Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order

Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Kor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Faminskii, A.V., Bashlykova, I.Yu.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2008
Schriftenreihe:Український математичний вісник
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/124298
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear evolution equations of the third order / A.V. Faminskii, I.Yu. Bashlykova // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 83-98. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Global well-posedness in a class of weak solutions is established to one initial-boundary value problem with three boundary conditions for a wide class of quasilinear dispersive evolution equations of the third order in the multidimensional case. The considered class of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–Burgers and the Zakharov–Kuznetsov equations.