On the equivalence of certain seminorms on some weighted Hölder spaces

The present paper is devoted to studying of some weighted H¨older spaces. These spaces are designed in the way to serve as a framework for studying different statements for the thin film equations in weighted classes of smooth functions in the multidimensional setting. These spaces can serve also fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Degtyarev, S.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Schriftenreihe:Труды Института прикладной математики и механики
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/124241
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the equivalence of certain seminorms on some weighted Hölder spaces / S.P. Degtyarev // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 39-45. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124241
record_format dspace
spelling irk-123456789-1242412017-09-23T03:03:16Z On the equivalence of certain seminorms on some weighted Hölder spaces Degtyarev, S.P. The present paper is devoted to studying of some weighted H¨older spaces. These spaces are designed in the way to serve as a framework for studying different statements for the thin film equations in weighted classes of smooth functions in the multidimensional setting. These spaces can serve also for considering of other equations with the degeneration on the boundary of the domain of definition. We prove the equivalence of certain metrics on these spaces. Данная статья посвящена изучению некоторых весовых пространств Гельдера. Эти пространства являются естественными классами гладких функций для изучения уравнений типа уравнений тонких пленок в многомерном случае. Эти классы могут быть применены также для изучения других уравнений с вырождением на границе области определения. Мы доказываем эквивалентность некоторых различных метрик в этих пространствах. 2016 Article On the equivalence of certain seminorms on some weighted Hölder spaces / S.P. Degtyarev // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 39-45. — Бібліогр.: 25 назв. — англ. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/124241 517.9 en Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The present paper is devoted to studying of some weighted H¨older spaces. These spaces are designed in the way to serve as a framework for studying different statements for the thin film equations in weighted classes of smooth functions in the multidimensional setting. These spaces can serve also for considering of other equations with the degeneration on the boundary of the domain of definition. We prove the equivalence of certain metrics on these spaces.
format Article
author Degtyarev, S.P.
spellingShingle Degtyarev, S.P.
On the equivalence of certain seminorms on some weighted Hölder spaces
Труды Института прикладной математики и механики
author_facet Degtyarev, S.P.
author_sort Degtyarev, S.P.
title On the equivalence of certain seminorms on some weighted Hölder spaces
title_short On the equivalence of certain seminorms on some weighted Hölder spaces
title_full On the equivalence of certain seminorms on some weighted Hölder spaces
title_fullStr On the equivalence of certain seminorms on some weighted Hölder spaces
title_full_unstemmed On the equivalence of certain seminorms on some weighted Hölder spaces
title_sort on the equivalence of certain seminorms on some weighted hölder spaces
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/124241
citation_txt On the equivalence of certain seminorms on some weighted Hölder spaces / S.P. Degtyarev // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 39-45. — Бібліогр.: 25 назв. — англ.
series Труды Института прикладной математики и механики
work_keys_str_mv AT degtyarevsp ontheequivalenceofcertainseminormsonsomeweightedholderspaces
first_indexed 2025-07-09T01:06:33Z
last_indexed 2025-07-09T01:06:33Z
_version_ 1837129475746168832
fulltext ISSN 1683-4720 Труды ИПММ. 2016. Том 30 UDK 517.9 c©2016. S. P. Degtyarev ON THE EQUIVALENCE OF CERTAIN SEMINORMS ON SOME WEIGHTED HÖLDER SPACES The present paper is devoted to studying of some weighted Hölder spaces. These spaces are designed in the way to serve as a framework for studying different statements for the thin film equations in weighted classes of smooth functions in the multidimensional setting. These spaces can serve also for considering of other equations with the degeneration on the boundary of the domain of definition. We prove the equivalence of certain metrics on these spaces. Keywords: weighted Hölder spaces, degenerate parabolic equations, equivalent metrics. The present paper is devoted to studying of some weighted Hölder spaces C m+γ, m+γ m n,ωγ . These spaces were introduced in [1] and they are designed in the way to serve as a framework for consideration of different statements for the thin film equations in weighted classes of smooth functions in the multidimensional setting. These spaces can serve also for considering of other equations with the degeneration on the boundary of the domain of definition, for example, in the spirit of [2]. The literature on the subject of the thin film equations is very numerous but almost all results with sufficient regularity are devoted to the case of one spatial variable. As a possible target for an application of the spaces C m+γ, m+γ m n,ωγ we only mention the papers [3]–[17]. The spaces C m+γ, m+γ m n,ωγ arise at the considering linearised version of the thin film equations. Let us explain this on the example for the thin film equation in the case of partial wetting (see, for example, [3] for the accurate statement). Consider the thin film equation of fourth order for an unknown function h(x, t) (compare [18]) ∂h ∂t +∇ (hn∇∆h− β∇h) = f(x, t) in Ω, (1) where n > 0 is fixed, Ω is a half space Ω = {(x, t) : x = (x′, xN ) ∈ RN , xN > 0, t > 0}. Consider also partial wetting conditions at xN = 0 h(x′, 0, t) = 0, ∂h ∂xN (x′, 0, t) = 1 (2) and an initial condition h(x, 0) = w(x). (3) From (2) it follows that we must have for w(x) w(x′, 0) = 0, ∂w ∂xN (x′, 0) = 1. (4) 39 S. P. Degtyarev Consequently, we have w(x) ∼ xN , xN → 0. (5) The linearization of equation (1) at the initial datum w(x) means that we denote in (1) h = w + u and extract linear with respect to u part (we also drop lower order terms). Formally, one can just replace hn by wn in (1) and replace h by u in other places of this equation. Taking into account (5) and replacing w by just xN , we arrive at ∂u ∂t +∇(xn N∇∆u− β∇u) = f(x, t) in Ω. (6) For second order equations this procedure is described in details in, for example, [19], [20], [2], and for fourth order see [17], [3], [4] formula (13), [5] formula (7). If we are going to consider equations (6) (and correspondingly (1)) in classes of Hölder functions we have to consider f(x, t) in (6) from some (may be weighted) Hölder class. This leads to the consideration of ∇(xn N∇∆u) from the same weighted Hölder class. In our definition below this will be the class C m+γ, m+γ m n,(n/4)γ . In the case of second order equations such classes were used in fact in [21]–[23], [2], where the papers [21]–[23] are based on the Carnot–Carathéodory metric and the paper [2] is based on classes C m+γ, m+γ m n,ωγ . Note that we consider the framework of classes C m+γ, m+γ m n,ωγ as an alternative for considering the Carnot–Carathéodory metric for studying degenerate equations in classes of smooth functions – [21]–[23], [17]. Therefor, in this paper we are going to prove the equivalence of the Carnot–Carathéodory metric in spaces C m+γ, m+γ m n,ωγ to some another weighted metric in these spaces. Note that in the case of elliptic equations more simple weighted Hölder classes with unweighted Hölder constants can be used – [24], [25]. The reason is that in the elliptic case no agreement between smoothness in x-variables and t- variable is needed. Let us turn now to exact definitions and to the main results. Denote H = {x = (x′, xN ) ∈ RN : xN > 0}, Q = {(x, t) : x ∈ H,−∞ < t < ∞}. And we note at once that all the reasoning and statement below are valid in evident way also for Q+ = {(x, t) : x ∈ H, t ≥ 0} instead of Q. Let m be a positive integer and let n be a positive number, n < m. Denote ω = n/m < 1. Let Cγ ωγ(H), γ ∈ (0, 1), be the weighted Hölder space of continuous functions u(x) with the finite norm |u|(γ) ωγ,H ≡ ‖u‖Cγ ωγ(H) ≡ |u|(0) H + 〈u〉(γ) ωγ,H , (7) where |u|(0) H = max x∈H |u(x)|, 〈u〉(γ) ωγ,H = sup x,x∈H (x∗N )ωγ |u(x)− u(x)| |x− x|γ , x∗N = max{xN , xN}. (8) 40 On the equivalence of certain metrics on some weighted Hölder spaces Thus 〈u〉(γ) ωγ,H represents a weighted Hölder constant of the function u(x). We suppose that n < m, , if n is a noninteger (1− ω)γ = γ ( 1− n m ) < min({n}, 1− {n}), (9) where for a real number a ,{a} is the fractional part of a, [a] is the integer part of a. This assumption is technical and it allows us, for example, to consider the functions xn−j N as elements of Cγ ωγ(H) for all integer j < n. In the similar way we define the Hölder seminorms with respect to each variable separately 〈u〉(γ) ωγ,xi,H = sup x,x∈H (x∗N )ωγ |u(x)− u(x)| hγ , x∗N = max{xN , xN}, i = 1, N, (10) where x = (x1, ...xi, ..., xN ), x = (x1, ...xi + h, ..., xN ), h > 0. In the standard way we denote by 〈u〉(γ) xi,H , 〈u〉(γ) x′,H , and 〈u〉(γ) x,H usual unweighted Hölder seminorms with respect to each variable separately, with respect to x′ = (x1, ..., xN−1) or with respect to all x-variables. Note that in terms of the Carnot-Carathéodory metric seminorm (8) is equivalent to 〈u〉(γ) ωγ,H ' sup x,x∈H |u(x)− u(x)| s(x, x)γ , where the Carnot–Carathéodory distance is defined as s(x, x) = |x− x| |x− x|ω + xω N + xω N . (11) In the case of m = 2, n ∈ (0, 1) this was proved in [2] and in the general case we have the following theorem which is the main result of the present paper. Denote [u](γ) s ≡ sup x,x∈H |u(x)− u(x)| s(x, x)γ , (12) where s(x, x) is defined in (11) Theorem. Seminorm (10) is equivalent to seminorm (12). This means that there are constants C1 and C2 with the property [f ](γ) s ≤ C1 〈f〉(γ) ωγ,H ≤ C2[f ](γ) s (13) for any continuous in H function f(x). Proof. Let the seminorm [f ](γ) s is finite. We show, that then 〈f〉(γ) ωγ,H ≤ C[f ](γ) s . (14) 41 S. P. Degtyarev Let ε0 ∈ (0, 1) is small and fixed. Let x = (x′, xN ) and let first |x′ − x′| ≥ ε0xN . (15) Then the more |x− x| ≥ |x′ − x′| ≥ ε0xN . (16) Under this condition s(x, x) = |x− x| xω N + xω N + |x′ − x′|ω ≤ ≤ C |x− x| |x− x|ω + xω N + |x′ − x′|ω ≤ C|x− x|1−ω. Therefore, denoting β = γ(1− ω), |f(x, t)− f(x, t)| |x− x|β ≤ C |f(x, t)− f(x, t)| s(x, x)γ ≤ C[u](γ) s . (17) Besides, because of (16), and then of (17), xγω N |f(x, t)− f(x, t)| |x− x|γ ≤ xγω N (ε0xN )γω |f(x, t)− f(x, t)| |x− x|γ(1−ω) ≤ C[u](γ) s . (18) Let now |x′ − x′| ≤ ε0xN . (19) Under this condition, as it easy to see, s(x, x) ∼ Cx−ω N |x− x|. (20) Consequently, xγω N |f(x, t)− f(x, t)| |x− x|γ ≤ C |f(x, t)− f(x, t)| s(x, x)γ ≤ C[u](γ) s . (21) We estimate now the unweighted Hölder constant of the function f with the exponent β. To estimate it we consider the two cases. If |xN − xN | ≥ ε0xN , then |x− x| ≥ |xN − xN | ≥ ε0xN and therefore, as it was above, s(x, x) ≤ |x− x| (|x− x|/ε0)ω ≤ C|x− x|1−ω, 42 On the equivalence of certain metrics on some weighted Hölder spaces so that, as above, |f(x, t)− f(x, t)| |x− x|β ≤ C |f(x, t)− f(x, t)| s(x, x)γ ≤ C[u](γ) s . (22) If now, under the condition (19), we have |xN − xN | ≤ ε0xN , (23) then in this case |x− x| ≤ |x′ − x′|+ |xN − xN | ≤ 2ε0xN . (24) Therefore, in the force of (20), s(x, x) ≤ Cx−ω N |x− x| ≤ ≤ Cx−ω N (2ε0xN )ω|x− x|1−ω = C|x− x|1−ω. (25) Consequently, in this case |f(x, t)− f(x, t)| |x− x|β ≤ C |f(x, t)− f(x, t)| s(x, x)γ ≤ C[u](γ) s . (26) The estimate (14) follows now from (17), (18), (21), (22) and (26). Further, let now the seminorm 〈f〉(γ) ωγ,H is finite. Let us prove the following estimate [f ](γ) s ≤ C 〈f〉(γ) ωγ,H . (27) Let first |x′ − x′| ≤ ε0xN , xN > 0. (28) Then s(x, x) ≥ ν |x− x| xω N , and consequently |f(x, t)− f(x, t)| s(x, x)γ ≤ Cxγω N |f(x, t)− f(x, t)| |x− x|γ ≤ C 〈f〉(γ) ωγ,H . (29) In the particular case xN = 0 we have xN = 0 and therefore s(x, x) = |x′ − x′|1−ω = |x− x|1−ω, and so again |f(x, t)− f(x, t)| s(x, x)γ = |f(x, t)− f(x, t)| |x− x|β ≤ C 〈f〉(γ) ωγ,H . (30) Let now we have |x′ − x′| ≥ ε0xN . (31) 43 S. P. Degtyarev Then s(x, x) ≥ ν |x− x| |x′ − x′|ω ≥ ν|x− x|1−ω, (32) and consequently, |f(x, t)− f(x, t)| s(x, x)γ ≤ C |f(x, t)− f(x, t)| |x− x|β ≤ C 〈f〉(γ) ωγ,H . (33) Thus, (27) follows from (29), (30), (32). And so the theorem is proved. ¤ 1. Degtyarev S.P. On some weighted Holder spaces as a possible functional framework for the thin film equation and other parabolic equations with a degeneration at the boundary of a domain // ArXiv.org, http://arxiv.org/abs/1507.01106. 2. Degtyarev S.P. Classical solvability of multidimensional two-phase Stefan problem for degenerate parabolic equations and Schauder’s estimates for a degenerate parabolic problem with dynamic boundary conditions // Nonlinear Differential Equations and Applications (NoDEA). – 2015. – 22, № 2. – P. 185–237. 3. Knüpfer H. Well-posedness for the Navier slip thin-film equation in the case of partial wetting // Comm. Pure Appl. Math. – 2011. – 64. – № 9. – P. 1263–1296. 4. Giacomelli L., Knüpfer H., Otto F. Smooth zero-contact-angle solutions to a thin-film equation around the steady state // J. Differential Equations. – 2008. – 245, № 6. – P. 1454–1506. 5. Giacomelli L., Knüpfer H. A free boundary problem of fourth order: classical solutions in weighted Hölder spaces // Commun. Partial Differ. Equations. – 2010. – 35, № 10–12. – P. 2059-2091. 6. Giacomelli L., Gnann M.V., Knüpfer H., Otto F. Well-posedness for the Navier-slip thin-film equation in the case of complete wetting // J. Differ. Equations. – 2014. – 257, № 1. – P. 15–81. 7. Giacomelli L., Gnann M.V., Otto F. Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3 // Eur. J. Appl. Math. – 2013. – 24, № 5. – P. 735–760. 8. Boutat M., Hilout S., Rakotoson J.-E., Rakotoson J.-M. A generalized thin-film equation in multidimensional space // Nonlinear Anal. – 2008. – 69, № 4. – P. 1268–1286. 9. Bertsch M., Giacomelli L., Karali G. Thin-film equations with "partial wetting" energy: existence of weak solutions // Phys. D. – 2005. – 209, № 1–4. – P. 17–27. 10. Dal Passo R., Garcke H., Grün G. On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions // SIAM J. Math. Anal. – 1998. – № 2. – P. 321–342. 11. Dal Passo R., Giacomelli L., Shishkov A. The thin film equation with nonlinear diffusion // Commun. Partial Differ. Equations. – 2001. – 26, № 9–10. – P. 1509–1557. 12. Giacomelli L., Shishkov A. Propagation of support in one-dimensional convected thin-film flow // Indiana Univ. Math. J. – 2005. – 54, № 4. – P. 1181–1215. 13. Novick–Cohen A., Shishkov A. The thin film equation with backwards second order diffusion // Interfaces Free Bound. – 2010. – 12, № 4. – P. 463-496. 14. Liang, B. Mathematical analysis to a nonlinear fourth-order partial differential equation // Nonlinear Anal. – 2011. – 74, № 11. – P. 3815–3828. 15. Liu C., Tian Y. Weak solutions for a sixth-order thin film equation // Rocky Mt. J. Math. – 2011. – 41, № 5. – P. 1547–1565. 16. Liu C. Qualitative properties for a sixth-order thin film equation // Math. Model. Anal. – 2010. – 15, № 4. – P. 457–471. 17. Dominik John On Uniqueness of Weak Solutions for the Thin-Film Equation// ArXiv: http: //arxiv.org/abs/1310.6222 (2013). 18. Degtyarev S.P. Liouville Property for Solutions of the Linearized Degenerate Thin Film Equation of Fourth Order in a Halfspace // Results in Mathematics. – 2015. – DOI 10.1007/s00025-015- 0467-x. 44 On the equivalence of certain metrics on some weighted Hölder spaces 19. Bazalii B.V., Degtyarev S.P. On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid // Math. USSR Sb. – 1988. – 60, № 1. – P. 1–17. 20. Bizhanova G.I., Solonnikov V.A. On problems with free boundaries for second-order parabolic equations // St. Petersburg Math. J. – 2001. – 12, № 6. – P. 949–981. 21. Daskalopoulos P., Hamilton R. Regularity of the free boundary for the porous medium equation // J.Amer.Math.Soc. – 1998. – 11, № 4. – P. 899–965. 22. Sunghoon Kim, Ki-Ahm Lee Smooth solution for the porous medium equation in a bounded domain // J.Differ.Equations. – 247, № 4. – P. 1064–1095. 23. Bazalij B.V., Krasnoshchek N.V. Regularity of solution to a multidimensional free boundary problem for an equation of a porous medium // Siberian Advances in Mathematics. – 2003. – 13, № 3. – P. 1–53. 24. Goulaouic C., Shimakura N. Regularite holderienne de certains problemes aux limites elliptiques degeneres// Annali della Scuola Normale Superiore de Pisa. – 1983. – X, № 1. – P. 79–108. 25. Bazaliy B.V., Degtyarev S.P. A boundary value problem for elliptic equations that degenerate on the boundary in weighted Hölder spaces // Sb. Math. – 2013. – 204, № 7–8. – P. 958–978. С.П. Дегтярев Об эквивалентности некоторых полунорм в весовых пространствах Гельдера. Данная статья посвящена изучению некоторых весовых пространств Гельдера. Эти пространства являются естественными классами гладких функций для изучения уравнений типа уравнений тонких пленок в многомерном случае. Эти классы могут быть применены также для изучения других уравнений с вырождением на границе области определения. Мы доказываем эквивалент- ность некоторых различных метрик в этих пространствах. Ключевые слова: весовые пространства Гельдера, вырождающиеся параболические уравне- ния, эквивалентные метрики. ГУ «Ин-т прикл. математики и механики», г.Донецк degtyar@i.ua Received 17.05.16 45