Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator
In this paper, a sharp inequality for the vector-valued multilinear commutator of strongly singular integral operator are obtained. By using this inequality, we prove the weighted Lp-norm inequality for the multilinear commutator.
Gespeichert in:
Datum: | 2008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2008
|
Schriftenreihe: | Український математичний вісник |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/124350 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator / H. Zhang, H. Cai // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 406-419. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124350 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1243502017-09-24T03:03:52Z Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator Zhang, H. Cai, H. In this paper, a sharp inequality for the vector-valued multilinear commutator of strongly singular integral operator are obtained. By using this inequality, we prove the weighted Lp-norm inequality for the multilinear commutator. 2008 Article Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator / H. Zhang, H. Cai // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 406-419. — Бібліогр.: 13 назв. — англ. 1810-3200 2000 MSC. 42B20, 42B25. http://dspace.nbuv.gov.ua/handle/123456789/124350 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, a sharp inequality for the vector-valued multilinear commutator of strongly singular integral operator are obtained. By using this inequality, we prove the weighted Lp-norm inequality for the multilinear commutator. |
format |
Article |
author |
Zhang, H. Cai, H. |
spellingShingle |
Zhang, H. Cai, H. Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator Український математичний вісник |
author_facet |
Zhang, H. Cai, H. |
author_sort |
Zhang, H. |
title |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
title_short |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
title_full |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
title_fullStr |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
title_full_unstemmed |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
title_sort |
weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124350 |
citation_txt |
Weighted sharp inequality for vector-valued multilinear commutator of strongly singular integral operator / H. Zhang, H. Cai // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 406-419. — Бібліогр.: 13 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT zhangh weightedsharpinequalityforvectorvaluedmultilinearcommutatorofstronglysingularintegraloperator AT caih weightedsharpinequalityforvectorvaluedmultilinearcommutatorofstronglysingularintegraloperator |
first_indexed |
2025-07-09T01:18:20Z |
last_indexed |
2025-07-09T01:18:20Z |
_version_ |
1837130214341083136 |
fulltext |
Український математичний вiсник
Том 5 (2008), № 3, 406 – 419
Weighted sharp inequality for vector-valued
multilinear commutator of strongly
singular integral operator
Hongwei Zhang, Haitao Cai
(Presented by M. M. Malamud)
Abstract. In this paper, a sharp inequality for the vector-valued mul-
tilinear commutator of strongly singular integral operator are obtained.
By using this inequality, we prove the weighted L
p-norm inequality for
the multilinear commutator.
2000 MSC. 42B20, 42B25.
Key words and phrases. Strongly singular integral operator, Multi-
linear Commutator; Sharp inequality, BMO, Ap-weight.
1. Introduction and Theorems
As the development of Calderón–Zygmund singular integral opera-
tors, the commutators of the singular integral operators have been well
studied (see [7–11]). In this paper, we study the vector-valued multilin-
ear commutator of strongly singular integral operator which is defined as
following.
Let 0 < b < 1 and θ(ξ) be a smooth radial cut-off function on R
n such
that θ(ξ) = 1 if |ξ| ≥ 1 and θ(ξ) = 0 if |ξ| ≤ 1/2. The strongly singular
integral operator is a multiplier operator which is defined by
(T (f))̂(ξ) = θ(ξ)
ei|ξ|b
|ξ|nb/2
f̂(ξ).
The kernel K for T is very singular. Roughly speaking, it looks like
K(x) = ϑ(x)ei|x|−b′
/|x|n, where b′ = b/(1 − b) and supp ϑ ⊂ {x ∈ R
n :
|x| ≤ 2}. In fact, we know that
Received 22.06.2008
ISSN 1810 – 3200. c© Iнститут математики НАН України
H. Zhang, H. Cai 407
T (f)(x) = p.v.
∫
Rn
K(x − y)f(y) dy
and for |x| ≥ 2|y| (see [1])
|K(x − y) − K(x)| ≤ C|y||x|−n−b′−1.
Let bj(j = 1, . . . , m) be the fixed locally integrable functions on R
n. For
1 < s < ∞, the vector-valued multilinear commutator related to T is
defined by
|Tb̃(f)(x)|s =
( ∞
∑
i=1
|Tb̃(fi)(x)|s
)1/s
,
where
Tb̃(fi)(x) = p.v.
∫
Rn
( m
∏
j=1
(bj(x) − bj(y))
)
K(x − y)fi(y) dy.
We also denote
|T (f)(x)|s =
( ∞
∑
i=1
|T (fi)(x)|s
)1/s
and |f(x)|s =
( ∞
∑
i=1
|fi(x)|s
)1/s
.
The strongly singular integral operator has been studied by several
authors (see [1, 4, 5, 13]). In [2], the weighted norm inequality for the
commutator of strongly singular integral operator is obtained by using a
sharp estimate. Note that when b1 = · · · = bm, |Tb̃|s is just the m order
vector-valued commutator (see, for example, [6, 10] and [11]). In [11],
Perez and Trujillo–Gonzalez prove a sharp estimate for the vector-valued
commutator of Calderon–Zygmund singular integral operator. The main
purpose of this paper is to prove a sharp inequality for the vector-valued
multilinear commutator of strongly singular integral operator. As an ap-
plication, we obtain the weighted Lp-norm inequality for the multilinear
commutator.
First, let us introduce some notations. Throughout this paper, Q =
Q(x, r) will denote a cube of Rn centered at x and sidelength r with
sides parallel to the axes. For any locally integrable function f , the sharp
function of f is defined by
408 Weighted sharp inequality...
f#(x) = sup
Q∋x
1
|Q|
∫
Q
|f(y) − fQ| dy,
where, and in what follows, fQ = |Q|−1
∫
Q f(x) dx. It is well-known that
(see, for example, [3] and [12])
f#(x) ∼= sup
Q∋x
inf
c∈C
1
|Q|
∫
Q
|f(y) − c| dy.
We say that f belongs to BMO(Rn) if f# belongs to L∞(Rn) and
‖f‖BMO = ‖f#‖L∞ . Given the functions bj(j = 1, . . . , m) and 0 <
q < ∞, denote that
Cq
b̃
(f)(x) = sup
Q∋x
1
|Q|
∫
Q
m
∏
j=1
|bj(x) − bj(y)|q|f(y)| dy.
We write Cq
b̃
(f) = Cb̃(f) if q = 1. Let M be the Hardy–Littlewood
maximal operator defined by
M(f)(x) = sup
Q∋x
|Q|−1
∫
Q
|f(y)| dy.
We write Mp(f) = (M(fp))1/p for 0 < p < ∞. Given a positive in-
teger m and 1 ≤ j ≤ m, we denote by Cm
j the family of all finite
subsets σ = {σ(1), . . . , σ(j)} of {1, . . . , m} of j different elements. For
σ ∈ Cm
j , denote that σc = {1, . . . , m} \ σ; For b̃ = (b1, . . . , bm) and σ =
{σ(1), . . . , σ(j)} ∈ Cm
j , denote b̃σ = (bσ(1), . . . , bσ(j)), bσ = bσ(1) . . . bσ(j)
‖b̃‖BMO = ‖b1‖BMO . . . ‖bm‖BMO and ‖b̃σ‖BMO = ‖bσ(1)‖BMO · · · ×
‖bσ(j)‖BMO. We denote the Muckenhoupt weights by Ap for 1 ≤ p < ∞
(see [3]), that is
Ap =
{
w : sup
Q
(
1
|Q|
∫
Q
w(x) dx
)(
1
|Q|
∫
Q
w(x)−1/(p−1) dx
)p−1
< ∞
}
,
1 < p < ∞,
and
H. Zhang, H. Cai 409
A1 = {w : M(w)(x) ≤ Cw(x), a.e.}.
We shall prove the following theorems.
Theorem 1.1. Let 1 < s < ∞, bj ∈ BMO(Rn) for j = 1, . . . , m. Then
there exists a constant C > 0 such that for any f ∈ C∞
0 (Rn), 1 < r < ∞
and x̃ ∈ R
n,
(|Tb̃(f)|s)
#(x̃) ≤ C
(
‖b̃‖BMOMr(|f |s)(x̃) + M((Cs
b̃
(|f |rs))
1/r)(x̃)
+
m
∑
j=1
∑
σ∈Cm
j
‖b̃σ‖BMOMr(|Tb̃σc
(f)|s)(x̃)
)
.
Theorem 1.2. Let 1 < s < ∞, bj ∈ BMO(Rn) for j = 1, . . . , m and
w ∈ Ap, 1 < p < ∞. Then |Tb̃|s is bounded on Lp(w), that is
‖ |Tb̃(f)|s‖Lp(w) ≤ C‖ |f |s‖Lp(w).
2. Proof of the main results
To prove the theorems, we need the following lemmas.
Lemma 2.1 ([1]). Let T be the strongly singular integral operator and
1 < s < ∞. Then |T |s is bounded on Lp(w) for w ∈ Ap and 1 < p < ∞.
Lemma 2.2 ([1]). Let 0 < b < 1, b′ = b/(1−b), 1 < p < ∞, 1/p+1/p′ =
1, (2 + b′)/p ≤ 1, 1 < s < ∞ and
K̃(x) =
ei|x|−b′
|x|n(b′+2)/p
.
Then
‖K̃ ∗ |f |s‖Lp ≤ C‖ |f |s‖Lp′ .
Lemma 2.3 ( [3]). Suppose that 1 < s < ∞, 1 ≤ r < p < ∞ and
w ∈ Ap. Then
‖Mr(|f |s)‖Lp(w) ≤ C‖ |f |s‖Lp(w).
Lemma 2.4 ([2]). Suppose that bj ∈ BMO(Rn)(j = 1, . . . , m), 1 < s <
∞, 1 ≤ q < ∞, 1 < p < ∞ and w ∈ Ap. Then
‖Cq
b̃
(|f |s)‖Lp(w) ≤ C‖ |f |s‖Lp(w).
410 Weighted sharp inequality...
The Proofs of Lemma 2.1, 2.3 and 2.4 is similar to the proofs in [1–3],
we omit the detail.
Proof of Theorem 1.1. It suffices to prove for f ∈ C∞
0 (Rn) and some
constant C0, the following inequality holds:
1
|Q|
∫
Q
| |Tb̃(f)(x)|s − C0| dx
≤ C
(
‖b̃‖BMOMr(|f |s)(x̃) + M((Cr
b̃
(|f |rs))
1/r)(x̃)
+
m
∑
j=1
∑
σ∈Cm
j
‖b̃σ‖BMOMr(|Tb̃σc
(f)|s)(x̃)
)
.
Fix a cube Q = Q(x0, d) such that x̃ ∈ Q. Let d0 be a positive number
satisfying 4d0 = d
1/(1+b′)
0 and Q̃ = Q(x0, d
1/(1+b′)). Let us first consider
the case m = 1. In this time, we will prove the following inequality
1
|Q|
∫
Q
| |Tb̃(f)(x)|s − C0| dx
≤ C
(
Mr(|f |s)(x̃) + M((Cr
b̃
(|f |rs))
1/r)(x̃) + Mr(|T (f)|s)(x̃)
)
.
Consider the following two cases:
Case 1. d < d0. For each i ∈ N , we split fi = f1
i + f2
i + f3
i , where
f1
i = fiχ4Q, f2
i = fiχQ̃\4Q and f3
i = fiχRn\Q̃ and we define f (j) = {f j
i }
for j = 1, 2, 3. By Minkowski’ inequality and taking C0 = |Tb̃(f
(3))(x0)|s,
we have
1
|Q|
∫
Q
| |Tb̃(f)(x)|s − |Tb̃(f
(3))(x0)|s| dx
≤
1
|Q|
∫
Q
( ∞
∑
i=1
|Tb̃(fi)(x) − Tb̃(f
3
i )(x0)|
s
)1/s
dx
≤
1
|Q|
∫
Q
|b(x) − b2Q| |T (f)(x)|s dx
+
1
|Q|
∫
Q
|T ((b − b2Q)f (1))(x)|s dx
H. Zhang, H. Cai 411
+
1
|Q|
∫
Q
|T ((b − b2Q)f (2))(x)|s dx
+
1
|Q|
∫
Q
|T ((b − b2Q)f (3))(x) − T ((b − b2Q)f (3))(x0)|s dx
= I1 + I2 + I3 + I4.
Let us now estimate I1, I2, I3 and I4, respectively. By applying Hölder’s
inequality and Lemma 2.1, we get
I1 ≤ C
(
1
|Q|
∫
Q
|T (f)(x)|rs dx
)1/r(
1
|2Q|
∫
2Q
|b(x) − b2Q|
r′ dx
)1/r′
≤ C‖b‖BMOMr(|T (f)|s)(x̃).
Now we proceed to estimate I2. If 1 < p < r, from Lemma 2.1, we obtain
I2 ≤ C
(
1
|Q|
∫
Rn
|T ((b − b2Q)f (1)(x))(x)|ps dx
)1/p
≤
(
1
|Q|
∫
Rn
|b(x) − b2Q|
p|f (1)(x)|ps dx
)1/p
≤ C
(
1
|2Q|
∫
2Q
|f(x)|rs dx
)1/r(
1
|2Q|
∫
2Q
|b(x) − b2Q|
pr/(r−p) dx
)(r−p)/pr
≤ C‖b‖BMOMr(|f |s)(x̃).
To estimate I3, we follow Chanillo’s argument (see [1]). Then we choose
r > 1 such that (2 + b′)/r′ < 1 to get
T ((b − b2Q)f2
i (x)
:=
∫
Rn
ϑ(x − y)ei|x−y|−b′
|x − y|n(2+b′)/r′
( 1
|x − y|n(1−(2+b′)/r′)
−
1
|x0 − y|n(1−(2+b)/r′)
)
(b(y) − b2Q)f2
i (y) dy
+
∫
Rn
ϑ(x − y)ei|x−y|−b′
|x − y|n(2+b′)/r′
·
1
|x0 − y|n(1−(2+b′)/r′)
(b(y) − b2Q)f2
i (y) dy
412 Weighted sharp inequality...
= I
(1)
3 (x) + I
(2)
3 (x).
Note that |b2Q − b2k+1Q| ≤ k‖b‖BMO, then, by Minkowski’ inequality,
( ∞
∑
i=1
∣
∣I
(1)
3 (x)
∣
∣
s
)1/s
≤ C
∞
∑
k=1
2−k 1
|2k+1Q|
∫
2k+1Q
|b(y) − b2Q‖f(y)|s dy
≤ C
∞
∑
k=1
2−k
(
1
|2k+1Q|
∫
2k+1Q
|f(x)|rs dx
)1/r
×
(
1
|2k+1Q|
∫
2k+1Q
|b(x) − b2Q|
r′ dx
)1/r′
≤ C‖b‖BMO
∞
∑
k=1
k2−k
(
1
|2k+1Q|
∫
2k+1Q
|f(x)|rs dx
)1/r
≤ C‖b‖BMOMr(|f |s)(x̃).
Taking k0 such that 2k0d < d1/(1+b′) ≤ 2k0+1d, by Lemma 2.2 and
Minkowski’ inequality, we get
1
Q
∫
Q
( ∞
∑
i=1
∣
∣I
(2)
3 (x)
∣
∣
s
)1/s
dx
≤ C|Q|−1/r′
(
∫
Rn
|b(y) − b2Q|
r|f (2)(y)|rs
|x0 − y|nr(1−(2+b′)/r′)
dy
)1/r
≤ C|Q|−1/r′
( k0
∑
k=1
(2kd)n(r−1)(1+b′) 1
|2k+1Q|
×
∫
2k+1Q
|f(y)|rs|b(y) − b2Q|
r dy
)1/r
≤ C|Q|−1/r′
(
k0
∑
k=1
(2kd)n(r−1)(1+b′)
[
1
|2Q|
∫
2Q
(
1
|2k+1Q|
H. Zhang, H. Cai 413
×
∫
2k+1Q
|f(y)|rs|b(y) − b(z)|r dy
)1/r
dz
]r)1/r
≤ CM((Cr
b̃
(|f |rs))
1/r)(x̃).
Thus
I3 ≤ C
(
‖b‖BMOMr(|f |s)(x̃) + M((Cr
b (|f |rs))
1/r)(x̃)
)
.
For I4, note that |x− y| ≈ |x0 − y| for x ∈ Q and y ∈ Rn \ Q̃, we obtain,
by the condition on K,
I4 ≤ C
1
|Q|
∫
Q
∫
Rn
|x − x0|
|x0 − y|n+b′+1
|f (3)(y)|s|b(y) − b2Q| dy dx
≤ C
1
|Q|
∫
Q
∞
∑
k=0
∫
2k+1Q̃\2kQ̃
|x − x0|
|x0 − y|n+b′+1
|f(y)|s|b(y) − b2Q| dy dx
≤ C
∞
∑
k=0
2−k 1
|2kQ̃|
∫
2k+1Q̃\2kQ̃
|f(y)|s|b(y) − b2Q| dy
≤ C
∞
∑
k=1
2−k 1
|2Q|
∫
2Q
(
1
|2kQ̃|
∫
2kQ̃
|f(y)|s|b(y) − b(z)| dy
)
dz
≤ CM(Cb̃(|f |s))(x̃).
Case 2. d ≥ d0. We do not subtract the constant C0. Let l = 4d−1
0
and f
(4)
i = fiχlQ, by the location of the support of K, we have Tb̃(fi) =
Tb̃(f
(4)
i ), thus
1
|Q|
∫
Q
|Tb̃(f)(x)|s dx
≤
1
|Q|
∫
Q
|b(x) − blQ| |T (f (4))(x)|s dx
+
1
|Q|
∫
Q
|T ((b − blQ)f (4))(x)|s dx = J1 + J2.
Similar to the proof of I1 and I2 for case 1, we get
J1 ≤ C
(
1
|Q|
∫
Q
|T (f (4))(x)|rs dx
)1/r(
1
|lQ|
∫
Q
|b(x) − blQ|
r′ dx
)1/r′
414 Weighted sharp inequality...
≤ C
(
1
|lQ|
∫
lQ
|f(x)|rs dx
)1/r(
1
|lQ|
∫
Q
|b(x) − blQ|
r′ dx
)1/r′
≤ C‖b‖BMOMr(|f |s)(x̃);
J2 ≤ C
(
1
|Q|
∫
Rn
|T ((b − blQ)f (4))(x)|ps dx
)1/p
≤ C
(
1
|Q|
∫
Rn
|b(x) − blQ|
p|f (4)(x)|ps dx
)1/p
≤ C
(
1
|lQ|
∫
lQ
|f(x)|rs dx
)1/r(
1
|lQ|
∫
lQ
|b(x) − blQ|
pr/(r−p) dx
)(r−p)/pr
≤ C‖b‖BMOMr(|f |s)(x̃),
which proves the case 1.
Now we turn to the case m ≥ 2. Also consider the following two
cases:
Case 1. d < d0. Following [10], we write
Tb̃(fi)(x) =
∫
Rn
( m
∏
j=1
(bj(x) − bj(y))
)
K(x − y)fi(y) dy
= (b1(x) − (b1)2Q) · · · (bm(x) − (bm)2Q)T (fi)(x)
+ (−1)mT ((b1 − (b1)2Q) · · · (bm − (bm)2Q)fi)(x)
+
m−1
∑
j=1
∑
σ∈Cm
j
(−1)m−j(b(x) − (b)2Q)σ
∫
Rn
(b(y) − b(x))σcK(x − y)fi(y) dy
= (b1(x) − (b1)2Q) · · · (bm(x) − (bm)2Q)T (fi)(x)
+ (−1)mT ((b1 − (b1)2Q) · · · (bm − (bm)2Q)fi)(x)
+
m−1
∑
j=1
∑
σ∈Cm
j
cm,j(b(x) − (b)2Q)σTb̃σc
(fi)(x),
thus, for f (j) = {f j
i } for j = 1, 2, 3 with f1
i = fiχ4Q, f2
i = fiχQ̃\4Q and
f3
i = fiχRn\Q̃,
H. Zhang, H. Cai 415
1
|Q|
∫
Q
||Tb̃(f)(x)|s − |T ((b1 − (b1)2Q) · · · (bm − (bm)2Q))f (3))(x0)|s dx
≤
1
|Q|
∫
Q
|(b1(x) − (b1)2Q) · · · (bm(x) − (bm)2Q)T (f)(x)|s dx
+
1
|Q|
∫
Q
m−1
∑
j=1
∑
σ∈Cm
j
|(b(x) − (b)2Q)σTb̃σc
(f)(x)|s dx
+
1
|Q|
∫
Q
|T ((b1 − (b1)2Q) · · · (bm − (bm)2Q)f (1))(x)|s dx
+
1
|Q|
∫
Q
|T ((b1 − (b1)2Q) · · · (bm − (bm)2Q)f (2))(x)|s dx
+
1
|Q|
∫
Q
|T ((b1 − (b1)2Q) · · · (bm − (bm)2Q)f (3))(x)
− T ((b1 − (b1)2Q) · · · (bm − (bm)2Q)f (3))(x0)|s dx
= L1 + L2 + L3 + L4 + L5.
Similar to the proof of m = 1, we get, for 1 < p1, . . . , pm < ∞, 1 < p < r,
1 < q1, . . . , qm < ∞, 1/r + 1/p1 + · · ·+ 1/pm = 1 and p/r + 1/q1 + · · ·+
1/qm = 1,
L1 ≤ C
(
1
|Q|
∫
Q
|T (f)(x)|rs dx
)1/r(
1
|Q|
∫
Q
|b1(x) − (b1)2Q|
p1 dx
)1/p1
× · · · ×
(
1
|2Q|
∫
2Q
|bm(x) − (bm)2Q|
pm dx
)1/pm
≤ C
m
∏
j=1
‖bj‖BMOMr(|T (f)|s)(x̃);
L2 ≤ C
m−1
∑
j=1
∑
σ∈Cm
j
‖b̃σ‖BMOMr(|Tb̃σc
(f)|s)(x̃);
L3 ≤ C
(
1
|Q|
∫
Rn
|T ((b1 − (b1)2Q) · · · (bm − (bm)2Q)f (1))(x)|ps dx
)1/p
416 Weighted sharp inequality...
≤ C
(
1
|Q|
∫
Rn
(|b1(x) − (b1)2Q| · · · |bm(x) − (bm)2Q| |f
(1)(x)|)p dx
)1/p
≤ C
(
1
|2Q|
∫
2Q
|f(x)|rs dx
)1/r(
1
|2Q|
∫
2Q
|b1(x) − (b1)2Q|
pq1 dx
)1/pq1
× · · · ×
(
1
|2Q|
∫
2Q
|bm(x) − (bm)2Q|
pqm dx
)1/pqm
≤ C
m
∏
j=1
‖bj‖BMOMr(|f |s)(x̃).
Similarly, for L4, we get, for 1 < p1, . . . , pm < ∞ and 1/r + 1/p1 + · · · +
1/pm = 1,
L4 ≤
1
Q
∫
Q
∫
Rn
|ϑ(x − y)|ei|x−y|−b′
|x − y|n(2+b′)/r′
×
∣
∣
∣
1
|x − y|n(1−(2+b′)/r′)
−
1
|x0 − y|n(1−(2+b)/r′)
∣
∣
∣
×
m
∏
j=1
|bj(y) − (bj)2Q| |f
(2)(y)|s dy dx
+
1
Q
∫
Q
∫
Rn
|ϑ(x − y)|ei|x−y|−b′
|x − y|n(2+b′)/r′
·
1
|x0 − y|n(1−(2+b′)/r′)
×
m
∏
j=1
|bj(y) − (bj)2Q| |f
(2)(y)|s dy dx
≤ C
∞
∑
k=1
2−k 1
|2k+1Q|
∫
2k+1Q
m
∏
j=1
|bj(y) − (bj)2Q||f(y)|s dy
+ C|Q|−1/r′
(
∫
Rn
∏m
j=1 |bj(y) − (bj)2Q|
r|f (2)(y)|rs
|x0 − y|nr(1−(2+b′)/r′)
dy
)1/r
≤ C
∞
∑
k=1
2−k
(
1
|2k+1Q|
∫
2k+1Q
|f(x)|rs dx
)1/r
H. Zhang, H. Cai 417
×
m
∏
j=1
(
1
|2k+1Q|
∫
2k+1Q
|bj(x) − (bj)2Q|
p′j dx
)1/p′j
+ C|Q|−1/r′
(
k0
∑
k=1
(2kd)n(r−1)(1+b′) 1
|2k+1Q|
×
∫
2k+1Q
|f(y)|rs
m
∏
j=1
|bj(y) − (bj)2Q|
r dy
)1/r
≤ C
m
∏
j=1
‖bj‖BMO
∞
∑
k=1
km2−k
(
1
|2k+1Q|
∫
2k+1Q
|f(x)|rs dx
)1/r
+ C|Q|−1/r′
(
k0
∑
k=1
(2kd)n(r−1)(1+b′)
[
1
|2Q|
∫
2Q
(
1
|2k+1Q|
×
∫
2k+1Q
|f(y)|rs
m
∏
j=1
|bj(y) − (bj)(z)|r dy
)1/r
dz
]r)1/r
≤ C
( m
∏
j=1
‖bj‖BMOMr(|f |s)(x̃) + M((Cr
b̃
(|f |rs))
1/r)(x̃)
)
.
For L5, we get
L5 ≤ C
1
|Q|
∫
Q
∫
Rn
|x − x0|
|x0 − y|n+b′+1
|f (3)(y)|s
m
∏
j=1
|bj(y) − (bj)2Q| dy dx
≤ C
1
|Q|
∫
Q
∞
∑
k=0
∫
2k+1Q̃\2kQ̃
|x − x0|
|x0 − y|n+b′+1
|f(y)|s
m
∏
j=1
|bj(y) − (bj)2Q| dy
≤ C
∞
∑
k=0
2−k 1
|2kQ̃|
∫
2k+1Q̃\2kQ̃
|f(y)|s
m
∏
j=1
|bj(y) − (bj)2Q| dy
≤ C
∞
∑
k=1
2−k 1
|2Q|
∫
2Q
(
1
|2kQ̃|
∫
2kQ̃
|f(y)|s
m
∏
j=1
|bj(y) − bj(z)| dy
)
dz
≤ CM(Cb̃(|f |s))(x̃).
418 Weighted sharp inequality...
Similarly, for case 2 d ≥ d0, we get
1
|Q|
∫
Q
|Tb̃(f)(x)|s dx ≤ C
m
∏
j=1
‖bj‖BMOMr(|f |s)(x̃)
+ C
m−1
∑
j=1
∑
σ∈Cm
j
‖b̃σ‖BMOMr(|Tb̃σc
(f)|s)(x̃).
These complete the proof of Theorem 1.1.
Proof of Theorem 1.2. We choose 1 < r < p in Theorem 1.1, and by
using Lemma 2.3, 2.4 and induction on m, we get
‖|Tb̃(f)|s‖Lp(w) ≤ C‖(|Tb̃(f)|s)
#‖Lp(w) ≤ C‖|f |s‖Lp(w).
This finishes the proof.
Remark 2.1. The Theorem 1.1 and 1.2 also hold for bj ∈Oscexp Lrj (Rn),
where Oscexp Lrj (Rn) is defined in [10]. It is obvious that Oscexp Lr(Rn) ⊂
BMO(Rn) and Oscexp Lr(Rn) coincides with the BMO(Rn) space if r=1.
References
[1] S. Chanillo, Weighted norm inequalities for strongly singular convolution opera-
tors // Trans. Ammer. Math. Soc., 281 (1984), 77–107.
[2] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. L. Torrea, Weighted norm
inequalities for commutators of strongly singular integrals, Indiana Univ. Math.
J., 40 (1991), 1397–1420.
[3] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and
related topics, North-Holland Math. 16, Amsterdam, 1985.
[4] C. Feffeman, Inequalities for strongly singular convolution operators, Acta Math.,
124 (1970), 9–36.
[5] C. Feffeman and E. M. Stein, H
p spaces of several variables // Acta Math., 129
(1972), 137–193.
[6] O. Gorosito, G. Pradolini and O. Salinas, Weighted weak type estimates for mul-
tilinear commutators of fractional integral on spaces of homogeneous type, Acta
Math. Sinica, 15 (2005), 1–11.
[7] C. Perez, Endpoint estimate for commutators of singular integral operators // J.
Func. Anal., 128 (1995), 163–185.
[8] C. Perez, Sharp estimates for commutators of singular integrals via iterations of
the Hardy–Littlewood maximal function, J. Fourier Anal. Appl., 3 (1997), 743–
756.
[9] C. Perez and G. Pradolini, Sharp weighted endpoint estimates for commutators
of singular integral operators // Michigan Math. J., 49 (2001), 23–37.
H. Zhang, H. Cai 419
[10] C. Perez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear com-
mutators // J. London Math. Soc., 65 (2002), 672–692.
[11] C. Perez and R. Trujillo-Gonzalez, Sharp weighted estimates for vector-valued
singular integral operators and commutators // Tohoku Math. J., 55 (2003), 109–
129.
[12] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscil-
latory integrals, Princeton Univ. Press, Princeton NJ, 1993.
[13] S. Wainger, Special trigonometric series in k-dimensions // Mem. Amer. Math.
Soc., 59 (1965).
Contact information
Hongwei Zhang,
Haitao Cai
School of Mathematical Sciences and
Computing Technology
Central South University
Changsha University of Science and
Technology
Changsha, P.R. of China
China
E-Mail: zhouxiaosha57@126.com
|