Use of chemical markers in antartic ecosystem studies of Demaria mount
Research is devoted to using chemical markers for studying and description of ecosystems. Photosynthetic pigments – carotenoids and chlorophylls, and soil polymers – humic, fulvic acids and their salts, were used as chemical markers. Correlations between concentrations of these markers in samples an...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний антарктичний науковий центр МОН України
2014
|
Назва видання: | Український антарктичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/129662 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Use of chemical markers in antartic ecosystem studies of Demaria mount / L.V. Chepeleva, Z.A. Sizova, G.D. Yukhno, S.Y. Utevsky, Y.G. Gamulya, A.Y. Utevsky, A.D. Roshal // Український антарктичний журнал. — 2014. — № 13. — С. 231-241. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-129662 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1296622018-01-25T03:03:09Z Use of chemical markers in antartic ecosystem studies of Demaria mount Chepeleva, L.V. Sizova, Z.A. Yukhno, G.D. Utevsky, S.Y. Gamulya, Y.G. Utevsky, A.Y. Roshal, A.D. Біологічні дослідження Research is devoted to using chemical markers for studying and description of ecosystems. Photosynthetic pigments – carotenoids and chlorophylls, and soil polymers – humic, fulvic acids and their salts, were used as chemical markers. Correlations between concentrations of these markers in samples and parameters of “total nitrogen” and ash were studied. Complex chemical analysis for nine samples collected on a Demaria hill in the altitude range from 47 m to 408 m above see level was carried. It was concluded that in meager antarcticlike ecosystems the content of carotenoids and chlorophylls adequately reflects the quantity of a whole phytomass and of biomass. Total content humic and fulvic acids can be used to estimate quantity of organic substances in soils. Comparison of photosynthetic pigment concentrations with “total nitrogen” parameter allows to separate biogenic phytomass nitrogen and animal waste products. Исследования посвящены проблеме использования химических маркеров для изучения и описания экосистем. В качестве химических маркеров использованы фотосинтетические пигменты – каротиноиды и хлорофиллы, а также почвенные полимеры – гуминовые, фульвиновые кислоты и их соли. Изучена корреляция между концентрациями данных маркеров в пробах и показателями «общего азота» и зольности. Комплексный химический анализ проведен для девяти проб, собранных на экологическом профиле, заложенном на склоне горы Демария Антарктического полуострова между высотами 47 и 408 м над уровнем моря. Показано, что в примитивных экосистемах, подобных антарктическим, содержание каротиноидов и хлорофиллов коррелирует с общим количеством фитомассы и биомассы. Суммарное количество гуминовых и фульвиновых кислот может быть использовано для оценки общего количества органического вещества в почвах. Сопоставление концентрации фотосинтетических пигментов и «общего азота» позволяет определить соотношение фракций биогенного азота фитомассы и продуктов жизнедеятельности фауны. Дослідження присвячено проблемі використання хімічних маркерів для вивчення та опису екосистем. В якості хімічних маркерів використано фотосинтетичні пігменти – каротиноїди і хлорофіли, а також ґрунтові полімери – гумінові, фульвінові кислоти та їх солі. Вивчено кореляцію між концентраціями даних маркерів у пробах і показниками «загального азоту» та зольністю. Комплексний хімічний аналіз було проведено для дев’яти проб, зібраних на екологічному профілі, закладеному на схилі гори Демарія Антарктичного півострова між висотами 47 і 408 м над рівнем моря. Показано, що у примітивних екосистемах, подібних до антарктичних, вміст каротиноїдів і хлорофілів корелює із загальною кількістю фітомаси і біомаси в цілому. Сумарна кількість гумінових і фульвінових кислот може бути використана для оцінки кількості органічної речовини у ґрунтах. Співставлення концентрації фотосинтетичних пігментів та «загального азоту» дозволяє встановити співвідношення біогенного азоту фітомаси та продуктів життєдіяльності фауни. 2014 Article Use of chemical markers in antartic ecosystem studies of Demaria mount / L.V. Chepeleva, Z.A. Sizova, G.D. Yukhno, S.Y. Utevsky, Y.G. Gamulya, A.Y. Utevsky, A.D. Roshal // Український антарктичний журнал. — 2014. — № 13. — С. 231-241. — Бібліогр.: 17 назв. — англ. 1727-7485 http://dspace.nbuv.gov.ua/handle/123456789/129662 631.48 (99-15) en Український антарктичний журнал Національний антарктичний науковий центр МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Біологічні дослідження Біологічні дослідження |
spellingShingle |
Біологічні дослідження Біологічні дослідження Chepeleva, L.V. Sizova, Z.A. Yukhno, G.D. Utevsky, S.Y. Gamulya, Y.G. Utevsky, A.Y. Roshal, A.D. Use of chemical markers in antartic ecosystem studies of Demaria mount Український антарктичний журнал |
description |
Research is devoted to using chemical markers for studying and description of ecosystems. Photosynthetic pigments – carotenoids and chlorophylls, and soil polymers – humic, fulvic acids and their salts, were used as chemical markers. Correlations between concentrations of these markers in samples and parameters of “total nitrogen” and ash were studied. Complex chemical analysis for nine samples collected on a Demaria hill in the altitude range from 47 m to 408 m above see level was carried. It was concluded that in meager antarcticlike ecosystems the content of carotenoids and chlorophylls adequately reflects the quantity of a whole phytomass and of biomass. Total content humic and fulvic acids can be used to estimate quantity of organic substances in soils. Comparison of photosynthetic pigment concentrations with “total nitrogen” parameter allows to separate biogenic phytomass nitrogen and animal waste products. |
format |
Article |
author |
Chepeleva, L.V. Sizova, Z.A. Yukhno, G.D. Utevsky, S.Y. Gamulya, Y.G. Utevsky, A.Y. Roshal, A.D. |
author_facet |
Chepeleva, L.V. Sizova, Z.A. Yukhno, G.D. Utevsky, S.Y. Gamulya, Y.G. Utevsky, A.Y. Roshal, A.D. |
author_sort |
Chepeleva, L.V. |
title |
Use of chemical markers in antartic ecosystem studies of Demaria mount |
title_short |
Use of chemical markers in antartic ecosystem studies of Demaria mount |
title_full |
Use of chemical markers in antartic ecosystem studies of Demaria mount |
title_fullStr |
Use of chemical markers in antartic ecosystem studies of Demaria mount |
title_full_unstemmed |
Use of chemical markers in antartic ecosystem studies of Demaria mount |
title_sort |
use of chemical markers in antartic ecosystem studies of demaria mount |
publisher |
Національний антарктичний науковий центр МОН України |
publishDate |
2014 |
topic_facet |
Біологічні дослідження |
url |
http://dspace.nbuv.gov.ua/handle/123456789/129662 |
citation_txt |
Use of chemical markers in antartic ecosystem studies of Demaria mount / L.V. Chepeleva, Z.A. Sizova, G.D. Yukhno, S.Y. Utevsky, Y.G. Gamulya, A.Y. Utevsky, A.D. Roshal // Український антарктичний журнал. — 2014. — № 13. — С. 231-241. — Бібліогр.: 17 назв. — англ. |
series |
Український антарктичний журнал |
work_keys_str_mv |
AT chepelevalv useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT sizovaza useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT yukhnogd useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT utevskysy useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT gamulyayg useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT utevskyay useofchemicalmarkersinantarticecosystemstudiesofdemariamount AT roshalad useofchemicalmarkersinantarticecosystemstudiesofdemariamount |
first_indexed |
2025-07-09T11:56:48Z |
last_indexed |
2025-07-09T11:56:48Z |
_version_ |
1837170385625284608 |
fulltext |
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
231
UDC 631.48 (99-15)
USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF
DEMARIA MOUNT
L.V. Chepeleva 1, Z.A. Sizova 1, G.D. Yukhno 1, S.Yu. Utevsky 2,
Yu.G. Gamulya 3, A.Yu. Utevsky 2, A.D. Roshal 1
1 Institute of Chemistry
2 Department of Zoology and Animal Ecology
3 Department of Botany and Plant Ecology V.N. Karazin Kharkiv National University,
61022 Kharkiv, Ukraine, E-mail: autevsk@yandex.ua
Research is devoted to using chemical markers for studying and description of ecosystems. Photosynthetic
pigments – carotenoids and chlorophylls, and soil polymers – humic, fulvic acids and their salts, were used as
chemical markers. Correlations between concentrations of these markers in samples and parameters of “total
nitrogen” and ash were studied. Complex chemical analysis for nine samples collected on a Demaria hill in
the altitude range from 47 m to 408 m above see level was carried. It was concluded that in meager antarctic-
like ecosystems the content of carotenoids and chlorophylls adequately reflects the quantity of a whole
phytomass and of biomass. Total content humic and fulvic acids can be used to estimate quantity of organic
substances in soils. Comparison of photosynthetic pigment concentrations with “total nitrogen” parameter
allows to separate biogenic phytomass nitrogen and animal waste products.
Keywords: chemical markers, ecosystem, carotenoids, chlorophylls, humic acids
Использование химических маркеров в исследованиях антарктических экосистем горы
Демария
Л.В. Чепелева, З.А. Сизова, Г.Д. Юхно, С.Ю. Утевский, Ю.Г. Гамуля, А.Ю. Утевский, А.Д. Рошаль
Реферат. Исследования посвящены проблеме использования химических маркеров для изучения и
описания экосистем. В качестве химических маркеров использованы фотосинтетические пигменты –
каротиноиды и хлорофиллы, а также почвенные полимеры – гуминовые, фульвиновые кислоты и их
соли. Изучена корреляция между концентрациями данных маркеров в пробах и показателями «общего
азота» и зольности. Комплексный химический анализ проведен для девяти проб, собранных на
экологическом профиле, заложенном на склоне горы Демария Антарктического полуострова между
высотами 47 и 408 м над уровнем моря. Показано, что в примитивных экосистемах, подобных
антарктическим, содержание каротиноидов и хлорофиллов коррелирует с общим количеством
фитомассы и биомассы. Суммарное количество гуминовых и фульвиновых кислот может быть
использовано для оценки общего количества органического вещества в почвах. Сопоставление
концентрации фотосинтетических пигментов и «общего азота» позволяет определить соотношение
фракций биогенного азота фитомассы и продуктов жизнедеятельности фауны.
Використання хімічних маркерів у дослідженнях антарктичних екосистем гори Демарія.
Л.В. Чепелєва, З.О. Сізова, Г.Д. Юхно, С.Ю. Утєвський, Ю.Г. Гамуля, А.Ю. Утєвський, О.Д. Рошаль
Реферат. Дослідження присвячено проблемі використання хімічних маркерів для вивчення та опису
екосистем. В якості хімічних маркерів використано фотосинтетичні пігменти – каротиноїди і
хлорофіли, а також ґрунтові полімери – гумінові, фульвінові кислоти та їх солі. Вивчено кореляцію
між концентраціями даних маркерів у пробах і показниками «загального азоту» та зольністю.
Комплексний хімічний аналіз було проведено для дев’яти проб, зібраних на екологічному профілі,
закладеному на схилі гори Демарія Антарктичного півострова між висотами 47 і 408 м над рівнем
моря. Показано, що у примітивних екосистемах, подібних до антарктичних, вміст каротиноїдів і
хлорофілів корелює із загальною кількістю фітомаси і біомаси в цілому. Сумарна кількість гумінових
УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ
ЖУРНАЛ
УАЖ, № 13, 231-241 (2014)
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
232
і фульвінових кислот може бути використана для оцінки кількості органічної речовини у ґрунтах.
Співставлення концентрації фотосинтетичних пігментів та «загального азоту» дозволяє встановити
співвідношення біогенного азоту фітомаси та продуктів життєдіяльності фауни.
1. Introduction
Ecosystems structure and functioning have cyclic pattern occurred on different levels of vital
activity in biological systems. First of all, it is a case of nutrition cycles based on various trophic
chains [1, 2]. The lower level cycles are associated with similarity and repeatability of biochemical
processes in ecosystems components. Such approach describes the ecosystems evolution as an
evolution of different biochemical, particularly metabolic cycles [3]. Geochemical and biogeo-
chemical cycles belong to lower level, which include micro- and macroelements migration [2, 4].
The general quantitative ecosystems assessment is estimated using such characteristics as
biodiversity [5] and biomass [6] which demonstrate average result of all cyclic processes activity
within ecosystems. Biodiversity and biomass are approximate response which estimation is quite
difficult as well as some various additional parameters representative of interspecies relations
within some substructures in biological cycles.
The simplest way to characterize condition and quantitative parameters of ecosystems can be
carried out using formal chemical markers which are present in the majority of ecosystem
components. It could be primary and secondary metabolites or decomposition products. The
examples of such important markers are chemical elements, which total concentrations allow to
estimate the efficiency, rates and other biogeochemical cycle parameters underlying ecosystems
existence. Thus, such marker as “total organic carbon” allows estimating the biomass of any whole
ecosystems or of part thereof [6, 7].
Use of chemical markers can substantially simplify ecosystems studies, because analytical
procedures are less time- and labour-consuming processes then routine biological fieldworks.
The important issue of marker usage is their adequacy, i.e. correspondence to some
quantitative biological parameters in ecosystems under studying. The solution of a problem can be
achieved by correlation analysis between marker concentration and some ecosystem parameters, as
well as by inter-correlations studies between parameters of new and previously used markers.
Objects the most suitable for such studies are simple biosystems, such as Antarctic ecosystems.
Low average annual temperature, short vegetation period, low destruction rates of plant residues
and fauna waste products result in lack of mature soils, and consequently relatively low
biodiversity and biomass within Antarctic ecosystems.
The use of some chemical markers in Antarctic ecosystems studies was earlier discussed in
[8], where the interplay between an important chemical marker “total nitrogen” and biomass
parameter has been analyzed. As the storm activity is low in the Antarctic region, quantity of
biotic nitrogen (due to nitrogen monooxide formation under atmospheric electrical discharge)
seems to be insignificant. It was shown in [8], samples collected at altitudes higher 250 m above
sea level contained low concentrations of “total nitrogen”, however at lower altitudes the “total
nitrogen” concentration is substantially increased.
Ash parameter (hereinafter “ash”), relation between sample mass after and before calcination,
is another marker which indirectly reflects total quantity of organic material. The smaller ash mass
after sample calcination, the more organic material in this sample. Of note that this marker can
give overestimated values, because the calcination of samples containing mineral components
results also to destruction of mineral carbonates and crystalline hydrates. However the ash mass
values demonstrated good correlation with “total nitrogen” marker [8].
In the present article, we have analyzed concentrations of potential markers of higher level
such as methabolytes and organic destruction products.
Considering that solar energy is the main energetical sourse of any ecosystems, the
ecosystems activity could be characterized by concentration of photosynthetic pigments (PP). The
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
233
more PP concentration observed in samples, the higher photosynthetic activity and the faster
biomass accumulation. That is why, the most important PP (chlorophyls and carotenoids) were
chosen. A total content of chlorophylls is directly associated with the light absorption and
therefore evidences photosynthetic ecosystem activity. Carotenoids also demonstrate
photosynthetic activity [9]. Unlike chlorophylls, they are more stable and accumulated not only
into plant cells, but also into fatty tissue of herbivores [10, 11, 12]. Therefore carotenoids could be
more general marker of ecosystems activity.
An important quantitative characteristic of intensity of processes taking place in ecosystems
is total content of soils organic material. Humus is the most significant organic component of soils
[13] directly related to the activity of ecosystems, decomposition efficiency of flora and fauna
residuals, and, finally, formation of mature high-quality soils which are necessary for further
biogeochemical cycles functioning. The main components of humus are biopolymers: humic acids
and their salts (humates), as well as parent compounds of lower molecular mass – fulvic acids and
fulvates [14]. The total concentration of humic and fulvic derivatives (HD) can be additional
chemical marker describing ecosystem efficiency.
The present article is devoted to studying the possibilities to use total concentrations of
chlorophylls, carotenoids and HD as potential chemical markers for ecosystems characterization.
Studies were carried out within one of relatively simple Antarctic ecosystems in Antarctic
Peninsula located on Demarria Mount. The concentrations of mentioned markers in collected
samples were compared with amounts of “total nitrogen” and values of ash parameters. The inter-
correlations between potential markers were analyzed, as well.
2. Experimental part
Collection and primary analysis of samples.
Studies were carried out using samples collected on the landscape test range – Demaria
Mount (65017’S 64006’W, Graham Land, Antarctic Peninsula). Sampling was made on a route
which passes through relatively flat northwest hill (with a slope 45º, approximately) covered by
moss fields, away from bird nesting areas (Figure 1).
The sampling was performed following a line between levels 47 m and 408 m above sea level
along the direction of meltwater flow providing the migration of chemical components. The
collection of samples was made in 9 points of the investigated area, which coordinates were
referred by GPS. Coordinates of sampling points are listed in Table 1.
Samples were taken as a whole, including the biological material and the soil down to rock
substrate. Samples were frozen at -18ºC, transported and stored at this temperature until beginning
of their studies. After thawing of the samples, their description, catalogization, macro- and
microphotography, chemical analysis, identification of plant and animal remains were carried out.
Detailed description of vegetation cover, avifauna and primitive soil structure on the sample sites
is given in [8].
Chemical analysis of the samples.
Representative sample points taken by quarter-point sampling method were vertical sections
including both phytomass and soil. Results of chemical analyses of each marker were obtained as
averaged values of three replicates. If the variation coefficient of average value exceeded 3%, the
quantity of replicates was increased.
When analyzing PP, phytomass and soil were not separated, because soils also demonstrated
photosynthetic activity due to containing photosynthetic diatomic algae (Figure 2). Thereby PP
were formally used as markers characterizing general photosynthesis activity. The PP analysis was
not carried out in samples rich in mineral components (pebbles). As living plants almost do not
contain HD, the analyses of latter were performed only in the soils separated from the phytomass.
The HD analyses in samples, where soil content was not enough, were not made either.
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
234
Figure 1. Location of sampling area on the hill of Demaria mount.
Table 1.
Coordinates of sampling points on Demaria Mount
Sample number Altitude above sea
level, m
Coordinates
1 47 S 65o16’07,5” W 64o07’17,7”
2 109 S 65o16’10,4” W 64o07’07,0”
3 134 S 65o16’13,1” W 64o07’01,2”
4 162 S 65o16’20,1” W 64o06’59,5”
5 166 S 65o16’22,8” W 64o06’59,0”
6 255 S 65o16’24,5” W 64o06’53,1”
7 304 S 65o16’31,0” W 64o06’42,3”
8 351 S 65o16’13,9” W 64o07’06,0”
9 408 S 65o16’20,1” W 64o06’59,5”
Quantitative PP analysis. The samples were dried to constant weight at temperature not
higher than 60ºC. Water content in the samples was determined gravimetrically.
Air-dry samples, including mineral part, were grinded up to a powder. The exact portions (in
range 150-250 mg) of the latter were extracted in Soxhlet extractor by 20 ml of chloroform during
6 hours. The obtained extracts were partially concentrated using a rotary evaporator, and then,
transferred into 10 ml volumetric flask. The volumes of the extracts were brought up to 10 ml by
chloroform. Absorption spectra of the extracts were recorded with a Hitach U3210. Depending on
solution optical density, cuvettes of 1 mm or 10 mm across were used.
Content of chlorophylls was determined from values of optical density in absorption band
maximum at 665 nm. Calibration curve was prepared using chlorophyll A standard solutions
(Sigma-Aldrich).
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
235
Figure 2. Diatom algae in soils of Demaria mount.
Absorption bands of carotenoids at 410-430 nm were extracted from absorption spectra of the
extracts by deconvolution method using Spectra Data Lab soft package [15]. Content of
carotenoids was calculated from optical density in maxima of carotenoids absorption bands.
Solutions of β-carotene (Sigma-Aldrich) were used as standard ones.
Quantitative HD analysis. Humic acids and their derivatives were analyzed by a method
described in [16] with minor modifications. HD extraction was carried out from crushed portions
of soil; the weight (exact) of these latter was in range 200-250 mg. Each portion was extracted by
25 ml 0.01M NaOH solution in an ultrasonic bath (40 kHz) during 30 min at 30ºC. The extracts
containing soluble salts of humic and fulvic acids were filtered. Extract aliquotes were subjected to
a reverse differential potentiometric titration by 0.01M HCl solution. Titration plots dpH/dV =f(V)
(Figure 3) demonstrated the presence of two peaks, the higher one, at pH ~ 7, corresponding to
neutralization point of NaOH, and the flatter one of lower intensity at pH~ 10 –11 corresponding
to humic acid/humates equilibrium. As humic acids are less soluble in water than humates, the
achievement of equivalent titration point was accompanied by precipitation of humic acids. The
content of humic acids in soils was calculated using formula:
1000
mV
VM)VCVC(
alq
NaOHhumHClHClalqNaOH ,
where ω is the content of humic acids and their derivatives in a sample, mg/g; CNaOH – NaOH
concentration in the extragent, mol/l; Vextr – the volume of the extragent (0,01 mol/l NaOH), ml; Valq
– volume of an aliquote of extract taken for the titration procedure, ml; CHCl – the titrant
concentration, mol/l; VHCl – volume of the titrant, ml; Mhum – average molecular weight of humic
acids, 1500 g/mol [17]; m – the mass of portion, g.
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
236
Figure 3. A typical curve of reverse differential potentiometric titration of humic acids in soil
samples.
3. Results and discussion
Total concentrations of chlorophylls, carotenoids and HD are listed in Table 2. Dependences
of concentrations of total chlorophylls and carotenoids on altitudes of sampling are depicted on
Figure 4.
Figure 4. The dependencies of total chlorophyll and total carotenoid contents on sampling
altitudes.
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
2 3 4 5 6 7 8 9 10
Titrant volume (VHCl), ml
dp
H
/d
V
D
er
iv
at
iv
e,
m
l-1
0
200
400
600
800
1000
1200
1400
1600
1800
0 100 200 300 400
Sampling altitude, m above sea level
C
on
te
nt
s
of
c
hl
or
op
hy
lls
a
nd
ca
ro
te
no
id
s
, m
kg
/g
Total carotenoids
Total chlorophylls
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
237
Table 2.
Results of chemical analysis of the samples*
Sample
number
Sampling
altitude
Total humic
acids
Total
chlorophylls Total carotenoids
m above s.l. mg/g mkg/g mkg/g
1 47 – 640,53 393,29
2 109 – 1580,55 861,72
3 134 60,52 697,15 505,04
4 162 56,21 280,38 466,49
5 166 50,26 162,34 105,64
6 255 – 159,31 142,75
7 304 27,54 89,57 69,61
8 351 40,13 – –
9 408 24,9 26,50 30,55
* – all the results are average values of three and more replicates. Variation coefficients
of the average values do not exceeds 3%.
In altitude range from 410 to 160 m above s.l., the chlorophyll concentration slowly increases
from 26.5 to 162.3 mkg/g. Then, when further decreasing of the altitude, the chlorophyll content
dramatically increases almost by 10 times, and, finally, at the altitude ~50 m above s.l., the
chlorophyll concentration decreases twice times. Dependency of carotenes on the altitude
demonstrates a similar tendency.
Figure 5 shows that changing content of chlorophylls and carotenoids demonstrate linear
dependency with high determination coefficient – R2 = 0.981 (R2 = 0.871 taking into account a
sample 5 outlier from general tendency). Correlation depicted in Figure 5 show that the
chlorophyll content in the samples is 1.9 times higher than that of carotenoids. The intercept of
dependency, different from zero, indicates accumulation of carotenoids: even when chlorophyll is
absent, the residual quantity of carotenoids is 41 mkg/g, approximately. It evidences that
carotenoids remain in the samples after flora dying. However, the correlation between contents of
chlorophylls and carotenoids allows concluding that, independently on the accumulation or
destruction rates, the PP give similar information about photosynthetic activity of ecosystems. It is
worth to note that such a conclusion can be true only for Antarctic ecosystems, where is a lack of
fauna feeding actively lichens and mosses. Perhaps, in ecosystems with high level of biodiversity,
the linear relationship between concentrations of chlorophylls and carotenoids may be violated.
The dependence between PP content and ash parameter (Figure 6) has a power character with
high values of determination coefficient (R2 = 0.85-0.88). The higher concentrations of
chlorophylls and carotenoids and, consequently, greater phytomass quantity, the lesser weight of
the ash after sample calcination Such dependence allows making an important conclusion: ash
parameter is directly associated with phytomass quantity, and the loss of the ash weight due to
thermodegradation of mineral components of samples is minimal. This allows using the ash
parameter for “total biomass” characterisation. In the case of meager Antarctic ecosystems the ash
and PP content can be used as reasonably accurate markers for “total phytomass” estimation.
Figure 7 demonstrates plots of the PP concentrations against “total nitrogen” content. When
decreasing sampling altitude from ~410 down to ~150 m above see level, PP concentrations and
“total nitrogen” increase parallelly. Analysis of the plot allowed estimating an average value of the
“total nitrogen” in phytomass of Demaria mountain ecosystems, which is in range 0.2–0.3 mg/g.
The further growth of “total nitrogen” at altitudes lower 150 m above s.l. results in the decrease of
PP content that corresponds to phytomass quantity decrease. This effect can be explained by
increasing amount of the fauna biomass and by accumulation of vital activity products.
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
238
Figure 5. The relationship between contents of chlorophylls and carotenoids in studied
samples. A point falling outside the linear dependence and marked by red color was not taken into
account under correlation analysis. In correlation equation: x - chlorophyll content, y - carotenoid
content.
Figure 6. The relationship between total chlorophyll and total carotenoid contents and ash
parameter of studied samples.
As noted above, HD analysis was made in six samples containing sufficient quantity of soil
component. Figure 8 shows dependence of HD content and their derivatives in soils on the
sampling altitudes. It can be seen, when altitude decreasing, the concentration of HD increases.
This latter marker is not directly connected with phytomass quantity and PP content in whole
(phytomass+soil) samples; in our opinion it shows biosystem ability to the crop residues
decomposition after vegetation die away.
y = 0,54x +
R2 = 0,981
0
100
200
300
400
500
600
700
800
900
1000
0 200 400 600 800 1000 1200 1400 1600
C
on
te
nt
o
f c
ar
ot
en
oi
ds
, m
kg
/g
Content of chlorophylls, mkg/g
y = 5931,2x -
R 2 = 0,881
y = 3241,3x -
R 2 = 0,853
0
200
400
600
800
1000
1200
1400
1600
1800
0 10 20 30 40 50 60 70 80
Ash parameter, %
C
on
te
nt
s
of
c
hl
or
op
hy
lls
a
nd
ca
ro
te
no
id
s
, m
kg
/g
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
239
Figure 7. The relationship between PP contents and “total nitrogen” content in studied samples.
Figure 8. The dependency of total humic acid content on sampling altitudes.
According to the equation shown in Figure 8, when decreasing altitudes from 400 m down to
100 m above s.l., the HD concentration of humic acid derivatives increases by 2.4 times. Probably,
this marker could correlate with average temperature at sampling points, because the growth of
temperature leads to the acceleration of chemical and biological phytomass destruction.
Unlike PP concentrations characterizing living phytomass, HD content correlates linearly
with ash parameter of soils (Figure 9). Different types of ash parameter dependences on PP content
and HD content evidence different mechanisms of phytomass accumulation in vegetation process
and phytomass humification.
0
200
400
600
800
1000
1200
1400
1600
1800
0 0,1 0,2 0,3 0,4 0,5
“Total nitrogen” concentration, mg/g
C
on
te
nt
s
of
c
hl
or
op
hy
lls
a
nd
ca
ro
te
no
id
s
, m
kg
/g
Сумма
каротиноидов
Сумма
хлорофиллов
y = -0,12x + 73,18
R 2 = 0,828
0
10
20
30
40
50
60
70
80
0 100 200 300 400 500
Sampling altitude, m above sea level
H
um
ic
a
ci
ds
c
on
te
nt
, m
g/
g
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
240
Figure 9. The relationship between the content of humic acids and ash parameter (In
correlation equation: x - ash parameter, y - content of humic acids)
4. Conclusions
Results described above allow estimating quantitatively the phytomass accumulation,
vegetation die-off and humification. These estimations are not based on physical measurements of
phytomass weight or on analyses of soil morphology, but on the use of formal chemical markers
such as concentrations of photosynthetic pigments (chlorophylls and carotenoids), total content of
humic acids and their derivatives, “total nitrogen” content, ash. Use of chemical markers can
accelerate and simplify studies in ecosystems.
The obtained chemical parameters give additional information about unique Antarctic
ecosystem of Demaria Mount. They show phytomass distribution and humification dynamics
depending on altitude above sea level.
Acknowledgement
The financial support of this work by grant n/6-2013 (0113U005817) of National
Antarctic Scientific Center of Ukraine is gratefully acknowledged.
Field studies and collecting material conducted by A.Y. Utevsky and D.V. Shmyrov with
the support wintering team of the 16 Ukrainian Antarctic Expedition.
References
1. Briand F., Cohen J.E. Environmental Correlates of Food Chain Length // Science, v.238,
N12.- 2013.- p. 956–960
2. Elser J.J., Urabe J. The stoichiometry of consumer-driven nutrient recycling: Theory,
observations, and consequences // Ecology, 80(3), 1999, pp. 735–751
3. Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B. Toward a Metabolic Theory of
Ecology // Ecology, 85(7), 2004, pp. 1771–1789
y = -0,5266x + 66,009
R2 = 0,933
0
10
20
30
40
50
60
70
0 10 20 30 40 50 60 70 80
H
um
ic
a
ci
ds
c
on
te
nt
, m
g/
g
Ash parameter, %
L.V. Chepeleva: USE OF CHEMICAL MARKERS IN ANTARTIC ECOSYSTEM STUDIES OF …
241
4. Smil V. Cycles of Life: Civilization and the Biosphere // Scientific American Library, NY,
1997, 221 p.
5. Harper J.L., Hawksworth D.L. in: Biodiversity. Measurement and estimation. Ed. D.L.
Hawksworth. Chapman & Hall, London, 1995, 141 pp.
6. World Atlas of Biodiversity: Earth Living Ressources in the 21th Century. UNEP World
Conservation Monitoring Centre, Universty of California Press, London, 2002.
7. Field Ch.B., Behrenfeld M.J., Randerson J.T., Falkowski P. Primary Production of the
Biosphere: Integrating Terrestrial and Oceanic Components // Science, v. 281, N.7, 1998, P. 237–240.
8. Roshal A.D., Krasnopiorova A.P., Dyky I.V., Sizova Z.A., Yukhno G.D., Shmyrov D.V.,
Gamulya Yu.G., Utevsky A.Yu. Primitive soils of the Mount Demaria (Graham Land, Antarctic
Peninsula): morphology, mineral composition, vertical distribution // UAJ, № 12. P. 265–281.
9. Cogdell R.J. Carotenoids in Photosynthesis // Phil. Trans. R. Soc. Lond. B, 1978. - v. 284,
N.1002.- P. 569–579.
10. Cazzonelli Ch.I. Carotenoids in nature: insights from plants and beyond // Functional Plant
Biology, 2011, v. 38, P. 833–847.
11. Moss B. Studies on the Degradation of Chlorophyll a and Carotenoids in Freshwaters // New
Phytologist. - V. 67, No. 1, 1968, P. 49–59.
12. Kleppel G.S., Pieper R.E. Phytoplankton pigments in the gut contents of planktonic copepods
from coastal waters off southern California. Mar. Biol., v. 78, (1984), P. 193–198.
13. Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons,
1994. - 496 pp.
14. Piccolo A. The Supramolecular structure of humic substances. A novel understanding of
humus chemistry and implications in soil science. Advances in Agronomy. Advances in Agronomy. -
v.75. - 2002. - P. 57–134.
15. Spectra Data Lab. Spectra treatment software. V.N. Karazin National University. Kharkov.
2008.
16. Савченко И.А., Корнеева И.Н., Плаксин Г.В., Лукша Е.А., Гончаров Д.С. Новый
подход к решению проблемы стандартизации гуминовых кислот // Современные проблемы
науки и образования, №3. - 2013.
17. Кухарсико Т.А. Окисленные в пластах бурые и каменные угли. М., 1971.
|