The Beltrami equations and lower Q-homeomorphisms
In this article it is shown that each homeomorphic W1,1loc solution to the Beltrami equation ∂f = μ∂f is the so-called lower Q-homeomorphism with Q(z) = Kμ(z) where Kμ(z) is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of...
Saved in:
Date: | 2010 |
---|---|
Main Authors: | Kovtonyuk, D.A., Petkov, I.V., Ryazanov, V.I. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2010
|
Series: | Труды Института прикладной математики и механики |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/123958 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The Beltrami equations and lower Q-homeomorphisms / D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 21. — С. 114-117. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The Beltrami equation and ring homeomorphisms
by: Ryazanov, V., et al.
Published: (2007) -
On Dirichlet problem for Beltrami equations in finitely domains
by: I. Petkov, et al.
Published: (2020) -
The lower Q-homeomorphisms relative to a p-modulus
by: R. R. Salimov
Published: (2015) -
On estimations of the measure of the image of a ball under lower Q-homeomorphisms
by: R. R. Salimov
Published: (2016) -
On the theory of the Beltrami equation
by: Ryazanov, V.I., et al.
Published: (2006)