О структуре полиномиальных инвариантов линейных циклов

Рассмотрена задача генерации полиномиальных инвариантов итерационных циклов с оператором инициализации цикла и невырожденным линейным оператором в теле цикла. Множество таких инвариантов образует идеал кольца полиномов от переменных цикла. Приведен алгоритм вычисления базисных инвариантов для линейн...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Львов, M.C.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2015
Schriftenreihe:Кибернетика и системный анализ
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/124827
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О структуре полиномиальных инвариантов линейных циклов / M.C. Львов // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 143-156. — Бібліогр.: 20 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассмотрена задача генерации полиномиальных инвариантов итерационных циклов с оператором инициализации цикла и невырожденным линейным оператором в теле цикла. Множество таких инвариантов образует идеал кольца полиномов от переменных цикла. Приведен алгоритм вычисления базисных инвариантов для линейного оператора типа жордановой клетки, а также алгоритм вычисления базисных инвариантов диагонализируемого линейного оператора с неприводимым минимальным характеристическим полиномом. Доказана теорема о строении базиса идеала инвариантов: он состоит из базисных инвариантов жордановых клеток и базисных инвариантов диагонализируемой части рассматриваемого линейного оператора.