Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures

The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Tarasov, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/128486
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures / A.N. Tarasov // Физика низких температур. — 2016. — Т. 42, № 3. — С. 222–229. — Бібліогр.: 53 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-128486
record_format dspace
spelling irk-123456789-1284862018-01-11T03:02:59Z Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures Tarasov, A.N. Квантовые жидкости и квантовые кpисталлы The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme interaction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near T = 0 and in the vicinity of phase transition temperature Tc₀(n) for dense neutron matter from normal to superfluid state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations of the Skyrme forces (with additional terms dependent on density n) and figures are plotted on the interval 0.1n₀ < n <2.0n₀, where n₀ = 0.17 fm⁻³ is nuclear density. 2016 Article Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures / A.N. Tarasov // Физика низких температур. — 2016. — Т. 42, № 3. — С. 222–229. — Бібліогр.: 53 назв. — англ. 0132-6414 PACS: 21.65.Cd, 26.60.Dd, 67.10.Fj, 67.30.H– http://dspace.nbuv.gov.ua/handle/123456789/128486 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Квантовые жидкости и квантовые кpисталлы
Квантовые жидкости и квантовые кpисталлы
spellingShingle Квантовые жидкости и квантовые кpисталлы
Квантовые жидкости и квантовые кpисталлы
Tarasov, A.N.
Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
Физика низких температур
description The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme interaction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near T = 0 and in the vicinity of phase transition temperature Tc₀(n) for dense neutron matter from normal to superfluid state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations of the Skyrme forces (with additional terms dependent on density n) and figures are plotted on the interval 0.1n₀ < n <2.0n₀, where n₀ = 0.17 fm⁻³ is nuclear density.
format Article
author Tarasov, A.N.
author_facet Tarasov, A.N.
author_sort Tarasov, A.N.
title Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
title_short Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
title_full Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
title_fullStr Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
title_full_unstemmed Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
title_sort analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2016
topic_facet Квантовые жидкости и квантовые кpисталлы
url http://dspace.nbuv.gov.ua/handle/123456789/128486
citation_txt Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures / A.N. Tarasov // Физика низких температур. — 2016. — Т. 42, № 3. — С. 222–229. — Бібліогр.: 53 назв. — англ.
series Физика низких температур
work_keys_str_mv AT tarasovan analyticalsolutionsofequationfortheorderparameterofdensesuperfluidneutronmatterwithanisotropicspintripletpwavepairingatfinitetemperatures
first_indexed 2025-07-09T09:10:30Z
last_indexed 2025-07-09T09:10:30Z
_version_ 1837159924054884352
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3, pp. 222–229 Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures A.N. Tarasov Akhiezer Institute for Theoretical Physics, National Science Center “Kharkov Institute of Physics and Technology” Kharkov 61108, Ukraine E-mail: antarasov@kipt.kharkov.ua Received November 4, 2015, published online January 26, 2016 The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme in- teraction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near T = 0 and in the vicinity of phase transition temperature Tc0(n) for dense neutron matter from normal to superflu- id state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations of the Skyrme forces (with additional terms dependent on density n) and figures are plotted on the interval 0.1n0 < n <2.0n0, where n0 = 0.17 fm–3 is nuclear density. PACS: 21.65.Cd Asymmetric matter, neutron matter; 26.60.Dd Neutron star core; 67.10.Fj Quantum statistical theory; 67.30.H– Superfluid phase of 3He . Keywords: superfluid Fermi liquid, spin-triplet pairing, dense neutron matter, generalized Skyrme forces, order parameter. 1. Introduction This article is a continuation of our works [1,2] devoted to theoretical study of phase transitions in dense neutron matter with generalized Skyrme forces [3,4] and aniso- tropic spin-triplet p-wave pairing of the 3He–A type [5,6] in strong magnetic field (see also [7]). Here we shall study the same dense superfluid neutron matter (SNM) in the limit of zero magnetic field ( = 0H ) and analytical so- lutions will be found at finite temperatures of the single equation for the order parameter (OP) which is a conse- quence (at = 0H ) from the set of equations (see (9) in [2]) for the components of OP (at 0H ≠ ) of dense SNM. Note that this study may be interesting in connection with investigation of thermodynamic properties of dense superfluid outer cores in a majority of ordinary isolated neu- tron stars (non-accreting pulsars) which magnetic fields are much less in comparison with extremely strong fields of mag- netars (see, e.g., [8–14] and also [15] and references therein). Moreover, recent discovery with the aid of the NASA’s Chandra X-Ray Observatory of unusually fast cooling of supernova remnant in Cassiopeia A (Cas A), which is the youngest known neutron star (NS) in the Milky Way Ga- laxy, has attracted great attention (see, e.g., [16–30] and references therein). Several authors [18–23] explain such rapid cooling of NS in Cas A during last years (since Au- gust 1999, when Chandra found point x-ray source in the Cas A, up to 2014) due to the existence of spin-triplet superfluidity of neutrons inside high-density liquid outer core of this NS. But alternative explanations for the ob- served rapid cooling of Cas A have also been proposed (see, e.g., [24–29] and the discussion of [24] in [20,21]). This NS in Cas A is the first one whose cooling has been ob- served in the real time. Note also that there is, to date, no © A.N. Tarasov, 2016 Analytical solutions of equation for the order parameter of dense superfluid neutron matter evidence for the presence of a significant magnetic field in the Cas A neutron star [20,21]. This discovery has revived interest in the problem of the correct theoretical description of neutron spin-triplet superfluidity in cores of NSs and, in particular, in dense neutron matter within different alternative theoretical me- thods (see, e.g., [30–33] and reviews [21,34–37], refer- ences therein and also the discussion at the end of [23]). In the present work we follow the so-called generaliz- ed Fermi-liquid approach (see, e.g., review [38] and also [39–41] and references therein) which has been already used in [42] and [1,2] to describe dense SNM with aniso- tropic spin-triplet p-wave pairing in steady and homogene- ous strong magnetic field. Previously in [42] we applied conventional Skyrme forces (see, e.g., [43,44]) with only one term dependent on density n and then in [1,2] we used generalized BSk18 [3] and BSk20, BSk21 [4] Skyrme forces (with additional density dependent terms which bet- ter take into account effects of three-body forces and other properties of nuclear matter important at high densities) as interaction in SNM at sub- ( 0<n n ) and supra-saturation 0( >n n ) densities (where 3 0 = 0.17 fmn − is nuclear density). Here we apply generalized BSk21 and BSk24 Skyrme forces [47,48] which lead to sufficiently stiff equations of state of dense pure neutron matter (NM) and are consistent (see [45–47] for details) with the recently measured values Sun(1.97 0.04)M± and Sun(2.01 0.04)M± for the masses of the heaviest yet observed pulsars PSR J1614–2230 [49] and PSR J0348–0432 [50]. Note that selected here BSk21 and BSk24 are most likely the best parametrizations among other generalized parametrizations of the Skyrme forces (see Conclusions in [47]) which are sufficiently ac- curate in calculation of neutron effective mass (which is strongly density dependent). It is particularly important because the magnitude of the energy gap in SNM (in the energy spectrum of neutrons in SNM) is very sensitive not only to the strength of attractive forces but also to the ef- fective mass of a neutron (see, e.g., review [34] and refer- ences therein). We write down below the equation for the OP which in the limit of zero magnetic field is a particular case of the set of equations for the components 0↓ ↑∆ ≠ ∆ ≠ (at 0;H ≠ see Eqs. (9) from [2]). Then we shall solve this single equation (valid for arbitrary parametrization of the Skyrme forces) by analytical methods in two limiting cases: for low temperatures near = 0T and in the vicinity of phase tran- sition (PT) temperature 0 ( )cT n for dense neutron matter from normal to superfluid state (with anisotropic spin-trip- let p-wave pairing of the 3He–A type). These solutions are specified then for generalized BSk21 and BSk24 paramet- rizations of the Skyrme forces and figures for the PT tem- peratures and energy gap in SNM are plotted on the inter- val 0 00.1 < < 2.0n n n . In conclusion we shall briefly dis- cuss our main results. 2. General equation for the OP for SNM with generalized Skyrme forces between neutrons and anisotropic spin-triplet pairing in zero magnetic field It is evident that in the absence of magnetic field ( = 0H ) the effective magnetic field in SNM equals to ze- ro, = 0ξ (see notations in [2]). In this case the components of the OP ( ) ( , = 0)T↑ ↓∆ ξ for SNM with spin-triplet aniso- tropic p-wave pairing of the 3He–A type coincide to each other: ( , = 0) = ( , = 0) = ( ).T T T↑ ↓∆ ξ ∆ ξ ∆ For brevity, here and below we shall not write down densi- ty n explicitly as the second argument of the function ( ).T∆ It is obvious now that the set of two equations (see (9) from [2]) for the components of the OP is reduced to the following equation for determination of ( )T∆ : 3 2 3( ) = ( ) ( ). 8 c T T J T∆ −∆ π  (1) Here 2 3 2 ( ) / < 0c t n′≡  is coupling constant leading to spin-triplet p-wave pairing of neutrons, which is expressed through the generalized parameters dependent on density: 2 2 2 5 5( ) = (1 ) (1 )t n t x t x nγ′ + + + (2) (see (5) and details from [2] and also [3,4]) of the Skyrme interaction. Double integral ( )J T is defined as follows: 1max 2 4 2 2 0min tanh( ( , ; ) / 2 )( ) = (1 ) . ( , ; ) p p E q x T TJ T dqq dx x E q x T −∫ ∫ (3) Here max = 1Fp p a+ , min = 1Fp p a− with cutoff pa- rameter 0 < < 1a , where = / ( )c Fa E nε ; cE is the cutoff energy, 2( ) = /2F Fn p m∗ε and Fp are the Fermi energy and momentum; m∗ is the neutron effective mass dependent on density n of NM and on the generalized Skyrme para- meters 1( )t n′ and 2 ( )t n′ according to general formula (10) from [2] (see also (29) and (30) here below). The function 2( , ; )E q x T is the energy of quasiparticles (neutrons) in SNM with anisotropic spin-triplet pairing of the 3He–A type and it has the form 2 2 2 2 2( , ; ) = ( )(1 ) ( ),E q x T q T x z q∆ − + (4) where 2( , ) / 2 ( ) ( ) ( ) ( )Fz q T q m T q n z q∗= −µ ≈ ε − ε = ( ( )Tµ is the chemical potential which is substituted ap- proximately by the Fermi energy at low temperatures in SNM, 00 ( ) ( )c FT T n n< < ε ). It will be more convenient to use another integral j which is related with ( )J T by the following formula: 3( ) ( , ( ); ).FJ T m p j T T a∗≡ δ (5) Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 223 A.N. Tarasov Then Eq. (1) for the function ( )T∆ with account of (5) gets the following final form: 3 31 = ( ) ( , ( ); ), 8 nc m n j T T a∗− δ (6) where 2 F 2( ) = 1. ( )2 ( ) F F T p Tm T∗  ε ε δ ≡ >> ∆∆   (7) Note that the function ( ) ( , )F Fp T G T n∆ ≡ is the maxi- mal value of the anisotropic energy gap in the energy spec- trum (4) of neutrons in SNM. In the next sections we shall solve this basic nonlinear integral Eq. (6) for determina- tion of reduced energy gap ( , ) ( , ) / ( )F Fg T n G T n n≡ ε = 1/ ( , )T n= δ by analytical methods in two limiting cases: near = 0T and close to the PT temperature 0cT without specifying of the parametrization of the generalized Skyrme forces. Then we shall select parametrization of the Skyrme forces in order to plot figures for obtained solutions. 3. Solution of equation for the OP for SNM near T = 0 Here we shall consider SNM at low temperatures, when 00 < ( ) ( )c FT T n n<< << ε . In this case integral ( , ( ); )j T T aδ in (6) can be approximated as the difference: 0 1( , ( ); ) ( ( ); ) 2 ( , ( ); ),j T T a j T a j T T aδ ≈ δ − δ (8) where integrals 0 ( ( ); )j T aδ and 1( , ( ); )j T T aδ have the following explicit form: 1 2 0 2 2 0 1( ( ); ) ( ) (1 ) , ( , ( )) a a xj T a T dy y dx b y T x− − δ ≡ δ + δ − ∫ ∫ (9) 1 2 1 0 ( , ( ); ) ( ) (1 ) (1 ) a a j T T a T dy y dx x − δ ≡ δ + − ×∫ ∫ 2 2 2 2 exp ( , , ( )) ( , ( )) . ( , ( )) A y T T b y T x b y T x  − δ δ −  × δ − (10) Here functions ( , ( ))b y Tδ and ( , , ( ))A y T Tδ are defined as follows: 2 2 ( , ( )) 1 ( ), 1 yb y T T y δ ≡ + δ + (11) 11( , , ( ) 1. ( ) ( ) F yyA y T T T T T +ε + δ ≡ ≡ >> δ η (12) As a result of analytical calculations we have obtained expressions for the integrals 0j and 1j . Namely, for the 0j the following exact formula is valid: 2 0 1( ; ) = 1 arcsin 2 2 3 ( , ) a a aj a b a     δ δ + − δ +     δ    2 211 arcsin ( 1 1 ) 2 3 ( , ) 6 a a a a a b a     δ + − − δ + + + − +     − δ     1 5 5(11 ) 1 (11 ) 1 22 9 4 4 a a a a + + + + − − − +   5 (2 1 1 ) 12 a a+ − + − − + δ 2 2 1 7 5 11 1 3 24 496 ln 1 11 1 1 4 4   − + + − δ  δδ  + ×  − − − δ δ   1 11 1 1 1 1 1 2 4 2 4 1 11 1 1 1 1 1 2 4 2 4 a aa a a aa a     + − + − − − − −     δ δ    × +     + + + − − + − −    δ δ    1 3 5 1 1arctan arctan . 4 24 a a a a     + − + − −         δδ δ δ        (13) The integral 1j is closely approximated by the following formula which is valid at 00 < c FT T<< << ε : 1( , ( ); )j T T aδ ≈ 2 2 2 2 1 2 6 1( ) (1 )exp ( ) a a cT dy y Ac c c A A AA A−    δ + − + + + + ≈         ∫ 4 2 88 ( )[1 8 ( )] ( ),T T O≈ η + η + η (14) where 2 | | ( ) ( , ( )) ( , ( )) 1 = 0. 1 y T c y T b y T y δ δ ≡ δ − ≥ + (15) Thus, with account (8) and (14) we can write down now general Eq. (6) in the following approximate form valid at low temperatures, c00 < FT T<< << ε : 4 20 3 0 3 1 ( ) ( ) ( ( ); ) 16 ( )(1 8 ( )) . 8 n c y ym y j T a T T∗  ≈ − δ − η + η  (16) Here we have introduced reduced density 0/y n n≡ of SNM (where 3 0 = 0.17 fmn − is nuclear density, which plays role of the density scale factor). Function 0 ( ( ); )j T aδ (see (13)) determines the solution of Eq. (16) in the limit of zero temperature (at = 0H ) for the required reduced ener- gy gap ( , ; ) 1g T y a << (see after (7)). Thus, because (0) = 0η (see definition (12)), we obtain at = 0T from (16) the following expression for (0, ; ) (0, ; ) / ( )F Fg y a G y a y≡ ε (see also [42]): ( ) 3 0 2(0, ; ) = exp ( ) , ( ) ( ) sg y a M a c y n ym y∗   +     (17) 224 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 Analytical solutions of equation for the order parameter of dense superfluid neutron matter where 3( ) < 0c y (see note after (1) and also (2) for general- ized parametrizations of the Skyrme forces in SNM). Func- tion ( ) ( )sM a which depends only on the cutoff parameter = / ( ) < 1c Fa E yε is determined by the formula ( ) 11 4 4( ) 2 ln 2 1 1 6 3 3 s a aM a a a+ − ≡ − + + + − + 1 ( 1 1)(1 1 )ln . 2 ( 1 1)(1 1 ) a a a a  + − − − +   + + + −  (18) In view of Eq. (17), we get from (16) the transcendental equation for the function ( , ; ) 1g T y a << (at 00 < cT T<< ): ( ) 3 0 2( , ; ) = exp ( ) ( ) ( ) sg T y a M a c y n ym y∗  + −  4 2 4 216 1 8 , ( , ; ) ( , ; )g T y a g T y a  τ τ − +     (19) where / ( ) 1FT yτ ≡ ε << . Owing to the smallness of the temperature correction we get from (19) the following so- lution in the main approximation on the small T : 4 ( , ; ) (0, ; ) 1 16 ( , ; )F Tg T y a g y a G T y a   ≈ − ×     2 1 8 ( , ; )F T G T y a     × +        4 2 (0, ; ) 1 16 1 8 . (0, ; ) (0, ; )F F T Tg y a G y a G y a        − +             (20) Note that obtained here in (20) leading power-law of tem- perature dependence 4~ T for the energy gap in SNM (with anisotropic spin-triplet p-wave pairing) near = 0T is in qualitative accordance with the similar result obtained earlier for the superfluid 3 He–A (see, e.g., review [51]) but it is quite different from the exponential temperature de- pendence of the isotropic energy gap near = 0T in tradi- tional superconductors with spin-singlet s-pairing [52,53]. 4. Solution of equation for the OP for SNM near Tc0 Let us consider SNM in the region of temperatures close to 0cT , when 0 0| |c cT T T− << . But at the beginning we shall study the limiting case, 0cT T→ . It can be shown that the Eq. (6) in this limit is reduced to the following transcendental equation: 0 3 0 ( ) 2 1 ( ) ln 2 c c n ym y E c y T ∗   γ ≈ − +  π   2 4 3 3 , 16 ( ) 512 ( ) c c F F E E y y     + +   ε ε      (21) where = e 1.781072418Cγ ≈ ( = 0.5772156649...C is Eu- ler’s constant). Here in [...] we neglected by small terms 2 0( / )c FO T ε . We get from (21) the following approximate solution for the PT temperature 0 ( ; )c cT y E of SNM: 0 3 0 2 2( ; ) exp ( ) ( ) c c cT y E E c y n ym y∗ γ ≈ + π  2 4 3 3 . 16 ( ) 512 ( ) c c F F E E y y     + +   ε ε      (22) Note that pre-exponential numerical factor here, 2 / 1.134γ π ≈ , is somewhat more refined in comparison with analogous expressions [1,2] for PT temperature of SNM. Now we define reduced PT temperature 0 ( ; )ct y a of SNM: 0 0 ( ; ) ( ; ) 1 ( ) c c F T y a t y a y ≡ << ε and then using obtained expression (17) for the reduced energy gap (0, ; )g y a we find as a result the following ratio for these functions: c0 (0, ; ) 5 5exp = exp . ( ; ) 2 6 2 6 g y a C t y a π π   ≈ −   γ     (23) This ratio is “universal” because it does not depend neither on the cutoff parameter < 1a nor on the nature of inter- action in the Fermi superfluid with anisotropic spin-triplet p-wave pairing (in particular (23) is valid for arbitrary parametrizations of the Skyrme forces in SNM) and it ex- actly coincides with analogous ratio for the superfluid 3 He–A phase (see, e.g., [5]). The ratio (23) depends only on the symmetry of the OP of superfluid system. Now in order to solve Eq. (6) for SNM at temperatures 0 0| ( ) | ( )c cT T n T n− << we rewrite it as follows: 1 20 0 3ln = ( ) (1 ) (1 ) 4 a c a T T dy y dx x T −   δ + − ×    ∫ ∫ 2 2F 2 2 ( )1 tanh tanh ( , ( )) 2 2 , ( ) ( , ( )) A yy y b y T x T T y b y T x  ε    + δ −        × −  δ δ −   (24) where we have used (21) and neglected by the small terms 2 0( / )c FO T ε . Functions ( , , ( ))A y T Tδ , 2 ( , ( ))b y Tδ and ( ) 1Tδ >> are defined by formulas (12), (11) and (7), re- spectively. From (24) we obtain in the main approximation on small parameter 21/ ( ) ( ) 1T g Tδ ≡ << the following approximate equation: Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 225 A.N. Tarasov 5/2 5/2 0 0 1 (1 ) (1 )ln 5 ( ) a cT y ydy T T y − + +  ≈ − ×  δ  ∫ tanh . 2 Fd y y Tdy  ε  ×       (25) Let us use the following expansion into a series [52,53]: 2 2 2 =0 1tanh = 4 . 2 [ (2 1) ]n x x n x ∞      π + + ∑ (26) Substituting this in Eq. (25) we obtain as a result of calcu- lations the final approximate equation (see also note after (7)) valid at 0 0| ( ) | ( )c cT T n T n− << : 2 2 0 2 2 ( ) ( , )1 7 (3) 7 (3)ln = ( ) 10 10 c F FT n G T n T T T T ε ζ ζ     ≈      δ      π π (27) ( ( )xζ is the Riemann zeta function). It is obvious from (27) that the energy gap has the form 2 0 ( )10( , ) ln , 7 (3) c F T n G T n T T π  ≈  ζ   (28) where 210 / [7 (3)] 3.4248π ζ ≈ . It is in accordance with analogous result [5] for 3 He–A but at the same time (28) is more accurate than in [5], where 0ln ( / )cT T T is approx- imated by 0 01 /c cT T T− (note here that such temperature dependence of the energy gap in the vicinity of 0cT is con- sistent with Landau’s theory of second-order phase transi- tions; see, e.g., Appendix II in [52]). Moreover, for SNM (with spin-triplet anisotropic p-wave pairing and with gen- eralized parametrizations of the Skyrme forces) density profile of PT temperature c0 ( )T n is essentially different than in 3 He–A and it will be evident in the next section. 5. Solutions of equation for the OP for SNM with generalized Skyrme forces near T = 0 and close to Tc0 and their density and temperature profiles Formulas (17), (19), (20), (22), (28) contain the effec- tive mass of neutron nm∗, which depends on the density 0n yn≡ of NM as in [2]: 0 1 22= 1 [ ( ) 3 ( )], 4n mynm t n t n m∗ ′ ′+ +  (29) where 2( ) / 2 938.91897 MeV / cp nm m m≈ + ≈ is mean value of free nucleon mass. Generalized parameters 1 1 1 4 4( ) = (1 ) (1 ) ,t n t x t x nβ′ − + − (30) and 2 ( )t n′ (see (2)) have specific numerical values for each Skyrme parametrization. For NM with the best BSk21 and BSk24 generalized parametrizations [4,47] of the Skyrme forces we have from (29) that , 21( )n BSkm y∗ ≈ 1/12 , 1 (3.97930 0.0422618 3.89571) m y y y ≈ + + − (31) , 24 ( )n BSkm y∗ ≈ 1/12 , 1 (3.97930 0.0422618 3.89025) m y y y ≈ + + − (32) and the Fermi energies of NM for the BSk21 and BSk24 Skyrme forces have the following forms (which are close to each other because the parameters of the two forces are very similar; see Fig. 1): 2/3 1/12 , 21( ) [1 (3.97930F BSk y y y yε ≈ + + 0.0422618 3.89571)]·60.902 (MeV),y+ − (33) 2/3 1/12 , 24 ( ) [1 (3.97930F BSk y y y yε ≈ + + 0.0422618 3.89025)]·60.902 (MeV).y+ − (34) In zero magnetic field = 0H from general formula (22) (see also (29)–(34) and (2)) it follows as the particular re- sults the expressions for PT temperatures of dense NM (with BSk21 and BSk24 Skyrme parametrizations) to SNM with anisotropic spin-triplet pairing of 3He–A type: 0, 21( ; )c BSk cT E y ≈ 2 4 , 21 , 21 2 3 3exp 16 ( ) 512 ( ) c c c F BSk F BSk E E E y y     γ  ≈ + ×       π ε ε     1/12 1/12 1 (3.97930 0.0422618 3.89571) exp , (2.65286 2.85028) y y y y y  + + − ×   −   (35) Fig. 1. Fermi energies for SNM (see (33) and (34)) with BSk21 (line) and BSk24 (points) Skyrme forces as the functions of re- duced density 0= /y n n are close to each other. 160 140 120 100 80 60 40 20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ε F , M eV y 226 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 Analytical solutions of equation for the order parameter of dense superfluid neutron matter 2 0, 24 , 24 2 3( ; ) exp 16 ( ) c c BSk c c F BSk E T E y E y   γ ≈ +   π ε   4 , 24 3 512 ( ) c F BSk E y   + ×   ε   1/12 1/12 1 (3.97930 0.0422618 3.89025) exp (2.65286 2.84870) y y y y y  + + − ×   −   (36) (here cE is the cutoff energy which is less than Fermi en- ergies, , 24 ( )c F BSkE y< ε and , 21( )c F BSkE y< ε ). Compare improved formula (35) (see note after (22)) with analogous formula (16) from [2] for 0, 21 c( ; )c BSkT E y . If for the definiteness, we select cutoff energy eV= 10 McE (so that , 21( )c F BSkE y< ε and , 24 ( )c F BSkE y< ε , see Fig. 1) it is easy to plot figures (see Figs. 2 and 3) for the PT temperatures (35), (36) of NM at sub- and supra- saturation densities on the interval 0 00.1 < < 2.0n n n . 6. Conclusion Thus, we can conclude that temperature dependence 4 0(~ ( / ) 1cT T << , see (20)) of the energy gap in superfluid of the 3He–A type near = 0T and close to 0 ( )cT n (see (28)) is determined only by the symmetry of the OP and doesn’t depend on the nature of interactions which lead to the spin- triplet Cooper pairing in the system. But as we can see from Figs. 2–7 the density dependences of the PT tempera- ture 0, ( ; )c BSk cT E y and the energy gap in SNM are signifi- cantly different than in the superfluid 3 He–A [5]. Note also that obtained here general formula (22) for PT temperature 0, ( ; )c BSk cT E y of dense NM (in zero mag- netic field) to superfluid state with anisotropic p-wave pairing of 3 He–A type and with generalized Skyrme inter- actions [4,47] depends on density in nonmonotone way ((35) and (36) exhibit a bell-shaped density profile, see Fig. 2). Such behavior of these PT temperatures 0, 21(10; )c BSkT y and 0, 24 (10; )c BSkT y and their maximal values are in qualitative agreement with results of recent articles [18,19,30] and are of the same order in magnitude at = 10cE MeV (namely, 0, 21max ( (10; )) 0.063c BSkT y ≈ MeV and 0, 24max( (10; )) 0.060c BSkT y ≈ MeV, see Fig. 3). Fig. 2. PT temperatures of SNM with generalized BSk21 and BSk24 Skyrme forces (see (35) and (36) at 10 MeVcE = ): 0; 21(10; )c BSkT y (upper curve); c0; 24(10; )BSkT y (lower curve). 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 T , M eV y 0.06 0.05 0.02 0.03 0.04 0.01 0 Fig. 3. The same PT temperatures of SNM as in Fig. 2 with BSk21 and BSk24 forces at 10 MeVcE = near their maxima: 0; 21(10; )c BSkT y (upper curve); 0; 24(10; )c BSkT y (lower curve). 0.66 0.68 0.70 0.72 T c 0, M eV y 0.063 0.061 0.062 0.060 Fig. 4. Energy gap of SNM ( , ;10)FG T y (see (28)) with BSk21 Skyrme force and with anisotropic spin-triplet p-wave pairing (in zero magnetic field, = 0H ) as a function of reduced density 0= /y n n at three temperatures near 0, 21(10; )c BSkT y (see (35) with cutoff energy 10 MeVcE = ): at 0, 21= 0.91 (10; )c BSkT T y (upper curve), at 0, 21= 0.96 (10; )c BSkT T y (middle curve) and at 0, 21= 0.99 (10; )c BSkT T y (bottom curve). 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 G F, M eV y 0.06 0.05 0.02 0.03 0.04 0.01 0 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 227 A.N. Tarasov Note finally, that results (20), (28) for energy gap are ge- neral and figures similar to Figs. 4–7 are valid also for SNM with BSk24 parametrization of the generalized Skyrme forces (proposed recently in [47,48]) and they are close with BSk21 (it is clear from (20), (28) and from Figs. 1, 2 for Fermi energies (33), (34) and PT tempera- tures (35), (36) for BSk21 and BSk24 which are close to each other). 1. A.N. Tarasov, J. Phys.: Conf. Ser. 400, 032101 (2012) [LT26]. 2. A.N. Tarasov, Europhys. Lett. 105, 52001 (2014). 3. N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 80, 065804 (2009). 4. S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev. C 82, 035804 (2010). 5. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London (1990). 6. G.E. Volovik, Sov. Phys. Usp. 27, 363 (1984) [Usp. Fiz. Nauk 143, 73 (1984)]. 7. A.N. Tarasov, Fiz. Nizk. Temp. 24, 429 (1998) [Low Temp. Phys. 24, 324 (1998)]; ibid. 26, 1059 (2000) [26, 785 (2000)]. 8. R.C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992). 9. C. Thompson and R.C. Duncan, Astrophys. J. 408, 194 (1993). 10. C. Thompson and R.C. Duncan, Mon. Not. Roy. Astron. Soc. 275, 255 (1995). 11. C. Thompson and R.C. Duncan, Astrophys. J. 473, 322 (1996). 12. P.M. Woods and C. Thompson, in: Compact Stellar X-ray Sources, W.H.G. Lewin and M. van der Klis (eds.), Cam- bridge Astrophysics Series, No. 39, Cambridge University Press, New York (2006), p. 547. 13. P.M. Woods, AIP Conf. Proc. 983, 227 (2008). 14. S. Mereghetti, J.A. Pons, and A. Melatos, Magnetars: Pro- perties, Origin and Evolution, arXiv:astro-ph.HE/1503.06313. 15. M. Sinha and A. Sedrakian, Phys. Rev. C 91, 035805 (2015). 16. W.C.G. Ho and C.O. Heinke, Nature 462, 71 (2009). 17. C.O. Heinke and W.C.G. Ho, Astrophys. J. 719, L167 (2010). Fig. 5. The same as in Fig. 4 energy gap ( , ;10)FG T y of SNM (see (28)) with BSk21 Skyrme force (at 10cE = MeV and = 0H ) but as 3d function of temperature (near 0, 21(10; ))c BSkT y and reduced density 0= /y n n . G F, M eV T, MeV 0.06 0.02 0 0 0.02 0.04 0.06 0.04 1.6 1.1 0.1 0.6 y Fig. 7. Energy gap ( , ;10)FG T y of SNM (see (20)) with BSk21 Skyrme force and with anisotropic spin-triplet p-wave pairing (in zero magnetic field, = 0H ) as a function of reduced density 0= /y n n at three temperatures near = 0T (see (23) and (35) with cutoff energy 10 MeVcE = ): at = 0T (upper curve), at 0, 21= 0.05 (10; )c BSkT T y (second curve) and 0, 21= 0.1 (10; )c BSkT T y (bottom curve) in the vicinity of their maxima. 0.12792 0.12791 0.12790 0.12789 0.680 0.684 0.688 0.682 G F, M eV y Fig. 6. Energy gap ( , ;10)FG T y of SNM (see (20)) with BSk21 Skyrme force (at 10cE = MeV and = 0H ) as 3d function of temperature (near = 0T ) and reduced density 0= /y n n . 0.125 0.100 0.075 0.500 0.025 0 G F, M eV T, 1 0 M eV –3 1.61.1 0.1 0.6 y 0 2 4 6 228 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 Analytical solutions of equation for the order parameter of dense superfluid neutron matter 18. D. Page, M. Prakash, J.M. Lattimer, and A.W. Steiner, Phys. Rev. Lett. 106, 081101 (2011). 19. P.S. Shternin, D.G. Yakovlev, C.O. Heinke, W.C.G. Ho, and D.J. Patnaude, Mon. Not. R. Astron. Soc. 412, L108 (2011). 20. P.S. Shternin and D.G. Yakovlev, Phys.-Usp. 55, 935 (2012) [Uspekhi Fiz. Nauk 182, 1006 (2012)]. 21. D. Page, M. Prakash, J.M. Lattimer, and A.W. Steiner, Stellar Superfluids, in Novel Superfluids: Volume 2, K.H. Bennemann and J.B. Ketterson (eds.), Oxford University Press, Oxford, 505 (2014) [arXiv:astro-ph.HE/1302.6626]. 22. K.G. Elshamouty, C.O. Heinke, G.R. Sivakoff, W.C.G. Ho, P.S. Shternin, D.G. Yakovlev, D.J. Patnaude, and L. David, Astrophys. J. 777, 22 (2013). 23. W.C.G. Ho, K.G. Elshamouty, C.O. Heinke, and A. Potekhin, Phys. Rev. C 91, 015806 (2015). 24. D. Blaschke, H. Grigorian, D.N. Voskresensky, and F. Weber, Phys. Rev. C 85, 022802(R) (2012). 25. D. Blaschke, H. Grigorian, and D.N. Voskresensky, Phys. Rev. C 88, 065805 (2013). 26. H.A. Grigorian, D.B. Blaschke, and D.N. Voskresensky, J. Phys.: Conf. Ser. 496, 012014 (2014). 27. A. Sedrakian, Dense QCD and Phenomenology of Compact Stars, arXiv:astro-ph.HE/1301.2675. 28. A. Sedrakian, Astron. Astrophys. 555, L10 (2013). 29. T. Noda, M. Hashimoto, N. Yasutake, T. Maruyama, T. Tatsumi, and M. Fujimoto, Astrophys. J. 765, 1 (2013). 30. J.M. Dong, U. Lombardo, and W. Zuo, Phys. Rev. C 87, 062801(R) (2013). 31. P.F. Bedaque and A.N. Nicholson, Phys. Rev. C 87, 055807 (2013). 32. S. Maurizio, J.W. Holt, and P. Finelli, Phys. Rev. C 90, 044003 (2014). 33. L.B. Leinson, Phys. Lett. B 741, 87 (2015). 34. D.G. Yakovlev, K.P. Levenfish, and Yu.A. Shibanov, Phys. Uspekhi 42, 737 (1999) [Uspekhi Fiz. Nauk 169, 825 (1999)]. 35. M. Baldo and G.F. Burgio, Rep. Prog. Phys. 75, 026301 (2012). 36. A. Gezerlis, C.J. Pethick, and A. Schwenk, Pairing and Su- perfluidity of Nucleons in Neutron Stars, arXiv:nucl-th/ 1406.6109v2. 37. A.Y. Potekhin, J.A. Pons, and D. Page, Neutron Stars — Cooling and Transport, arXiv:astro-ph.HE/1507.06186. 38. A.I. Akhiezer, V.V. Krasil’nikov, S.V. Peletminskii, and A.A. Yatsenko, Phys. Rep. 245, 1 (1994). 39. A.I. Akhiezer, A.A. Isayev, S.V. Peletminskii, A.P. Rekalo, and A.A. Yatsenko, JETP 85, 1 (1997) [Zh. Eksp. Teor. Fiz. 112, 3 (1997)]. 40. R. Aguirre, Phys. Rev. C 85, 064314 (2012). 41. S.N. Shulga and Yu.V. Slyusarenko, Fiz. Nizk. Temp. 39, 1123 (2013) [Low Temp. Phys. 39, 874 (2013)]. 42. A.N. Tarasov, Cent. Eur. J. Phys. 9, 1057 (2011). 43. J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, and M.R. Strayer, Phys. Rev. C 68, 034324 (2003). 44. M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, and P.D. Stevenson, Phys. Rev. C 85, 035201 (2012). 45. N. Chamel, A.F. Fantina, J.M. Pearson, and S. Goriely, Phys. Rev. C 84, 062802(R) (2011). 46. N. Chamel, A.F. Fantina, J.M. Pearson, and S. Goriely, Astron. Astrophys. 553, A22 (2013). 47. S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev. C 88, 024308 (2013). 48. A.F. Fantina, N. Chamel, J.M. Pearson, and S. Goriely, AIP Conf. Proc. 1645, 92 (2015). 49. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, and J.W.T. Hessels, Nature 467, 1081 (2010). 50. J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W. Verbiest, and D.G. Whelan, Science 340, 448 (2013). 51. H. Kleinert, Fortschr. Phys. 26, 565 (1978). 52. A.A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, Amsterdam (1988). 53. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State; L.D. Landau and E.M. Lifshitz: Course of Theoretical Physics, Vol. 9, Pergamon, Oxford (1980). Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 3 229 1. Introduction 2. General equation for the OP for SNM with generalized Skyrme forces between neutrons and anisotropic spin-triplet pairing in zero magnetic field 3. Solution of equation for the OP for SNM near T = 0 4. Solution of equation for the OP for SNM near Tc0 5. Solutions of equation for the OP for SNM with generalized Skyrme forces near T = 0 and close to Tc0 and their density and temperature profiles 6. Conclusion