Discontinuous Birkhoff theorem

A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Petrenko, O., Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124527
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124527
record_format dspace
spelling irk-123456789-1245272017-09-30T03:03:29Z Discontinuous Birkhoff theorem Petrenko, O. Protasov, I.V. A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space. 2007 Article Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ. 1810-3200 2000 MSC. 37B20, 54C10, 58K15. http://dspace.nbuv.gov.ua/handle/123456789/124527 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.
format Article
author Petrenko, O.
Protasov, I.V.
spellingShingle Petrenko, O.
Protasov, I.V.
Discontinuous Birkhoff theorem
Український математичний вісник
author_facet Petrenko, O.
Protasov, I.V.
author_sort Petrenko, O.
title Discontinuous Birkhoff theorem
title_short Discontinuous Birkhoff theorem
title_full Discontinuous Birkhoff theorem
title_fullStr Discontinuous Birkhoff theorem
title_full_unstemmed Discontinuous Birkhoff theorem
title_sort discontinuous birkhoff theorem
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/124527
citation_txt Discontinuous Birkhoff theorem / O. Petrenko, I.V. Protasov // Український математичний вісник. — 2007. — Т. 4, № 3. — С. 434-436. — Бібліогр.: 2 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT petrenkoo discontinuousbirkhofftheorem
AT protasoviv discontinuousbirkhofftheorem
first_indexed 2025-07-09T01:34:20Z
last_indexed 2025-07-09T01:34:20Z
_version_ 1837131241402400768
fulltext Український математичний вiсник Том 4 (2007), № 3, 434 – 436 Discontinuous Birkhoff theorem O. Petrenko, Igor V. Protasov Abstract. A topological space X is called totally recurrent if every mapping f : X → X has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space. 2000 MSC. 37B20, 54C10, 58K15. Key words and phrases. Recurrent point, totally recurrent space. Let X be a topological space, f : X → X. A point x ∈ X is said to be recurrent if, x is a limit point of the orbit {fm(x) : m ∈ ω}. By Birkhoff Theorem ([1, 2]), every continuous mapping of a compact space has a recurrent point. We say that a topological space X is totally recurrent if every map- ping f : X → X has a recurrent point. Example 1. Every finite space is totally recurrent. Example 2. Let X be an infinite discrete space, Ẋ = X ∪ {∞} be a one-point compactification of X, f : Ẋ → Ẋ. If ∞ is not a recurrent point of f then there exist a neighbourhood U of x and n ∈ ω such that fm(x) /∈ U for every m > n. Since Ẋ \ U is finite, at least one point of Ẋ \ U is recurrent, so Ẋ is totally recurrent. Example 3. Let X be an infinite set endowed with a topology in which a subset U is open if and only if X \ U is finite. Every point of X is a limit point of any infinite subset of X. It follows that X is a totally recurrent T1-space. To prove our main result we need some auxiliary lemmas. Lemma 1. Every closed subspace F of a totally recurrent space X is totally recurrent. Received 11.05.2007 ISSN 1810 – 3200. c© Iнститут математики НАН України O. Petrenko, I. V. Protasov 435 Proof. We take an arbitrary mapping f : F → F , fix some point y ∈ F and define a mapping h : X → X by the rule h|F = f |F , h|X\F ≡ y. Since X is totally recurrent, there exists a recurrent point x of h. By the definition of h, we have x ∈ F , so x is a recurrent point of f and F is totally recurrent. Lemma 2. Let X be a topological space, γ be a limit ordinal. Assume that there exists a family {Fα : α < γ} of non-empty closed subspaces of X such that F0 = X and (i) Fα ⊃ Fβ for all α < β < γ; (ii) Fβ = ⋂ α<β Fα for every limit ordinal β < γ; (iii) ⋂ α<γ Fα = ∅. Then X is not totally recurrent. Proof. For every α < γ, we fix some point xα ∈ Fα \ Fα+1 and define a mapping f : X → X by the rule f |Fα\Fα+1 ≡ xα+1. Given an arbitrary point x ∈ X, we choose the minimal ordinal β such that x /∈ Fβ . By (ii), β is not a limit ordinal, so β = α+ 1 for some α < γ and x ∈ Fα \Fα+1. By definition of f , we have fn(x) ∈ Fα+1 for every natural number n, so fn(x) /∈ X \Fα+1. Since X \Fα+1 is a neighbourhood of X, we conclude that x is not a recurrent point of f . Lemma 3. Let X be a topological space. Assume that there exist two families {Fn : n ∈ ω}, {Hn : n ∈ ω} of closed subspaces of X such that F0 ∩H0 = ∅ and Fn ⊃ Fn+1, Hn ⊃ Hn+1 for every n ∈ ω. Then X is not totally recurrent. Proof. For every n ∈ ω, we fix some points xn ∈ Fn\Fn+1, yn ∈ Hn\Hn+1 and define a mapping f : X → X by the rule f |Fn\Fn+1 ≡ xn+1, f |Hn\Hn+1 ≡ yn+1, f |∩n∈ωFn ≡ y0, f |∩n∈ωHn ≡ x0, f |X\(F0∪H0) ≡ x0. It is a routine verification that f has no recurrent points. Lemma 4. Let X be an infinite totally recurrent space such that every infinite closed subspace of X has an infinite proper closed subspace. Then the following statements hold 436 Discontinuous Birkhoff theorem (i) F ∩H 6= ∅ for any two closed infinite subspaces of X; (ii) there exists a non-empty finite subset A of X such that X \ U is finite for every open subset U of X containing A. Proof. (i) follows directly from Lemma 3. (ii) Using the assumption of lemma, we can construct inductively, a family {Fα : α < γ} of infinite closed subspaces of X satisfying (i), (ii) of Lemma 2 and such that ⋂ α<γ Fα is finite. Put A = ⋂ α<γ Fα. By Lemma 2, A is non-empty. Let U be an open subset of X such that A ⊆ U . Assume that X \ U is infinite and, for every α < γ, put Hα = (X \ U) ∩ Fα. By (i) of Lemma 4, Hα 6= ∅ for every α < γ. Then the family {Hα : α < γ} of closed subsets of X \U satisfies Lemma 2, so X \ U is not totally recurrent contradicting Lemma 1. Theorem 1. Let X be an infinite Hausdorff totally recurrent space. Then X is a one-point compactification of a discrete space. Proof. Let A = {a1, . . . , an} be a subset ofX given by Lemma 4. SinceX is Hausdorff, every point from X \A is isolated, so it suffices to show that A has only one non-isolated point in X. We assume the contrary that a1, a2 are non-isolated, and choose pairwise disjoint open sets U1, . . . , Un containing a1, . . . , an. Since every point from X \ (U1, . . . , Un) is isolated then U1, . . . , Un are closed, so U1, U2 are infinite disjoint closed subsets of X and we get a contradiction to Lemma 4. Example 3 shows that this theorem does not hold for T1-spaces. References [1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Coll. Publ., 9, 1927. [2] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. Contact information O. Petrenko, Igor V. Protasov Department of Cybernetics, National T. Shevchenko University of Kyiv, Volodimirska 64, Kyiv 01033, Ukraine E-Mail: protasov@unicyb.kiev.ua