Proximity effect at the interface He II-He I in microgravity environment

The proximity effect causes the existence of some transition area with the gradual variation of the density of superfluid component instead of the sharp boundary at the level where the hydrostatic pressure realizes the phase transition He II-He I. In the microgravity environment the characteristic l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
Hauptverfasser: Kiknadze, Yu., Mamaladze, L.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2003
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/128857
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Proximity effect at the interface He II-He I in microgravity environment / L. Kiknadze Yu. Mamaladze // Физика низких температур. — 2003. — Т. 29, № 6. — С. 672-673. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-128857
record_format dspace
spelling irk-123456789-1288572018-01-15T03:04:01Z Proximity effect at the interface He II-He I in microgravity environment Kiknadze, Yu. Mamaladze, L. 3-й Международный семинар по физике низких температур в условиях микрогравитации The proximity effect causes the existence of some transition area with the gradual variation of the density of superfluid component instead of the sharp boundary at the level where the hydrostatic pressure realizes the phase transition He II-He I. In the microgravity environment the characteristic length of this effect increases, and more convenient conditions arise for measurements in the transition area. The problem of the expansion of thermodynamical potential in power series in the vicinity of He II-He I interface is considered. The critical values of the size of the superfluid area are determined. 2003 Article Proximity effect at the interface He II-He I in microgravity environment / L. Kiknadze Yu. Mamaladze // Физика низких температур. — 2003. — Т. 29, № 6. — С. 672-673. — Бібліогр.: 6 назв. — англ. 0132-6414 PACS: 67.40.Vs http://dspace.nbuv.gov.ua/handle/123456789/128857 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic 3-й Международный семинар по физике низких температур в условиях микрогравитации
3-й Международный семинар по физике низких температур в условиях микрогравитации
spellingShingle 3-й Международный семинар по физике низких температур в условиях микрогравитации
3-й Международный семинар по физике низких температур в условиях микрогравитации
Kiknadze, Yu.
Mamaladze, L.
Proximity effect at the interface He II-He I in microgravity environment
Физика низких температур
description The proximity effect causes the existence of some transition area with the gradual variation of the density of superfluid component instead of the sharp boundary at the level where the hydrostatic pressure realizes the phase transition He II-He I. In the microgravity environment the characteristic length of this effect increases, and more convenient conditions arise for measurements in the transition area. The problem of the expansion of thermodynamical potential in power series in the vicinity of He II-He I interface is considered. The critical values of the size of the superfluid area are determined.
format Article
author Kiknadze, Yu.
Mamaladze, L.
author_facet Kiknadze, Yu.
Mamaladze, L.
author_sort Kiknadze, Yu.
title Proximity effect at the interface He II-He I in microgravity environment
title_short Proximity effect at the interface He II-He I in microgravity environment
title_full Proximity effect at the interface He II-He I in microgravity environment
title_fullStr Proximity effect at the interface He II-He I in microgravity environment
title_full_unstemmed Proximity effect at the interface He II-He I in microgravity environment
title_sort proximity effect at the interface he ii-he i in microgravity environment
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2003
topic_facet 3-й Международный семинар по физике низких температур в условиях микрогравитации
url http://dspace.nbuv.gov.ua/handle/123456789/128857
citation_txt Proximity effect at the interface He II-He I in microgravity environment / L. Kiknadze Yu. Mamaladze // Физика низких температур. — 2003. — Т. 29, № 6. — С. 672-673. — Бібліогр.: 6 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kiknadzeyu proximityeffectattheinterfaceheiiheiinmicrogravityenvironment
AT mamaladzel proximityeffectattheinterfaceheiiheiinmicrogravityenvironment
first_indexed 2025-07-09T10:02:45Z
last_indexed 2025-07-09T10:02:45Z
_version_ 1837163209497247744
fulltext Fizika Nizkikh Temperatur, 2003, v. 29, No. 6, p. 672–673 Proximity effect at the interface He II–He I in microgravity environment L. Kiknadze and Yu. Mamaladze E.A. Andronikashvili Institute of Physics of the Georgian Academy of Sciences, 6, Tamarashvili Str., Tbilisi, 380077, Georgia E-mail: yum@iph.hepi.edu.ge; yum270629@yahoo.com Received December 19, 2002 The proximity effect causes the existence of some transition area with the gradual variation of the density of superfluid component instead of the sharp boundary at the level where the hydro- static pressure realizes the phase transition He II–He I. In the microgravity environment the cha- racteristic length of this effect increases, and more convenient conditions arise for measurements in the transition area. The problem of the expansion of thermodynamical potential in power series in the vicinity of He II–He I interface is considered. The critical values of the size of the superfluid area are determined. PACS: 67.40.Vs Introduction According to the phase diagram of 4He the hydro- static pressure causes the phase transition He II�He I but, because of the proximity effect, instead of abrupt boundary between the superfluid and normal liquid at the level, where the �-pressure is reached, there is formed the transition zone where the density of super- fluid component varies gradually. The superfluidity penetrates into the normal area [1–3]. The characte- ristic length of this effect is � g � �6 5 10 3. • cm [1]. Microgravity The width of the transition zone (its height) may be estimated as several times � g , i.e., it is of the order of 10 2� cm. This value is quite macroscopic but never- theless so small that nobody could carry out the expe- rimental study of this area. The sole attempt [4] was unsuccessful. The more convenient conditions for measurements in transition area at the boundary He II–He I are achieved in the microgravity environment since � � �g / /� � 0 3 5 2 5 where �0 8 2 32 73 10� �. • cm • K / , �� � �� g/ dP /dT| . I.e., the 105 times decrease of g en- tails the increase of the width of transition area to cen- timeters, and 3 107• times decrease of g is necessary to reach the height of order of 10 cm. The unit of wave function and « � 0 problem» The Ginzburg—Pitaevskii (GP) equation for 4He being under hydrostatic pressure may be written down in the form (we do not consider some flow and is a positive function): � 2 2 2 3 5 2 0 m d dz A B C � � � , (1) where A and B are dependent on the distance z from the boundary (z � 0 is the superfluid area, z � 0 is the normal one): � �A A z /� 0 4 3( )� (the sign minus is for the normal area), � �B B z /� 0 2 3( ) .� The asymptotic so- lution far in the superfluid area ( )z g�� � is a /z� ( )� 1 3 0, 0 2 0 0 2 0 2 2 � � � � � � � � B C B C A C . (2) It is convenient to introduce the parameter M: M � � � �C /A B /A 0 4 0 0 0 2 01 and to express coefficients A B0 0, as A M/ / 0 16 4 3111 10 1 3 � � �. • ,erg • K B M M/ / 0 39 2 33 52 10 1 1 3 � � � �. • erg • cm • K . Then Eq. (1) may be transformed into the dimen- sionless form © L. Kiknadze and Yu. Mamaladze, 2003 � � � �d d M M/ 2 2 4 3 2 3 3 51 0 � � � � � � � � � � �( ) / , (3) where � �� z/ gM , � � � gM : � �gM g /M/� ( )1 3 3 10, gM g // M/� � �0 1 10 01 3( ) [3]. The GP equation is founded on the expansion of the thermodynamical potential in power series. If this expansion is performed in respect to the ratio of wave function to its equilibrium value then it becomes in- valid at the He II–He I boundary where this ratio be- comes infinite [3]. This problem does not exist for Eq. (3) and for corresponding expansion in power se- ries in respect to � gM because gM is temperature and coordinate independent (if we compare gM with a , the quantity �z in Eq. (2) is substituted by ( ) ( )� �0 3 2 3 101 3/ M/g / / ). These quantities have the dimension of temperature, but the latter is tempe- rature and coordinate independent. In these units the asymptotic solution (Eq. (2)) has the form � �a /� 1 3. Critical sizes of superfluid area The superfluid area must content the superfluid component enough to entail the superfluidity in nor- mal area. That is why the size (the height) of the superfluid area Hs has the critical value Hsc such that if H Hs sc� then the density of the superfluid compo- nent is zero in the whole vessel (more exactly for the case M � 1 see below). It is determined by the equa- tion: J h I hsc / n / 03 5 3 03 5 33 5 3 5. . � � � � � � � � � � � � � � � � � � � � � � � � � ��J h I hsc / n / 03 5 3 03 5 33 5 3 5 0. . , (4) the first variant of which is obtained in [1]; hsc � 2 29. when hn � � [2,5] and hsc � 2 55. when hn � 0 [5] ( ,� � �H z Hn s Hn is the size of normal area, h H/ gM� � ). Let us consider the case h h hs sc sc� �� and hn � 0. Employing the method suggested in [6] we obtain the approximate solution of Eq. (3) of the form � � �� c J j/h/ s / 03 5 3 5 3 . ( ) where j � 2 8541. . The analyses of the coefficient c shows that in the case M � 1 the size hsc is not critical and that there exist two other critical sizes: hmin above which the super- fluidity becomes possible, and htr above which the superfluidity becomes stable, h htr � min: h h M M I I Isc / min ( ) � �� � � � � � � � � 1 1 4 2 2 2 1 3 3 10 , h h M M I I Isc / tr � �� � � � � � � � � 1 3 16 1 2 2 2 1 3 3 10 ( ) , (5) where I xJ x dx j 1 03 2 0 0 91627� �� . ( ) . , I x J x dx/ j 2 6 5 03 4 0 0 37001� �� . ( ) . , I x J x dx/ j 3 7 5 03 3 0 016790� �� . ( ) . . Acknowledgements We would like to thank the Organizing Committee of CWS 2002 for the invitation, which stimulated this work and for the support of attendance of one of us (Yu.M.) at the workshop, and G. Kharadze and S. Tsakadze for their interest and attention. The work is partly supported by the grant 2.17.02 of the Geor- gian Academy of Sciences. 1. L.V. Kiknadze, Yu.G. Mamaladze, and O.D. Cheish- vili, Pis’ma ZhETF 3, 305 (1966); in Proceedings of the Xth International Conference on Low Temperature Physics (1966), VINITI, Moscow (1967), p. 491; L.V. Kiknadze, Yu.G. Mamaladze, Fiz. Nizk. Temp. 17, 300 (1991) [Sov. J. Low Temp. Phys. 17,156 (1991)]. 2. V.A. Slusarev and M.A. Strzhemechny, Zh. Exp. i Teor. Fiz. 58, 1757 (1970). 3. A.A. Sobianin, Zh. Exp. i Teor. Fiz. 63, 1780 (1972); V.L. Ginzburg and A.A. Sobianin, Usp. Fiz. Nauk 120, 153 (1976). 4. G. Ahlers, Phys. Rev. 171, 275 (1968). 5. L.V. Kiknadze, Thesis, Tbilisi State University (1970). 6. Yu.G. Mamaladze, Bulletin Acad. Sci. of Georgia 109, 45 (1983). Proximity effect at the interface He II–He I in microgravity environment Fizika Nizkikh Temperatur, 2003, v. 29, No. 6 673