Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.)

У доповіді розглянуто задачу класифікації ліївських симетрій у класах нелінійних диференціальних рівнянь з частинними похідними. Такі симетрії, зокрема, дозволяють відібрати фізично важливі рівняння з певного класу, а також побудувати їх точні розв'язки. Для багатьох класів рівнянь, що є важ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Ванєєва, О.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2017
Назва видання:Вісник НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/127095
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.) / О.О. Ванєєва // Вісник Національної академії наук України. — 2017. — № 9. — С. 33-40. — Бібліогр.: 24 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:У доповіді розглянуто задачу класифікації ліївських симетрій у класах нелінійних диференціальних рівнянь з частинними похідними. Такі симетрії, зокрема, дозволяють відібрати фізично важливі рівняння з певного класу, а також побудувати їх точні розв'язки. Для багатьох класів рівнянь, що є важливими для застосувань, класичні методи групового аналізу не дозволяють отримати вичерпну класифікацію симетрій. Такі задачі потребують нових підходів, більшість з яких ґрунтуються на використанні невироджених точкових перетворень. На прикладах групової класифікації узагальнених рівнянь Кавахари та квазілінійних рівнянь реакції—дифузії показано ефективність нещодавно розроблених методів, зокрема відшукання найбільш широких груп еквівалентності та відображень між класами.