Точное решение задачи об электроне в магнитном поле, состоящем из однородного поля и параллельных ему произвольно расположенных магнитных струн

Показано, что требования конечности, однозначности и определенности волновой функции и плотности тока вероятности с необходимостью приводят к тому, что волновые функции электрона при приближении к магнитной струне должны по модулю убывать быстрее, чем корень квадратный расстояния до струны (магнитно...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
1. Verfasser: Дубровский, И.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2002
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/128715
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Точное решение задачи об электроне в магнитном поле, состоящем из однородного поля и параллельных ему произвольно расположенных магнитных струн / И.М. Дубровский // Физика низких температур. — 2002. — Т. 28, № 11. — С. 1183-1194. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Показано, что требования конечности, однозначности и определенности волновой функции и плотности тока вероятности с необходимостью приводят к тому, что волновые функции электрона при приближении к магнитной струне должны по модулю убывать быстрее, чем корень квадратный расстояния до струны (магнитной струной называют бесконечно тонкий соленоид с конечным магнитным потоком). Получен энергетический спектр электрона, в общем случае совпадающий со спектром в отсутствие струн. Найден общий вид собственных функций основного состояния и оператор, действием степеней которого можно получить собственные функции возбужденных состояний. В случае, когда имеется только одна струна с магнитным потоком, не кратным удвоенному кванту потока, в энергетическом спектре появляется еще одна эквидистантная последовательность собственных значений. Она сдвинута по отношению к основной на долю интервала, равную положительной дробной части частного от деления магнитного потока на величину удвоенного кванта. Эта последовательность начинается от уровня, номер которого равен числу остальных магнитных струн. Получены также волновые функции для этих особых состояний.