Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula
Preliminary results of the analysis of the traveling planetary wave evolution in the ozone layer over the region of Antarctic Peninsula are presented. Total ozone data obtained at the Vernadsky station and TOMS satellite measurements are used. The main characteristics of the traveling waves, namely...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний антарктичний науковий центр МОН України
2004
|
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/128154 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula / A.V. Grytsai, Z.I. Grytsai, A.M. Evtushevsky, G.P. Milinevsky, N.A. Leonov // Український антарктичний журнал. — 2004. — № 2. — С. 105-110. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-128154 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1281542018-01-28T18:33:42Z Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula Grytsai, A.V. Grytsai, Z.I. Evtushevsky, A.M. Milinevsky, G.P. Leonov, N.A. Фізика атмосфери. Геохімія Preliminary results of the analysis of the traveling planetary wave evolution in the ozone layer over the region of Antarctic Peninsula are presented. Total ozone data obtained at the Vernadsky station and TOMS satellite measurements are used. The main characteristics of the traveling waves, namely the spectral distribution, period, amplitude and velocity were considered. At the station latitude of 65.25°S the amplitude of the traveling wave number 2 becomes equal or exceeds the stationary wave number 1 amplitude in individual cases only. In average for the period 1979-2003 the relationship of amplitudes of the wave numbers 1, 2, 3, 4 and 5 is 1, 0.56, 0.29, 0.19, and 0.15. The wave periods 6-8 and 10-12 days are dominant. Velocities of 8-10 m/s are obtained. Наводяться попередні результати аналізу еволюції біжучих планетарних хвиль над регіоном Антарктичного півострова. Використано дані вимірювань загального вмісту озону в атмосфері на станції Академік Вернадський та супутникових вимірювань TOMS. Розглянуто основні характеристики біжучих хвиль, зокрема, спектральний розподіл, періоди, амплітуда і швидкість. На широті станції 65.25°S амплітуда біжучих хвиль з хвильовим числом 2 буває близькою або перевищує амплітуду стаціонарної хвилі 1 лише в окремих випадках. Амплітуди хвильових чисел 1, 2, 3, 4 та 5 в середньому за період 1979-2003 рр. співідносяться як 1, 0.56, 0.29, 0.19 та 0.15. Переважають періоди хвиль 6-8 та 10-12 днів. Швидкості одержано в межах 8-10 м/с. 2004 Article Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula / A.V. Grytsai, Z.I. Grytsai, A.M. Evtushevsky, G.P. Milinevsky, N.A. Leonov // Український антарктичний журнал. — 2004. — № 2. — С. 105-110. — Бібліогр.: 9 назв. — англ. 1727-7485 http://dspace.nbuv.gov.ua/handle/123456789/128154 551.510.534 en Національний антарктичний науковий центр МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фізика атмосфери. Геохімія Фізика атмосфери. Геохімія |
spellingShingle |
Фізика атмосфери. Геохімія Фізика атмосфери. Геохімія Grytsai, A.V. Grytsai, Z.I. Evtushevsky, A.M. Milinevsky, G.P. Leonov, N.A. Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
description |
Preliminary results of the analysis of the traveling planetary wave evolution in the ozone layer over the region of Antarctic Peninsula are presented. Total ozone data obtained at the Vernadsky station and TOMS satellite measurements are used. The main characteristics of the traveling waves, namely the spectral distribution, period, amplitude and velocity were considered. At the station latitude of 65.25°S the amplitude of the traveling wave number 2 becomes equal or exceeds the stationary wave number 1 amplitude in individual cases only. In average for the period 1979-2003 the relationship of amplitudes of the wave numbers 1, 2, 3, 4 and 5 is 1, 0.56, 0.29, 0.19, and 0.15. The wave periods 6-8 and 10-12 days are dominant. Velocities of 8-10 m/s are obtained. |
format |
Article |
author |
Grytsai, A.V. Grytsai, Z.I. Evtushevsky, A.M. Milinevsky, G.P. Leonov, N.A. |
author_facet |
Grytsai, A.V. Grytsai, Z.I. Evtushevsky, A.M. Milinevsky, G.P. Leonov, N.A. |
author_sort |
Grytsai, A.V. |
title |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
title_short |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
title_full |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
title_fullStr |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
title_full_unstemmed |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula |
title_sort |
traveling planetary waves in ozone layer over antarctic peninsula |
publisher |
Національний антарктичний науковий центр МОН України |
publishDate |
2004 |
topic_facet |
Фізика атмосфери. Геохімія |
url |
http://dspace.nbuv.gov.ua/handle/123456789/128154 |
citation_txt |
Traveling Planetary Waves in Ozone Layer over Antarctic Peninsula / A.V. Grytsai, Z.I. Grytsai, A.M. Evtushevsky, G.P. Milinevsky, N.A. Leonov // Український антарктичний журнал. — 2004. — № 2. — С. 105-110. — Бібліогр.: 9 назв. — англ. |
work_keys_str_mv |
AT grytsaiav travelingplanetarywavesinozonelayeroverantarcticpeninsula AT grytsaizi travelingplanetarywavesinozonelayeroverantarcticpeninsula AT evtushevskyam travelingplanetarywavesinozonelayeroverantarcticpeninsula AT milinevskygp travelingplanetarywavesinozonelayeroverantarcticpeninsula AT leonovna travelingplanetarywavesinozonelayeroverantarcticpeninsula |
first_indexed |
2025-07-09T08:28:59Z |
last_indexed |
2025-07-09T08:28:59Z |
_version_ |
1837157309823844352 |
fulltext |
УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ
ЖУРНАЛ
УАЖ, № 2, 105-110, (2004)
105
UDC 551.510.534
TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
A.V. Grytsai1, Z.I. Grytsai1, A.M. Evtushevsky1, G.P. Milinevsky1,2, N.A. Leonov1,2
1 National Tarasa Shevchenka University, Kyiv, Prosp. Akad. Glushkova, 2/1, 03127
assen@univ.kiev.ua
2 Ukrainian Antarctic Center, Kyiv, Blvd. Tarasa Shevchenka, 16, 01601
science@uac.gov.ua
Abstract. Preliminary results of the analysis of the traveling planetary wave evolution in the ozone layer over the region of
Antarctic Peninsula are presented. Total ozone data obtained at the Vernadsky station and TOMS satellite measurements are
used. The main characteristics of the traveling waves, namely the spectral distribution, period, amplitude and velocity were
considered. At the station latitude of 65.25°S the amplitude of the traveling wave number 2 becomes equal or exceeds the
stationary wave number 1 amplitude in individual cases only. In average for the period 1979-2003 the relationship of
amplitudes of the wave numbers 1, 2, 3, 4 and 5 is 1, 0.56, 0.29, 0.19, and 0.15. The wave periods 6-8 and 10-12 days are
dominant. Velocities of 8-10 m/s are obtained.
Біжучі планетарні хвилі в озоновому шарі над Антарктичним півостровом. А.В. Грицай, З.І. Грицай,
О.М. Євтушевський, Г.П. Міліневський, М.А. Леонов
Реферат. Наводяться попередні результати аналізу еволюції біжучих планетарних хвиль над регіоном Антарктичного
півострова. Використано дані вимірювань загального вмісту озону в атмосфері на станції Академік Вернадський та
супутникових вимірювань TOMS. Розглянуто основні характеристики біжучих хвиль, зокрема, спектральний
розподіл, періоди, амплітуда і швидкість. На широті станції 65.25°S амплітуда біжучих хвиль з хвильовим числом 2
буває близькою або перевищує амплітуду стаціонарної хвилі 1 лише в окремих випадках. Амплітуди хвильових чисел
1, 2, 3, 4 та 5 в середньому за період 1979-2003 рр. співідносяться як 1, 0.56, 0.29, 0.19 та 0.15. Переважають періоди
хвиль 6-8 та 10-12 днів. Швидкості одержано в межах 8-10 м/с.
Key words: ozone layer, planetary wave, Vernadsky Station, TOMS
1. Introduction
Planetary waves (PW) in the atmosphere play important role in global scale processes such as
meridional stratospheric circulation or energy transport from the troposphere to the higher
atmospheric layers. If a horizontal plane to be considered, PW in atmospheric parameters both as
quasi-stationary wave distribution over the Earth surface and in form of the traveling waves can be
presented.
Traveling planetary waves (TW) with periods of several days to a few weeks are observed in
the atmosphere of the northern and southern hemisphere (Randel, 1993; Nathan et al., 1994; Roldugin
et al., 2000; Lawrence and Jarvis, 2001). One can see the wave motion in the ozone layer from the
sequence of the daily image of the TOMS global ozone distribution during the southern winter/spring
season on the TOMS web site (Earth Probe TOMS, 2004). The edge region of the stratospheric polar
vortex is especially reach in TW structures. Migrating waves interact with the stationary ones
changing their amplitude. If the wave amplitude increases essentially, PW can break and transfer
energy to the surrounding stratosphere. This process influences the stratospheric polar vortex stability
and becomes one of key factors in the vortex breakdown during Antarctic spring.
Along with other atmospheric parameters, the daily total ozone can be used as an indicator of
the wave activity in the stratosphere. For example, the Dynamic Activity Index (DAI) is derived from
the TOMS and GOME satellite ozone observations by the World Data Center for Remote Sensing of
the Atmosphere (Dynamic Activity, 2004). The DAI-W1 (DAI-W2) index is defined as the daily
hemispheric mean of the zonal amplitude of the planetary wave number 1 (2).
A.V. Grytsai et al.: TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
106
In this work we consider the TW activity in the region of Antarctic Peninsula using the ground-
based ozone data from the Vernadsky station (65°15′S, 64°16′W) and the TOMS satellite ozone data
for the latitudinal circle 65°30′S. Latitudinal location of the Antarctic Peninsula region corresponds to
the vortex-edge region in the stratosphere giving an advantage in studying the wave processes in the
ozone layer.
2. Passage of the traveling waves in the ozone layer over Antarctic Peninsula
To illustrate the process of the traveling wave development in the ozone layer, ozone data from
the Vernadsky and TOMS observations during October-December 1999 are presented in Fig. 1 and 2,
respectively. The total ozone wave oscillation of large amplitude is seen in Vernadsky data during
November – the first week of December (Fig. 1). Comparison with the TOMS satellite data for the
southern latitudes 30-90°S (Fig. 2) shows the origin of the quasi-sinusoidal change of the total ozone
over the station.
Akademik Vernadsky
October-December 1999
To
ta
l o
zo
ne
, D
U
400
350
300
250
200
150
100
1-Nov-99 1-Dec-99
a b c
d e
f
Fig. 1. Periodicity in the daily total ozone
change during November – early December 1999
observed with the Dobson spectrophotometer.
EP-TOMS daily total ozone distribution within the latitudinal band of 30-90°S
18 November а d 21 November
24 November b e 26 November
1 December c
f 4 December
Maximum total ozone over the station, which is
outside the ozone hole
Minimum total ozone over the station, which is inside
the ozone hole
Fig. 2. Alternation of the in- and out-of-hole position of the Vernadsky station (white circle) caused by
the traveling wave deformation of the ozone hole. Dates of the images correspond to the days of the maxima
(left, a-c) and minima (right, d-f) in the wave ozone oscillation in Fig. 1. The arrows connect the nearest in time
out- to in-hole positions of the station.
Wave disturbance of the ozone hole
boundary in the horizontal plane produces the
meridional displacement of the stratospheric
air masses. Ozone rich air from middle
latitude shifted to the pole within the wave
trough giving the maximum ozone level when
it appears over the station (labeled as a, b, c in
Fig. 1 in accordance with the images of Fig. 2,
a, b, c).
The low ozone air from the inner
region of the ozone hole moved towards
equator filling the wave ridge, which causes
the ozone minimum d, e, f (Fig. 1 and 2, with
the same labeling). Eastward zonal motion of
the wave ridge/trough (to the arrows in Fig. 2)
caused periodic passing over station the
stratospheric air with low/high total ozone.
A.V. Grytsai et al.: TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
107
Passage of the narrow ridge of the ozone hole over the station caused by the traveling wave
repeated three times. The average period of the a-f series of oscillations was 6.8 days. Regularity of
this event was unique for Vernadsky and such a quasi-sinusoidal oscillation with the average
amplitude of about 150 DU was observed only once.
Due to the displacement of the ozone hole from the pole-centered position towards the South
America (Fig. 2, e-f), the polar stratospheric air with more and more low ozone amount moved
forward over the station in the wave ridge. This process is seen as the ozone minimum levels decrease
measured at Vernadsky (marked by dashed line in Fig. 1). The very late break-up of the stratospheric
polar vortex was characteristic for the spring of 1999. A long interval of ozone depletion in the ozone
hole and the simultaneous accumulation of the mid-latitude ozone rich air outside the vortex caused
the large amplitude of the traveling waves in the ozone layer, which was registered at the station.
Finally, mixing of the mid-latitude and polar stratospheric air masses after the ozone hole
disintegration resulted in the settling of the total ozone level of about 300 DU since the later
December (Fig. 1).
This example demonstrates the local manifestation of the large-scale wave process in the
vortex-edge region of the southern stratosphere. The wave ridge and trough in Fig. 2 was formed by
the traveling planetary wave of the zonal wave number 2, but decentering of the hole relative to the
pole was caused by the stationary planetary wave of the wave number 1. Note, that the quasi-
stationary PW-1 distribution of the total ozone in the vortex-edge region has minimum in the
longitudinal sector of 0-60°W (by our analysis presented in the separate publication; see also (Wirth,
1993)). Owing to these circumstances interaction between PW-1 and TW-2, specifically their phases
coincidence, results in the elongation of the ozone hole and wave ridges stretching mostly over the
region close to Antarctic Peninsula.
3. Zonal wave number structure of the traveling planetary waves at 65°S
Analysis of the event of November 1999 (Fig. 1 and 2) reveals two main components of PW in
the ozone layer, namely the wave number 1 and 2. In this section the preliminary results of the
spectral analysis of the TOMS data for zonal wave numbers 1-5 are presented.
In Fig. 3 the three longitudinal profiles of the total ozone along the 65.5°S latitude circle from
the TOMS daily global distribution are shown. The days were selected, which inherent in the
stationary planetary wave structure of the zonal wave number 1 (Fig. 3, a), and superposition of the
stationary and traveling wave: PW-1 and TW-2 (Fig. 3, b), and PW-1 and TW-3 (Fig. 3, c). Decrease
of the TW amplitude with increase of the wave number is seen.
The change of the daily PW 1-5 amplitude during August-December is shown in Fig. 4. The
years of the pre-ozone-hole (1979), intermediate (1988) and recent period (2003) are presented. Each
amplitude value was calculated relative to the daily average total ozone along the 65.5°S circle.
-180 -120 -60 0 60 120 180
Eastern longitude, degr.
100
200
300
400
500
To
ta
l o
zo
ne
, D
U
6.10.03
a
-180 -120 -60 0 60 120 180
Eastern longitude, degr.
100
200
300
To
tal
oz
on
e,
DU
19.09.03
b
-180 -120 -60 0 60 120 180
Eastern longitude, degr.
100
200
300
To
tal
o
zo
ne
, D
U
2.09.03
c
Fig. 3. Zonal structure of the stationary planetary wave of the wave number 1 (a) and its superposition
with the traveling PW of the wave number 2 (b) and wave number 3 (c) by the TOMS ozone data for 65.5°S.
A.V. Grytsai et al.: TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
108
Time intervals when the amplitude of the wave number 2 equals or exceeds the wave number 1
amplitude occur occasionally. Month-to-month change of PW-1 and TW-2 amplitudes exhibits the
maximum activity of the waves during September-November.
The interannual variations of the 5-month average amplitude of the wave number 1-5 are
shown in Fig. 5. The tendency of the amplitude increase during 1979-2003 is seen for all wave
numbers, obviously, as an effect of increasing contrast of the total ozone at the polar and equatorial
sides of the polar vortex. Latitudinal difference in the total ozone long-term trend can cause this
process, which will be the subject of other study.
19
79
19
88
R
el
at
iv
e
am
pl
itu
de
20
03
August September October November December
Fig. 4. Daily amplitude change of the planetary wave numbers 1 to 5 during August-December of 1979,
1988, and 2003. The relative amplitudes range on the vertical axes is the same for each of the years. Decreasing
line thickness marks increasing wave numbers.
For the 1979-2003 period the relationship of amplitudes of the wave numbers 1, 2, 3, 4 and 5 is
on average 1, 0.56, 0.29, 0.19, and 0.15.
Fig. 5. Interannual change of the planetary
wave 1-5 relative amplitude averaged for
August-December.
4. Traveling wave periods
Traveling wave event of 1999 (Fig. 1) has the period of about 7 days. Spectral analysis for the
selected years was made using ozone data from the Vernadsky station (Fig. 6). Variable structure of
periodicity is seen.
A.V. Grytsai et al.: TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
109
In general, the lower values of period are 6-8 days, the middle ones are 10-12 days, and the
periods more than 16 days exist also. The periods shorter than 5 days (dashed line in Fig. 6) are
practically absent in this data set. It is appropriate to note, that the ground-based measurements during
1986-1990 from the four stations at the northern latitudes ∼50°N and 70°N shows the mean wave
periods in the total ozone equal to 12-16 and 12-21 days, respectively (Roldugin et al., 2000). These
results do not give even the periods of 5-10 days in the ozone variations. It is possible, that the
periodicity of the individual ozone data values (not more frequently, than one value per day) imposes
the limitation on the short periods revealing.
Estimation of the traveling wave velocity at 65°S gives the values of 8-10 m/s, which are
consistent with the values of up to 13 m/s obtained by Roldugin et al. (2000). Note, that the zonal flow
velocity in the stratosphere over the southern sub-polar latitudes is tens m/s and reaches in excess of
85 m/s (Harvey et al., 2002; WMO, 2003).
1979-1980
1988-1989
2002-2003
References
Dynamic Activity and Ozone Variability Indices from EP/TOMS. Dynamic Activity Index //
http://wdc.dlr.de/data_products/index.html. – 2004.
Fig. 6. Results of the wavelet transform of the
total ozone data sets from Vernadsky. The time interval
from July to May (X-axis) was analyzed. Dashed lines
mark the 5-day period, which bounds the lower level of
periodicity in ozone over Vernadsky.
5. Conclusion
Total ozone data from the Vernadsky station
and TOMS satellite measurements have been
analyzed to reveal the basic characteristics of the
traveling planetary waves in the southern sub-polar
stratosphere. Preliminary results on the wave
number structure, relative amplitude, periods and
velocities of traveling waves near 65°S are
presented.
The region of Antarctic Peninsula is located
close to the longitudinal ozone minimum in the
stationary wave number 1 distribution. Phase
coincidence of stationary and traveling waves gives
steady appearance of the low ozone wave ridges
stretched towards equator just in this range of the
longitudes. So the quantifying of the traveling wave
activity and long-term tendencies is important for
this region.
Our further analysis will be concerned with
month-to-month, interannual and long-term change
of the traveling wave periodicity and wave number
1-5 structure during the last decades. It is interesting
to consider the TW evolution with regard to pre-
and post-ozone-hole conditions in the
stratosphere/troposphere.
This work was partly supported by grants
FFD F7/362-2001, MON A/2-2004, and UAC
H/8-2004.
A.V. Grytsai et al.: TRAVELING PLANETARY WAVES IN OZONE LAYER OVER ANTARCTIC PENINSULA
110
Earth Probe TOMS ozone data and images. – http://toms.gsfc.nasa.gov/ftpdata.html. – 2004.
Harvey V.L., Pierce R.B., Fairlie T.D., Hitchmann M.H. A climatology of stratospheric polar
vortices and anticyclones // J. Geophys. Res. – 2002. – Vol. 107, No. D20, 4442, doi:
10.1029/2001JD001471.
Lawrence A.R., Jarvis M.J. Initial comparisons of planetary waves in the stratosphere,
mesosphere and ionosphere over Antarctica // Geophys. Res. Let. – 2001. – Vol. 28, No. 2. – P. 203-
206.
Nathan T.R., Cordero E.C., Li L. Ozone heating and the destabilization of traveling waves
during summer // Geophys. Res. Lett. – 1994. – Vol. 21, No. 14. – P. 1531-1534.
Randel W.J. Global normal-mode Rossby waves observed in stratospheric ozone data // J.
Atm. Sci. – 1993. – Vol. 50, No. 3. – P. 406-420.
Roldugin V.C., Nikulin G.N., Henriksen K. Wave-like ozone movements // Phys. Chem.
Earth. – 2000. – Vol. 25, No 5-6. – P. 511-514.
Weber M., Dhomse S., Wittrock F., et al. Dynamical control of NH and SH winter/spring total
ozone from GOME observations in 1995-2002 // Geophys. Res. Lett. – 2003. – Vol. 30, No. 11. –
doi:10.1029/2002GL016799.
WMO (World Meteorological Organization). Scientific assessment of ozone depletion: 2002. –
Report 47. – Geneva, 2003.
|