О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение
Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстоян...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2016
|
Schriftenreihe: | Труды Института прикладной математики и механики |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/124242 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение / Д.А. Зарайский // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 46-52. — Бібліогр.: 11 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстояние 2r, такое продолжение может не иметь места. Получен аналогичный результат для функций с нулевыми интегралами по сферам радиуса r. |
---|