Expansions of solutions to the equation P₁² by algorithms of power geometry
Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of soluti...
Saved in:
Date: | 2009 |
---|---|
Main Authors: | Bruno, A.D., Kudryashov, N.A. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2009
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124362 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Expansions of solutions to the equation P₁² by algorithms of power geometry / A.D. Bruno, N.A. Kudryashov // Український математичний вісник. — 2009. — Т. 6, № 3. — С. 311-337. — Бібліогр.: 48 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Power geometry in nonlinear partial differential equations
by: Bruno, A.D.
Published: (2008) -
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
by: Cohl, H.S., et al.
Published: (2015) -
Exact Solutions of Nonlinear Equations in Math- ematical Physics via Negative Power Expansion Method
by: B. Xu, et al.
Published: (2021) -
Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
by: Cohl, H.S.
Published: (2011) -
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
by: Cohl, H.S.
Published: (2013)