Expansions of solutions to the equation P₁² by algorithms of power geometry
Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of soluti...
Gespeichert in:
Datum: | 2009 |
---|---|
Hauptverfasser: | Bruno, A.D., Kudryashov, N.A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2009
|
Schriftenreihe: | Український математичний вісник |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/124362 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Power geometry in nonlinear partial differential equations
von: Bruno, A.D.
Veröffentlicht: (2008) -
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
von: Cohl, H.S., et al.
Veröffentlicht: (2015) -
Exact Solutions of Nonlinear Equations in Math- ematical Physics via Negative Power Expansion Method
von: B. Xu, et al.
Veröffentlicht: (2021) -
Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
von: Cohl, H.S.
Veröffentlicht: (2011) -
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
von: Cohl, H.S.
Veröffentlicht: (2013)