Complex conductance of ultrathin La₂₋xSrxCuO₄ films and heterostructures

We used atomic-layer molecular beam epitaxy to synthesize bilayers of a cuprate metal (La₁.₅₅Sr₀.₄₅CuO₄) and a cuprate insulator (La₂CuO₄), in which each layer is just one unit cells thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, σ(ω), of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Gasparov, V.A., Božović, I.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/128284
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Complex conductance of ultrathin La₂₋xSrxCuO₄ films and heterostructures / V.A. Gasparov, I. Božović // Физика низких температур. — 2015. — Т. 41, № 12. — С. 1237–1242. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We used atomic-layer molecular beam epitaxy to synthesize bilayers of a cuprate metal (La₁.₅₅Sr₀.₄₅CuO₄) and a cuprate insulator (La₂CuO₄), in which each layer is just one unit cells thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, σ(ω), of these films. Experiments have been carried out at frequencies between 2–50 MHz using the single-spiral coil technique. We found that: (i) the inductive response starts at ∆T = 3 K lower temperatures than Re σ(T), which in turn is characterized by a peak close to the transition, (ii) this shift is almost constant with magnetic field up to 14 mT; (iii) ∆T increases sharply up to 4 K at larger fields and becomes constant up to 8 T; (iv) the vortex diffusion constant D(T) is not linear with T at low temperatures as in the case of free vortices, but is rather exponential due to pinning of vortex cores, and (v) the dynamic Berezinski–Kosterlitz–Thouless (BKT) transition temperature occurs at the point where Y = (lω/ξ₊)² = 1. Our experimental results can be described well by the extended dynamic theory of the BKT transition and dynamics of bound vortex–antivortex pairs with short separation lengths.