Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept

The purpose of the paper is to generalize the results obtained by the authors in their last works which are related to the asymptotic properties of the pseudoinverse model-based method for designing an efficient steady-state control of interconnected systems with uncertainties and arbitrary bounded...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Zhiteckii, L.S., Solovchuk, K.Yu.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України 2017
Назва видання:Кибернетика и вычислительная техника
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124989
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept / L.S. Zhiteckii, K.Yu. Solovchuk // Кибернетика и вычислительная техника. — 2017. — Вип. 3 (189). — С. 29-43. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124989
record_format dspace
spelling irk-123456789-1249892017-10-14T03:03:14Z Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept Zhiteckii, L.S. Solovchuk, K.Yu. Интеллектуальное управление и системы The purpose of the paper is to generalize the results obtained by the authors in their last works which are related to the asymptotic properties of the pseudoinverse model-based method for designing an efficient steady-state control of interconnected systems with uncertainties and arbitrary bounded disturbances and also to present some new results. Розглянуто концепцію псевдообернення як деяку уніфіковану концепцію керування усталеними станами багатозв'язних систем за наявності невимірюваних обмежених збурень з повною і неповною інформацією про параметри лінійної номінальної моделі, по якій будується зворотний зв'язок. Припускається, що ранг матриці коефіцієнтів підсилення цієї моделі може бути довільним. Встановлено достатні умови граничної обмеженості всіх сигналів у замкнених системах керування, що реалізують запропоновану концепцію. Наведено результати моделювання Рассмотрена концепция псевдообращения как некоторая унифицированная концепция управления установившимися состояниями многосвязных систем при наличии неизмеряемых ограниченных возмущений с полной и неполной информацией о параметрах линейной номинальной модели, по которой строится обратная связь. Предполагается, что ранг матрицы коэффициентов усиления этой модели может быть произвольным Установлены достаточные условия предельной ограниченности всех сигналов в замкнутых системах управления, реализующих предлагаемую концепцию. Приведены результаты моделирования. 2017 Article Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept / L.S. Zhiteckii, K.Yu. Solovchuk // Кибернетика и вычислительная техника. — 2017. — Вип. 3 (189). — С. 29-43. — Бібліогр.: 23 назв. — англ. 0452-9910 DOI: doi.org/10.15407/kvt188.02.049 http://dspace.nbuv.gov.ua/handle/123456789/124989 681.5 en Кибернетика и вычислительная техника Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Интеллектуальное управление и системы
Интеллектуальное управление и системы
spellingShingle Интеллектуальное управление и системы
Интеллектуальное управление и системы
Zhiteckii, L.S.
Solovchuk, K.Yu.
Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
Кибернетика и вычислительная техника
description The purpose of the paper is to generalize the results obtained by the authors in their last works which are related to the asymptotic properties of the pseudoinverse model-based method for designing an efficient steady-state control of interconnected systems with uncertainties and arbitrary bounded disturbances and also to present some new results.
format Article
author Zhiteckii, L.S.
Solovchuk, K.Yu.
author_facet Zhiteckii, L.S.
Solovchuk, K.Yu.
author_sort Zhiteckii, L.S.
title Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
title_short Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
title_full Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
title_fullStr Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
title_full_unstemmed Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept
title_sort discrete-time steady-state control of interconnected systems based on pseudoinversion concept
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
publishDate 2017
topic_facet Интеллектуальное управление и системы
url http://dspace.nbuv.gov.ua/handle/123456789/124989
citation_txt Discrete-Time Steady-State Control of Interconnected Systems Based on Pseudoinversion Concept / L.S. Zhiteckii, K.Yu. Solovchuk // Кибернетика и вычислительная техника. — 2017. — Вип. 3 (189). — С. 29-43. — Бібліогр.: 23 назв. — англ.
series Кибернетика и вычислительная техника
work_keys_str_mv AT zhiteckiils discretetimesteadystatecontrolofinterconnectedsystemsbasedonpseudoinversionconcept
AT solovchukkyu discretetimesteadystatecontrolofinterconnectedsystemsbasedonpseudoinversionconcept
first_indexed 2025-07-09T02:21:38Z
last_indexed 2025-07-09T02:21:38Z
_version_ 1837134197932687360
fulltext ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) Интеллектуальное управление и системы DOI: https://doi.org/10.15407/kvt188.02.049 UDC 681.5 L.S. ZHITECKII, PhD (Engineering), Acting Head of the Department of Intelligent Automatic Systems e-mail: leonid_zhiteckii@i.ua K.Yu. SOLOVCHUK, Postgraduate Student e-mail: solovchuk_ok@mail.ru International Research and Training Center for Information Technologies and Systems of the National Academy of Science of Ukraine and Ministry of Education and Sciences of Ukraine, Kiev, Ukraine, Acad. Glushkova av., 40, Kiev, 03187, Ukraine DISCRETE-TIME STEADY-STATE CONTROL OF INTERCONNECTED SYS- TEMS BASED ON PSEUDOINVERSION CONCEPT Introduction. The problem of controlling interconnected systems subjected to arbitrary un- measurable disturbances remains actual up to now. It is important problem from both theo- retical and practical points of view. During the last decades, the internal model control prin- ciple becomes popular among other methods dealing with an improvement of the control system. A perspective modification of the internal model control principle is the so-called model inverse approach. Unfortunately, the inverse model approach is quite unacceptable if the systems to be controlled are square but singular or if they are nonsquare. It turned out that the so-called pseudoinverse (generalized inverse) model approach can be exploited to cope with the noninevitability of singular square and also nonsquare system. The purpose of the paper is to generalize the results obtained by the authors in their last works which are related to the asymptotic properties of the pseudoinverse model-based method for designing an efficient steady-state control of interconnected systems with uncer- tainties and arbitrary bounded disturbances and also to present some new results. Results. In this paper, the main effort is focused on analyzing the asymptotic properties of the closed-loop systems containing the pseudoinverse model-based controllers. In the framework of the pseudoinversion concept, new theoretical results related to the asymptotic behavior of these systems are obtained. Namely, in the case of nonsingular gain matrices with known elements, the upper bounds on the ultimate norms of output and control input vectors are found. Next, in the case of nonsquare gain matrices whose elements are also known, the asymptotic behavior of the feedback control systems designed on the basis of pseudoinverse approach are studied. Further, the sufficient conditions guaranteeing the boundedness of the output and control input signals for the linear and certain class of nonlinear interconnected systems in the presence of uncertainties are derived.  L.S. ZHITECKII, K.Yu. SOLOVCHUK, 2017 29 L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 30 Conclusion. It has been established that the pseudoinverse model-based concept can be used as a unified concept to deal with the steady-state regulation of the linear interconnected discrete-time systems and of some classes of nonlinear interconnected systems with possible uncertainties in the presence of arbitrary unmeasured but bounded disturbances. Keywords: discrete time, feedback, pseudoinversion, interconnected systems, optimality, stability, uncertainty. INTRODUCTION The problem of controlling interconnected systems subjected to arbitrary un- measurable disturbances stated several decades ago in the work [1] remains ac- tual up to now [2, 3]. It is important problem from both theoretical and practical points of view [4, 5]. During the last decades, the internal model control princi- ple becomes popular among other methods dealing with an improvement of the control system. Based on this method, interconnected control problem was first approached in [6]. A perspective modification of the internal model control prin- ciple is the so-called model inverse approach. The perfect output control per- formance is an important interconnected control problem closely related to in- verse systems. Since the pioneering work [7], the problem of inversion of linear time-invariant interconnected systems has attracted an attention of several re- searches. See [8–11]. Recently, a significant progress in this research area has been achieved in [2, 3, 12]. Most of these works except [3, 12] dealt with con- tinuous-time interconnected systems. An inverse model approach to ensuring perfect steady-state regulation in linear discrete-time interconnected systems was first advanced in [13] and inde- pendently in [14]. Similar discrete-time counterpart of interconnected process control systems containing the table inverse model was proposed in [15]. The steady-state control of linear interconnected system discussed in [11] in the framework of the problem of minimal inversion, has also been studied in the paper [16] dealing with nonlinear discrete-time interconnected control systems. Unfortunately, the inverse model approach is quite unacceptable if the systems to be controlled are square but singular or if they are nonsquare. Several re- searches whose works are cited in [17] observed that the inverse model-based controller may be also not admissible for designing some process control sys- tems which contain ill-conditioned plants since they may become (almost) non- invertible in the presence of an uncertainty. It turned out that the so-called pseudoinverse (generalized inverse) model approach first proposed in the paper [10] can be exploited to cope with the non- inevitability of nonsquare system. Recently, this approach was extended in [18–20] for controlling a wide class of discrete-time interconnected systems. The purpose of the paper is to generalize the results obtained by the au- thors in their last works which are related to the asymptotic properties of the pseudoinverse model-based method for designing an efficient steady-state con- trol of interconnected systems with uncertainties and arbitrary bounded distur- bances and also to present some new results. Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 31 THE DESCRIPTION OF CONTROL SYSTEM AND PROBLEM STATEMENT Basic assumptions. Suppose the plant to be regulated is a nonlinear intercon- nected time-invariant system whose static characteristic is y = )(uϕ (1) where Tmyyy ],...,[ )()1(= denotes the m-dimensional output vector, Truuu ],...,[ )()1(= denotes the r-dimensional input (control) vector, and mr RR →⋅ϕ :)( represents some nonlinear vector-valued function given by .)](),...,([)( )()1( Tm uuu ϕϕ=ϕ (2) Consider a class of systems in which the number of inputs is not more than the number of outputs: .r m≤ The following assumption with respect to the nonlinearity )(uϕ will be re- quired. Assumption 1. The components )(),...,( )()1( uu mϕϕ of )(uϕ in (2) are all the continuously differentiable functions of the variables .,..., )()1( ruu In order to implement the discrete-time control, the signals )(),...,( )()1( tyty m given in the continuous time t need to be sampled with a sampling period 0T to yield the sequences )},({ 0 )( nTy i whereas the control signals are of zero-order sampled-hold type, i.e., )()( 0 )()( nTutu ii = for ,)1( 00 TntnT +<≤ .,,1 ri …= Assumption 2. As in [14] and [16], suppose that the sampling period 0T is large enough so that the transient stage caused by stepwise changes of inputs )(),...,( )()1( tutu r at each (n–1)th time instant 0)1( Tnt −= may practically be completed during the time interval ).,)1[( 00 nTTn − In view of (1), this narra- tive description of the discrete-time steady-state control gives that the steady state of this interconnected system can be mathematically modeled by the first- order nonlinear difference equation )( 1−ϕ= nn uy (3) similar to that in [16], if any disturbances are absent. In this equation, the nota- tions )(: 0nTyyn = and )(: 0nTuun = are introduced (for the simplicity of expo- sition). In practical applications, the outputs )(),...,( )()1( tyty m are usually influ- enced by certain classes of persistent external disturbances ),(),...,( )()1( tdtd m respectively. Then, instead of (3), another equation L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 32 11)( −− +ϕ= nnn duy (4) with the disturbance vector Tm nnn ddd ],...,[: )()1(= as a steady-state model of system will be further considered. Now, the following assumption about }{ nd is introduced. Assumption 3. The components of nd are upper bounded in modulus by an iε for all ,,2,1 …=n i.e., ∞<ε≤ i i nd || )( ).,,1( mi …= (5) Let Tmyyy ],,[: )*()1*(* …= )const( )*( ≡iy be some vector defining the de- sired output vector (a given set-point). The following assumption with respect to this vector is made. Assumption 4. ∗y is not the m-dimensional zero-vector ,]0,...,0[:0 T m = i.e., 0|||| ≠∗y implying that .0|||| )()1( ≠++ ∗∗ myy … (6) Regulation strategy using pseudoinverse model-based control ap- proach. Let           = )( 0 )1( 0 )1( 0 )11( 0 0 mrm r bb bb B … M … be a fixed rm× matrix chosen further by the designer to deal with some linear model of (1). Define the so-called pseudoinverse (generalized inverse) mr × matrix )( )( 00 ijB β=+ specified as ,)(lim 0 12 0000 T r T BIBBB − →δ + δ+= (7) where NI denotes the identity NN × matrix. (Note that the limit (7) exist for any 0 m rB ×∈R [21].) According to [19], [20] the control law utilizing the pseudoinverse model- based control strategy to regulate ny around ∗y is given by ,01 nnn eBuu + − += (8) where ne represents the output error vector at nth time instant 0nTt = specified as ,nn yye −= ∗ (9) Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 33 The equations (8), (9) describe the some linear interconnected controller of the integral action. Namely, to implement the control law (8), one needs the discrete integrator whose output is , 1 ∑ = ∆= n k kn uu (10) where .0 nn eBu +=∆ (11) Due to (11) together with (10), this controller plays the role of an I-type in- terconnected discrete-time controller with a matrix gain + 0B (Fig. 1). Regulation problems. To formulate the goals of the regulation, we before need the following definition. Definition 1 [22]. The closed-loop control system containing the plant de- scribed by (4) and the feedback (8), (9) is said to be BIBS (bounded-input bounded-state) stable if there exist some nonnegative numbers Cu, Cy, Cd such that ,||||sup||||sup||||suplim 00 n n dn n un n dCuCy ≥≥∞→ +≤ (12) ||||sup||||sup||||suplim 00 n n dn n yn n dCyCu ≥≥∞→ +≤ (13) are satisfied. Now, introduce the performance index ||||suplim: n n eJ ∞→ = (14) evaluating the asymptotic behavior of the control system (4), (8), (9). Then, one of the following control objectives may be stated [22]. Fig. 1. Configuration of the regulation system (4), (9), (10), (11) L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 34 • The optimization: it is required to minimize J defined by (14) in the sense that }{ inf||||suplim nun n e = ∞→ (15) must be achieved. • Quasi-optimization: it is necessary to minimize an upper bound of J given in the inequality .||||suplim Jen n ≤ ∞→ (16) • Stability (robust stability): the closed-loop system (4), (8), (9) must be stable (in the sense of Definition 1) by suitable choice of 0B . LINEAR CASE Regulation without parameter uncertainty. In the linear case, )(uϕ in (1) is defined as ,)( Buu =ϕ where )( )(ijbB = represents some numerical rm × matrix with the elements )(ijb whose rank satisfies .rank1 rB ≤≤ In this case, the equation (4) becomes .11 −− += nnn dBuy (17) Let mr = and .rank rB = Clearly, it implies that B is non-singular. Then the inverse matrix 1−B exists and .1−+ = BB Assume that there is no parameter uncertainty, i.e., B is known a priori. We can derive immediately the inverse- model based control law ,1 1 nnn eBuu − − += (18) followed from (8) after setting .0 BB = It turns out the control law above guarantees the optimality of the closed- loop system (17), (18), (9) (in the sense of (15)). This fact is established in the theorem below. Theorem 1 [22]. Let the plant to be regulated be described by (17). Sup- pose B is the known non-singular square matrix ).0(det ≠B Then, the control- ler (18), (9) when applied to (17) achieves the regulation objective (15). Fur- thermore, subject to Assumptions 4, it yields ∞<−≤ ∞<+≤ − ∞<≤ ∞<≤ −− ∞→ ||||sup ,||||sup||||||||||||||||suplim 1 0 0 1*1 nn n n n n n ddJ dByBu (19) for any initial .|||| 0 ∞<u Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 35 Corollary. Under the conditions of Theorem 1, in the terms of the Euclid- ean norm ,|||| 2⋅ the asymptotic properties of the controller (18), (9) are given by ε≤ ε+≤ ∞→ −− ∞→ 2||||suplim ,||||||||||||||||suplim 2 2 1 2 * 2 1 2 n n n n e ByBu (20) with 2/12)*(2)1*( 2 * ]|||[||||| Myyy ++= … and .][ 2/122 1 mε++ε=ε … Proof. Immediate from (19) together with (5) and from the definition of *y taking into account the definitions of the Euclidean vector and matrix norms [23].□ Let B be a known nonsquare matrix ).( mr < In this case, instead of (18), nnn eBuu + − += 1 (21) is chosen as the control law. The equation (21) together with (9) describes the pseudoinverse model-based controller. The following result can be shown to be valid. Theorem 2 [20]. The controller (21), (9) applied to (17) leads to a stable closed-loop system (in the sense of Definition 1). Moreover, subject to Assump- tion 4, it gives that quasi-optimality property of the form (16) is ensured with the minimal J such that .2)||(||||||||||suplim ,||||||||||||||||suplim 2 * 22 22022 ∞<ε+ε+−≤ ∞<ε+−−≤− + ∞→ ++ ∞→ yBBIe BuuBBIuu mn n e r e n n (22) Remark 1. Note that if r=m and 0det ≠B yielding ,1−+ = BB then the inequalities (22) finally leads to (20), respectively. Regulation in the presence of parameter uncertainty. Consider the steady-state model of the plant given in the form (17) with an arbitrary nonzero matrix ).( )(ijbB = Assume that s)(ijb are unknown but the bounds, )( max )( min , ijij bb of the intervals ),,1;,,1()( max )()( min rjmibbb ijijij …… ==≤≤ (23) to which they belong are known. Additionally, let .0 )( max )( min ∞<< ijij bb (24) Denote by Ξ the set of possible ˆsB whose elements, ( )ˆ ijb satisfy ( ) ( ) ( ) min max ˆ [ , ].ij ij ijb b b∈ This means that L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 36 ( ) ( ) ( ) ( ) min max ˆ{( ) : 1, , , 1, , }.ij ij ij ijb b b b i m j rΞ = ≤ ≤ = =… … (25) Further, choose a matrix B0 from the set Ξ provided 0det 0 =B if this set contains at least one singular matrix ˆ.B Thus, ),,1;,,1()( max )( 0 )( min rjmibbb ijijij …… ==≤≤ has to be met. The sufficient condition guaranteeing the boundedness of }{ ny and }{ nu is established in the following theorem. Theorem 3. Consider the feedback system (17), (8), (9). Let the require- ments (23), (24) hold and the requirements on the choice of B0 above mentioned be met. Assume that the equilibrium state of the feedback system (17), (8), (9) defined by the pair ),( ee yu which is the solution of the equation * 00 yBBuB e ++ = together with ee Buy = exists. Introduce the matrix .0 BB −=∆ If the condi- tion 1<q (26) with ||||max 0)(: 0 ∆= + Ξ∈∆−∆ Bq B (27) is satisfied, then the closed-loop control system containing the plant (17) and the pseudoinverse model-based controller )( * 01 nnn yyBuu −+= + − (28) will be the robust BIBS stable. Moreover, subject to Assumption 3, this control- ler makes it possible to achieve .)1(2]2||[||||||||||suplim ,||||)1(||||||||)1(||||suplim 1 202002 20 1 20200 1 2 ∞<−ε+ε+−≤ ∞<−ε+−−−≤− −+ ∞→ +−+− ∞→ qeBBIe BquuBBIquu mn n e r e n n (29) Proof. Due to space limitation, details are omitted.□ By virtue of (12), (13), the condition (26) together with the expression (27) guarantee the boundedness of }{ ny and }{ nu as ∞→n (according to (29)). Note that this condition can simply be verified by setting 10)(: ||||max 0 ∆= + Ξ∈∆−∆ Bq B and by using the linear programming technique ( 1|||| P denotes here the 1-norm of arbitrary matrix P; the definition of 1|||| P can be found in [23]). Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 37 A numerical example and simulation. To illustrate the robust stability properties derived from Theorem 3, a numerical example was considered setting 2== mr and ( ) (11) (12) (21){ : 0.4 1.4, 1.2 0.5, 0.8 2.8,ijb b b bΞ = ≤ ≤ − ≤ ≤ − ≤ ≤ (22)2.7 0.7}b− ≤ ≤ − Such set was chosen to ensure the singularity of some ˆsB belonging to .Ξ In this example,       − − = 70.18.1 85.09.0 0B was put. Such a choice of 0B gives Ξ∈0B and .0det 0 =B Using the formula (7),       −− =+ 613/136613/68 613/144613/72 0B was found. By exploiting the linear programming technique, it was established that .1572,0||||max 10)(: 0 <≈∆= + Ξ∈∆−∆ Bq B Thus, requirement (26) together with (27) will be satisfied. Next, taking ,878.0)11( =b ,864.0)12( −=b ,082.1)21( =b 096.1)22( −=b under which )( )(ijbB = will satisfy ,Ξ∈B a simulation experiment with the closed-loop control system described by (17), (8), (9) was conducted. In this experiment, )2()1( , nn dd were simulated as the pseudo-random variables within ].07.0,07.0[− The components of *y were chosen as follows: *(1) *(2)0.4 if 0 50, 0.6 if 0 50, and 0.2 if 50 100 0.8 if 50 100. n n y y n n ≤ ≤ ≤ ≤  = = < ≤ < ≤  Results of the simulation experiment are depicted in Figs. 2 and 3. Fig. 2. The norm of control input vector L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 38 Fig. 3. The norms of output vector (solid line) and of set-point vector (dashed line) We observe that system behavior is successful while B and B0 are different. REGULATION OF UNKNOWN NONLINEAR SYSTEM Case 1. Now, consider the nonlinear interconnected system described by (4). Recalling Assumption 1 and denoting ,/)(:)( )()()( jiij uuub ∂ϕ∂= introduce the matrix           = )()( )()( )( )()1( )1()11( ubub ubub uB mrm r … M … (30) which represents the rm × Jacobian matrix whose elements )()( ub ij play a role of some “dynamical” gains from the jth input, )( ju to the ith output, )(iy for each fixed .ru R∈ Next, the following two additional assumptions regarding the nonlinearity )(uϕ will be required. Assumption 5. s)()( ub ij in (30) do not change its sign and remain uni- formly bounded for all u from rR according to (24) and to ).,,1;,,1(,)( )( max )()( min rjmibubb ijijij …… ==≤≤ (31) Assumption 6. In case 1 to be studied, Ξ represents the set of matrices having the full rank: .€rank rB = Under these assumptions we first choose a Ξ∈0B and design again the pseudoinverse model-based controller of the form (28). The asymptotic proper- ties of this controller are formulated in the theorem below. Theorem 4 [19]. Consider the feedback control system described by (4), (28). Let the equilibrium state defined by )(,)( * 00 eee uyyBuB ϕ==ϕ ++ Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 39 exist. Suppose that Assumptions 1 and 3 to 6 are valid. Then this system will be robust BIBS stable for any nonlinearity )(uϕ satisfying (31) together with (24) if the requirement (26) in which ,maxmax 1 1 )()( 0 ],[1 )()()( ∑ ∑ = =δδ∈δ≤≤ δβ= r i m j jikj rk ijijij q (32) where )( 0 )( max )()( 0 )( min )( , ijijijijijij bbbb −=δ−=δ is met. Furthermore, },,max{||||)1(||||suplim 110 1 mn n Bqu εε−≤ +− ∞ ∞→ … will take place, where ∞|||| x denotes the ∞ -norm of a vector x. As in the linear case before studied, the condition (26) but with q given by (32) can be verified via the linear programming tool. Case 2. In this case, instead of Assumptions 1, 5 and 6, another assumption with respect to )(uϕ is introduced. Assumption 7. The nonlinearity )(uϕ can be represented as the sum ),()( ugBuu +=ϕ (33) in which )( )(ijbB = is a numerical rm × matrix and )(ug is a nonlinear vec- tor-valued function satisfying ∞<≤ ∈ Cug ru ||)(||sup R (34) with some C. Due to the expression (33) given in Assumption 7, the system equation be- comes .)( 111 −−− ++= nnnn dugBuy (35) As in the linear case with unknown B, it is assumed that ,Ξ∈B where Ξ is given by (25). Similarity to this case, we choose Ξ∈0B so that 0det 0 =B if r=m and there is at least a singular matrix .€ Ξ∈B Next, the pseudoinverse model-based controller of the form (28) is designed to regulate the plant (35). The following theorem establishes stability results of the closed-loop system (35), (28). Theorem 5. Under the conditions of Theorem 3 added by Assumption 7, the closed-loop system containing the controller (28) and the plant (35) will be ro- bust BIBS stable. Proof. Proceeds along the lines of the proof of Theorem 3 after replacing ∞<∞<≤ ||||sup0 nn d by .||||sup0 ∞<+∞<≤ Cdnn □ Remark 2. In contrast with [19], it is not required that )(,),( )()1( uu mϕϕ … in (2) to be smooth functions of u. L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 40 Remark 3. Note that )(ug may not be the Lipchitz function, i.e., || ( ) ( ) || || || , (0 )rg u g u L u u u u L′ ′′ ′ ′′ ′ ′′− ≤ − ∀ ∈ < < ∞R is not necessary. However, due to (34) it has to be bounded as .|||| ∞→u Comment. Contrary to the case 1, the set Ξ may contain singular ˆsB and it is essential. CONCLUSION In this paper, the main effort has been focused on analyzing the asymptotic properties of the closed-loop systems containing the pseudoinverse model-based controllers. We have established that the pseudoinverse model-based concept can be used as a unified concept to deal with the steady-state regulation of the linear interconnected discrete-time systems and of some classes of nonlinear interconnected systems with possible uncertainties in the presence of arbitrary unmeasured but bounded disturbances. In the framework of this concept, new theoretical results related to the asymptotic behavior of these systems have been presented. REFERENCES 1. Davison E. The output control of linear time-invariant multivariable systems with un- measurable arbitrary disturbances. IEEE Trans. Autom. Contr., 1972, vol. AC-17, no. 5, pp. 621–631. 2. Liu C., Peng H. Inverse-dynamics based state and disturbance observers for linear time- invariant systems. ASME J. Dyn Syst., Meas. and Control , 2002, vol. 124, no. 5, pp. 376–381. 3. Lyubchyk L. M. Disturbance rejection in linear discrete Multivariable systems: inverse model approach. Prep. 18th IFAC World Congress, Milano, Italy, 2011, pp. 7921– 7926. 4. Skogestad S., Postlethwaite I. Multivariable Feedback Control . UK, Chichester: Wiley, 1996. 5. Freudenberg J. and Middleton R. Properties of single input, two output feedback sys- tems. Int. J. Control, 1999, vol. 72, no. 16, pp. 1446–1465. 6. Francis B., Wonham W. The internal model principle of control theory. Automatica, 1976, vol. 12, no. 5, pp. 457–465. 7. Brockett R. W. The invertibility of dynamic systems with application to control. Ph. D. Dissertation, Case Inst. of Technology, Cleveland, Ohio, 1963. 8. Sain M. K., Massey J. L. Invertibility of linear time-invariant dynamical systems. IEEE Trans. Autom. Contr.,1969, vol. AC-14, no. 2, pp. 141–149, Apr. 1969. 9. Silverman L. M. Inversion of multivariable linear systems. IEEE Trans. Autom. Contr., 1969, vol. AC-14, no. 3, pp. 270–276.. 10. Lovass-Nagy V., Miller J. R., Powers L. D. On the application of matrix generalized inversion to the construction of inverse systems. Int. J. Control, 1976, vol. 24, no. 5, pp. 733–739. 11. Seraji H. Minimal inversion, command tracking and disturbance decoupling in multi- variable systems. Int. J. Control, 1089, vol. 49, no. 6, pp. 2093–2191. 12. Marro G., Prattichizzo D., Zattoni E. Convolution profiles for right-inversion of multi- variable non-minimum phase discrete-time systems. Automatica, 2002, vol. 38, no. 10, pp. 1695–1703. 13. Pukhov G. E., Zhuk K. D. Synthesis of Interconnected Control Systems via Inverse Op- Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 41 erator Method. Kiev: Nauk. dumka, 1966 (in Russian). 14. Lee T., Adams G., Gaines W. Computer Process Control: Modeling and Optimizatio n. New York: Wiley, 1968. 15. Skurikhin V. I., Procenko N. M., Zhiteckii L. S. Multiple-connected systems of techno- logical processes control with table of objects. Proc. IFAC Third Multivariable Tech. Systems Symp., Manchester, U.K., 1974, pp. S 35-1 – S 35-4. 16. Katkovnik V. Ya., Pervozvansky A. A. Methods for the search of extremum and the synthesis problems of multivariable control systems. Adaptivnye Avtomaticheskie Sis- temy, Moscow: Sov. Radio, pp. 17–42, 1973 (in Russian). 17. Skogestad S., Morari M., Doyle J. Robust control of ill-conditioned plants: high purity distillation. IEEE Trans. Autom. Contr., 1988, vol. 33, no. 12, pp. 1092–1105. 18. Skurikhin V. I., Zhiteckii L. S., Solovchuk K. Yu. Control of interconnected plants with singular and ill-conditioned transfer matrices based on pseudo-inverse operator method. Upravlyayushchye sistemy i mashiny , 2013, no. 3, pp. 14−20, 29 (in Russian). 19. Zhiteckii L. S., Azarskov V. N., Solovchuk K. Yu., Sushchenko O. A. Discrete-time robust steady-state control of nonlinear multivariable systems: a unified approach. Proc. 19th IFAC World Congress , Cape Town, South Africa, 2014, pp. 8140–8145. 20. Skurikhin V. I., Gritsenko V. I., Zhiteckii L. S., Solovchuk K. Yu. Generalized inverse operator method in the problem of optimal controlling linear interconnected static plants. Dopovidi NAN Ukrainy, no. 8, pp. 57–66, 2014 (in Russian). 21. Albert A. Regression and the Moore-Penrose Pseudoinverse . New York: Academic Press, 1972. 22. Zhiteckii L. S., Skurikhin V. I. Adaptive Control Systems with Parametric and Non- parametric Uncertainties. Kiev: Nauk. dumka, 2010 (in Russian). 23. Lancaster P., Tismenetsky M. The Theory of Matrices: 2nd ed. With Applications . N.Y.: Academic Press, 1985. Received 17.02.2017 ЛИТЕРАТУРА 1. Davison E. The output control of linear time-invariant multivariable systems with un- measurable arbitrary disturbances. IEEE Trans. Autom. Contr., 1972, vol. AC-17, no. 5, pp. 621–631. 2. Liu C., Peng H. Inverse-dynamics based state and disturbance observers for linear time- invariant systems. ASME J. Dyn Syst., Meas. and Control , 2002, vol. 124, no. 5, pp. 376–381. 3. Lyubchyk L. M. Disturbance rejection in linear discrete Multivariable systems: inverse model approach. Prep. 18th IFAC World Congress, Milano, Italy, 2011, pp. 7921– 7926. 4. Skogestad S., Postlethwaite I. Multivariable Feedback Control . UK, Chichester: Wiley, 1996. 5. Freudenberg J. and Middleton R. Properties of single input, two output feedback sys- tems. Int. J. Control, 1999, vol. 72, no. 16, pp. 1446–1465. 6. Francis B., Wonham W. The internal model principle of control theory. Automatica, 1976, vol. 12, no. 5, pp. 457–465. 7. Brockett R. W. The invertibility of dynamic systems with application to control. Ph. D. Dissertation, Case Inst. of Technology, Cleveland, Ohio, 1963. 8. Sain M. K., Massey J. L. Invertibility of linear time-invariant dynamical systems. IEEE Trans. Autom. Contr.,1969, vol. AC-14, no. 2, pp. 141–149, Apr. 1969. 9. Silverman L. M. Inversion of multivariable linear systems. IEEE Trans. Autom. Contr., 1969, vol. AC-14, no. 3, pp. 270–276. 10. Lovass-Nagy V., Miller J. R., Powers L. D. On the application of matrix generalized inversion to the construction of inverse systems. Int. J. Control, 1976, vol. 24, no. 5, pp. 733–739. 11. Seraji H. Minimal inversion, command tracking and disturbance decoupling in multi- variable systems. Int. J. Control, 1089, vol. 49, no. 6, pp. 2093–2191. 12. Marro G., Prattichizzo D., Zattoni E. Convolution profiles for right-inversion of multi- L.S. Zhiteckii, K.Yu. Solovchuk ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 42 variable non-minimum phase discrete-time systems. Automatica, 2002, vol. 38, no. 10, pp. 1695–1703. 13. Pukhov G. E., Zhuk K. D. Synthesis of Interconnected Control Systems via Inverse Op- erator Method. Kiev: Nauk. dumka, 1966 (in Russian). 14. Lee T., Adams G., Gaines W. Computer Process Control: Modeling and Optimizatio n. New York: Wiley, 1968. 15. Skurikhin V. I., Procenko N. M., Zhiteckii L. S. Multiple-connected systems of techno- logical processes control with table of objects. Proc. IFAC Third Multivariable Tech. Systems Symp., Manchester, U.K., 1974, pp. S 35-1 – S 35-4. 16. Katkovnik V. Ya., Pervozvansky A. A. Methods for the search of extremum and the synthesis problems of multivariable control systems. Adaptivnye Avtomaticheskie Sis- temy, Moscow: Sov. Radio, pp. 17–42, 1973 (in Russian). 17. Skogestad S., Morari M., Doyle J. Robust control of ill-conditioned plants: high purity distillation. IEEE Trans. Autom. Contr., 1988, vol. 33, no. 12, pp. 1092–1105. 18. Skurikhin V. I., Zhiteckii L. S., Solovchuk K. Yu. Control of interconnected plants with singular and ill-conditioned transfer matrices based on pseudo-inverse operator method. Upravlyayushchye sistemy i mashiny , 2013, no. 3, pp. 14−20, 29 (in Russian). 19. Zhiteckii L. S., Azarskov V. N., Solovchuk K. Yu., Sushchenko O. A. Discrete-time robust steady-state control of nonlinear multivariable systems: a unified approach. Proc. 19th IFAC World Congress , Cape Town, South Africa, 2014, pp. 8140–8145. 20. Skurikhin V. I., Gritsenko V. I., Zhiteckii L. S., Solovchuk K. Yu. Generalized inverse operator method in the problem of optimal controlling linear interconnected static plants. Dopovidi NAN Ukrainy, no. 8, pp. 57–66, 2014 (in Russian). 21. Albert A. Regression and the Moore-Penrose Pseudoinverse . New York: Academic Press, 1972. 22. Zhiteckii L. S., Skurikhin V. I. Adaptive Control Systems with Parametric and Non- parametric Uncertainties. Kiev: Nauk. dumka, 2010 (in Russian). 23. Lancaster P., Tismenetsky M. The Theory of Matrices: 2nd ed. With Applications . N.Y.: Academic Press, 1985. Получено 17.02.2017 Л.С. Житецький, канд. техн. наук, в.о. зав. відд. інтелектуальних автоматичних систем e-mail: leonid_zhiteckii@i.ua К.Ю. Соловчук, аспірантка e-mail: solovchuk_ok@mail.ru Міжнародний научно-навчальний центр інформаційних технологій та систем НАН України і МОН України, пр. Академіка Глушкова, 40, м. Київ, 03187, Україна ДИСКРЕТНЕ КЕРУВАННЯ УСТАЛЕНИМИ СТАНАМИ БАГАТОЗВ’ЯЗНИХ СИСТЕМ НА ОСНОВІ КОНЦЕПЦІЇ ПСЕВДООБЕРНЕННЯ Розглянуто концепцію псевдообернення як деяку уніфіковану концепцію керування усталеними станами багатозв'язних систем за наявності невимірюваних обмежених збурень з повною і неповною інформацією про параметри лінійної номінальної моделі, по якій будується зворотний зв'язок. Припускається, що ранг матриці коефіцієнтів підсилення цієї моделі може бути довільним. Встановлено достатні умови граничної обмеженості всіх сигналів у замкнених системах керування, що реалізують запропоно- вану концепцію. Наведено результати моделювання. Ключові слова: дискретний час, зворотний зв'язок, псевдообернення, багатозв'язні системи, оптимальність, стійкість, невизначеність. Discrete-Time Steady-State Control of Interconnected Systems Based on ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2017. № 3 (189) 43 Л.С. Житецкий, канд. техн. наук, и.о. зав. отд. интеллектуальных автоматических систем e-mail: leonid_zhiteckii@i.ua К.Ю. Соловчук, аспирантка e-mail: solovchuk_ok@mail.ru Международный научно-учебный центр информационных технологий и систем НАН Украины и МОН Украины, пр. Академика Глушкова, 40, г. Киев, 03187, Украина ДИСКРЕТНОЕ УПРАВЛЕНИЕ УСТАНОВИВШИМИСЯ СОСТОЯНИЯМИ МНОГОСВЯЗНЫХ СИСТЕМ НА ОСНОВЕ КОНЦЕПЦИИ ПСЕВДООБРАЩЕНИЯ Рассмотрена концепция псевдообращения как некоторая унифицированная концепция управления установившимися состояниями многосвязных систем при наличии неизме- ряемых ограниченных возмущений с полной и неполной информацией о параметрах линейной номинальной модели, по которой строится обратная связь. Предполагается, что ранг матрицы коэффициентов усиления этой модели может быть произвольным. Установлены достаточные условия предельной ограниченности всех сигналов в за- мкнутых системах управления, реализующих предлагаемую концепцию. Приведены результаты моделирования. Ключевые слова: дискретное время, обратная связь, псевдообращение, многосвяз- ные системы, оптимальность, устойчивость, неопределенность.