ ∩ D for a.e. such circle γ. Indeed, the class W 1,1 loc is invariant with respect to local quasi-isometries, see e.g. Theorem 1.1.7 in [10], and the functions in W 1,1 loc is absolutely continuous on lines, see e.g. Theorem 1.1.3 in [10]. Applying say the transformation of coordinates log(z−z0), we come to the absolute continuity on a.e. such circle γ. Thus, length(γ∗ ∩ f(B0)) = 0 where γ∗ = f(γ) for a.e. circle γ centered at z0. Now, let %∗ ∈ adm f(Γ) where Γ is the collection of all dashed lines γ ∩ D for such circles γ and %∗ ≡ 0 outside f(D). Set % ≡ 0 outside D and %(z) : = %∗(f(z)) (|fz|+ |fz̄|) for a.e. z ∈ D Arguing piecewise on Bl, we have by Theorem 3.2.5 under m = 1 in [2] that ∫ γ % ds > ∫ γ∗ %∗ ds∗ > 1 for a.e. γ ∈ Γ because length(f(γ) ∩ f(B0)) = 0 and length(f(γ) ∩ f(B∗)) = 0 for a.e. γ ∈ Γ, consequently, % ∈ ext adm Γ. On the other hand, again arguing piecewise on Bl, we have the inequality ∫ D %2(x) Kµ(z) dm(z) 6 ∫ f(D) %2 ∗(w) dm(w) because %(z) = 0 on B∗. Consequently, we obtain that M(fΓ) > inf %∈ext admΓ ∫ D %2(z) Kµ(z) dm(z) , i.e., f is really a lower Q-homeomorphism with Q(z) = Kµ(z). 1. Astala K., Iwaniec T. and Martin G.J. Elliptic differential equations and quasiconformal mappings in the plane. – Princeton Math. Ser., v. 48, Princeton Univ. Press, Princeton, 2009. 2. Federer H. Geometric Measure Theory. – Springer-Verlag, Berlin 1969. 3. Fuglede B. Extremal length and functional completion // Acta Math. – 1957. – V. 98. – P. 171-219. 4. Gehring F.W. Rings and quasiconformal mappings in space // Trans. Amer. Math. Soc. – 1962. – V. 103. – P. 353-393. 5. Gehring F.W., Lehto O. On the total differentiability of functions of a complex variable // Ann. Acad. Sci. Fenn. A1. Math. – 1959. – V. 272. – P. 1-9. 6. Gutlyanskii V., Ryazanov V., Srebro U. and Yakubov E. On recent advances in the degenerate Beltrami equations // Ukraininan Math. Bull. – 2010. – V. 7, no. 4. – P. 467-515. 7. Kovtonyuk D., Ryazanov V. On the theory of lower Q-homeomorphisms // Ukrainian Math. Bull. – 2008. – V. 5, no. 2. – P. 157-181. 116 The Beltrami equations and lower Q-homeomorphisms 8. Kovtonyuk D., Ryazanov V. On the theory of mappings with finite area distortion // J. Anal. Math. – 2008. – V. 104. – P. 291-306. 9. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in Modern Mapping Theory. – Springer, New York, 2009. 10. Maz’ya V. Sobolev Classes. – Springer-Verlag, Berlin, 1985. 11. Menchoff D. Sur les differentielles totales des fonctions univalentes // Math. Ann. – 1931. – V. 105. – P. 75-85. 12. Ryazanov V., Srebro U. and Yakubov E. BMO-quasiconformal mappings // J. d’Anal. Math. – 2001. – V. 83. – P. 1-20. 13. Srebro U. and Yakubov E. The Beltrami equation // Handbook in Complex Analysis. Geometric function theory. – 2005. – V. 2. – P. 555-597. Д.А. Ковтонюк, И.В. Петков, В.И. Рязанов Уравнения Бельтрами и нижние Q-гомеоморфизмы. В работе показано, что любое гомеоморфное W 1,1 loc решение уравнения Бельтрами ∂f = µ ∂f яв- ляется так называемым нижним Q-гомеоморфизмом с Q(z) = Kµ(z), где Kµ(z) – коэффициент дилатации этого уравнения. На этой основе развита теория граничного поведения и устранимость сингулярностей таких решений. Ключевые слова: Уравнения Бельтрами, нижние Q-гомеоморфизмы Д.О. Ковтонюк, I.В. Пєтков, В.I. Рязанов Рiвняння Бельтрамi та нижнi Q-гомеоморфiзми. У роботi показано, що будь-який гомеоморфний W 1,1 loc розв’язок рiвняння Бельтрамi ∂f = µ ∂f є так званим нижнiм Q-гомеоморфiзмом з Q(z) = Kµ(z), де Kµ(z) – коефiцiєнт дилатацiї цього рiвняння. На цiй основi розвинуто теорiю граничної поведiнки i усунення сингулярностей таких розвязкiв. Ключовi слова: Рiвняння Бельтрамi, нижнi Q-гомеоморфiзми Ин-т прикл. математики и механики НАН Украины, Донецк denis kovtonyuk@bk.ru, igorpetkov@list.ru, vlryazanov1@rambler.ru Received 10.12.10 117