Kaleidoscopical configurations
Let G be a group and X be a G-space with the action G × X → X, (g, x) → gx. A subset A of X is called a kaleidoscopical configuration if there is a coloring χ : X → k (i.e. a mapping of X onto a cardinal k) such that the restriction χ|gA is a bijection for each g ∊ G. We survey some recent results o...
Saved in:
Date: | 2014 |
---|---|
Main Authors: | Protasov, І., Protasova, K. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2014
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124449 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Kaleidoscopical configurations / ИОФІ. Protasov, K. Protasova амилия // Український математичний вісник. — 2014. — Т. 11, № 1. — С. 79-86. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Kaleidoscopical configurations
by: I. Protasov, et al.
Published: (2014) -
Automorphisms of kaleidoscopical graphs
by: Protasov, I.V., et al.
Published: (2007) -
Automorphisms of kaleidoscopical graphs
by: Protasov, I. V., et al.
Published: (2018) -
The System, Mosaic or Kaleidoscope: Linguistic, Literary and Cultural History of Lviv and Halychyna as an Intellectual Issue
by: R. Y. Holyk
Published: (2022) -
Energy spectrum of the quantum vortices configurations
by: S. K. Nemirovskii
Published: (2015)