A class of periodic integral equations with numerical solving by a fully discrete projection method

For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretizatio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Solodky, S.G., Semenova, E.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124468
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124468
record_format dspace
fulltext
spelling irk-123456789-1244682017-09-27T03:03:05Z A class of periodic integral equations with numerical solving by a fully discrete projection method Solodky, S.G. Semenova, E.V. For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used. 2014 Article A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ. 1810-3200 2010 MSC. 65R20, 65R30, 47G30. http://dspace.nbuv.gov.ua/handle/123456789/124468 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a class of integral periodic equations of the first kind the problem of stable approximate solving is considered. The error estimates in the metric of Sobolev spaces for a fully discrete projection method with two discretization parameters are established. For choosing the level of discretization a balancing principle is used.
format Article
author Solodky, S.G.
Semenova, E.V.
spellingShingle Solodky, S.G.
Semenova, E.V.
A class of periodic integral equations with numerical solving by a fully discrete projection method
Український математичний вісник
author_facet Solodky, S.G.
Semenova, E.V.
author_sort Solodky, S.G.
title A class of periodic integral equations with numerical solving by a fully discrete projection method
title_short A class of periodic integral equations with numerical solving by a fully discrete projection method
title_full A class of periodic integral equations with numerical solving by a fully discrete projection method
title_fullStr A class of periodic integral equations with numerical solving by a fully discrete projection method
title_full_unstemmed A class of periodic integral equations with numerical solving by a fully discrete projection method
title_sort class of periodic integral equations with numerical solving by a fully discrete projection method
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/124468
citation_txt A class of periodic integral equations with numerical solving by a fully discrete projection method / S.G. Solodky, E.V. Semenova // Український математичний вісник. — 2014. — Т. 11, № 3. — С. 400-416. — Бібліогр.: 9 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT solodkysg aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT semenovaev aclassofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT solodkysg classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
AT semenovaev classofperiodicintegralequationswithnumericalsolvingbyafullydiscreteprojectionmethod
first_indexed 2025-07-09T01:29:50Z
last_indexed 2025-07-09T01:29:50Z
_version_ 1837130938088161280