Phase spaces for a class of Sobolev type equations
The solvability of the Cauchy problem u(0) = u₀ of an semilinear differential operator equation Lǔ = Mu+N(u) is under consideration. The abstract results are illustrated by the Cauchy–Dirichlet problem for degenerate reaction-diffusion equations and for Navier–Stokes equations, and by the Cauchy–Ber...
Saved in:
Date: | 2004 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2004
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Phase spaces for a class of Sobolev type equations / G.A. Sviridyuk // Український математичний вісник. — 2004. — Т. 1, № 2. — С. 259-272. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | The solvability of the Cauchy problem u(0) = u₀ of an semilinear differential operator equation Lǔ = Mu+N(u) is under consideration. The abstract results are illustrated by the Cauchy–Dirichlet problem for degenerate reaction-diffusion equations and for Navier–Stokes equations, and by the Cauchy–Bernard problem for Oskolkov thermoconvection equations. |
---|