Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data
The deepness of soil-permafrost layer was measured by vertical electrical resistivity sounding. It has been revealed that the deepness of active layer on the Point Thomas oasis, King George Island is in average about 100−150 cm, while on the Argentine Islands it is 40−50 cm, which is caused by clima...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний антарктичний науковий центр МОН України
2015
|
Назва видання: | Український антарктичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/129691 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data / E.V. Abakumov, I.Yu. Parnikoza // Український антарктичний журнал. — 2015. — № 14. — С. 138-142. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-129691 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1296912018-01-27T03:03:14Z Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data Abakumov, E.V. Parnikoza, I.Yu. Біологічні дослідження The deepness of soil-permafrost layer was measured by vertical electrical resistivity sounding. It has been revealed that the deepness of active layer on the Point Thomas oasis, King George Island is in average about 100−150 cm, while on the Argentine Islands it is 40−50 cm, which is caused by climatic conditions. Weak soils of the Argentine Islands are connected to permafrost via the massive rock, while in case of Point Thomas oasis (King-George Island) fine-coarsy gravel soils are underlayed directly by permafrost. Досліджено глибину ґрунтово-мерзлотної товщі методами вертикального електричного зондування. Встановлено, що товща активного шару ґрунту в оазі Поінт Томас, о. Кінг-Джордж становить 100−150 см, у той час як на Аргентинських островах — 40−50 см, що пов’язано насамперед з рельєфними та кліматичними умовами. Малопотужні ґрунти о-ва Аргентинських островів відчувають вплив мерзлоти через скельну породу, в той час як пухкі дрібноземлисті-щебнисті ґрунти оазису Поінт Томаса о-ва Кінг-Джордж залягають переважно на товщі мерзлого ґрунту. Исследована глубина почвенно-мерзлотной толщи методами вертикального электрического зондирования. Установлено, что толща деятельного слоя почвы оазиса Поинт Томас, о-ва Кинг-Джордж составляет 100−150 см, в то время как на Аргентинских островах — 40−50 см, что связано в первую очередь с рельефными и климатическими условиями. Маломощные почвы Аргентинских островов испытывают влияние мерзлоты через скальную породу, в то время как рыхлые мелкоземисто-щебнистые почвы оазиса Поинт Томаса о-ва Кинг-Джордж залегают, в основном, непосредственно на толще мерзлой почвы. 2015 Article Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data / E.V. Abakumov, I.Yu. Parnikoza // Український антарктичний журнал. — 2015. — № 14. — С. 138-142. — Бібліогр.: 16 назв. — англ. 1727-7485 http://dspace.nbuv.gov.ua/handle/123456789/129691 631-38 en Український антарктичний журнал Національний антарктичний науковий центр МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Біологічні дослідження Біологічні дослідження |
spellingShingle |
Біологічні дослідження Біологічні дослідження Abakumov, E.V. Parnikoza, I.Yu. Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data Український антарктичний журнал |
description |
The deepness of soil-permafrost layer was measured by vertical electrical resistivity sounding. It has been revealed that the deepness of active layer on the Point Thomas oasis, King George Island is in average about 100−150 cm, while on the Argentine Islands it is 40−50 cm, which is caused by climatic conditions. Weak soils of the Argentine Islands are connected to permafrost via the massive rock, while in case of Point Thomas oasis (King-George Island) fine-coarsy gravel soils are underlayed directly by permafrost. |
format |
Article |
author |
Abakumov, E.V. Parnikoza, I.Yu. |
author_facet |
Abakumov, E.V. Parnikoza, I.Yu. |
author_sort |
Abakumov, E.V. |
title |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data |
title_short |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data |
title_full |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data |
title_fullStr |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data |
title_full_unstemmed |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data |
title_sort |
determination of the soil-permafrost border in selected plots of аntarctic peninsula on the base of vertical electric sounding data |
publisher |
Національний антарктичний науковий центр МОН України |
publishDate |
2015 |
topic_facet |
Біологічні дослідження |
url |
http://dspace.nbuv.gov.ua/handle/123456789/129691 |
citation_txt |
Determination of the soil-permafrost border in selected plots of Аntarctic peninsula on the base of vertical electric sounding data / E.V. Abakumov, I.Yu. Parnikoza // Український антарктичний журнал. — 2015. — № 14. — С. 138-142. — Бібліогр.: 16 назв. — англ. |
series |
Український антарктичний журнал |
work_keys_str_mv |
AT abakumovev determinationofthesoilpermafrostborderinselectedplotsofantarcticpeninsulaonthebaseofverticalelectricsoundingdata AT parnikozaiyu determinationofthesoilpermafrostborderinselectedplotsofantarcticpeninsulaonthebaseofverticalelectricsoundingdata |
first_indexed |
2025-07-09T11:59:39Z |
last_indexed |
2025-07-09T11:59:39Z |
_version_ |
1837170564209311744 |
fulltext |
138
УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ ЖУРНАЛ
УАЖ, №14, 138—142 (2015)
БІОЛОГІЧНІ
ДОСЛІДЖЕННЯ
UDC 631-38
DETERMINATION OF THE SOIL-PERMAFROST BORDER IN TWO MARITIME
ANTARCTIC REGIONS ON THE BASE OF VERTICAL ELECTRIC
SOUNDING DATA
E. V. Abakumov1, I. Yu. Parnikoza2
1 Saint-Petersburg State University, Saint-Petersburg, Russia, e_abakumov@mail.ru
2 Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo
Str., 150, Kyiv, 03680, Ukraine, Parnikoza@gmail.com
Abstract. The deepness of soil-permafrost layer was measured by vertical electrical resistivity sounding. It has been
revealed that the deepness of active layer on the Point Thomas oasis, King George Island is in average about 100−150
cm, while on the Argentine Islands it is 40−50 cm, which is caused by climatic conditions. Weak soils of the Argentine
Islands are connected to permafrost via the massive rock, while in case of Point Thomas oasis (King-George Island)
fine-coarsy gravel soils are underlayed directly by permafrost.
Key words: electric resistivity, permafrost, soils, maritime Antarctica, active layer
Визначення межі грунтової мерзлоти за допомогою вертикального електричного зондування у двох регі-
онах Морської Антарктики.
Є. В. Абакумов, І. Ю. Парнікоза
Реферат. Досліджено глибину ґрунтово-мерзлотної товщі методами вертикального електричного зондування.
Встановлено, що товща активного шару ґрунту в оазі Поінт Томас, о. Кінг-Джордж становить 100−150 см, у той
час як на Аргентинських островах — 40−50 см, що пов’язано насамперед з рельєфними та кліматичними умова-
ми. Малопотужні ґрунти о-ва Аргентинських островів відчувають вплив мерзлоти через скельну породу, в той
час як пухкі дрібноземлисті-щебнисті ґрунти оазису Поінт Томаса о-ва Кінг-Джордж залягають переважно на
товщі мерзлого ґрунту.
Определение границы почвенной мерзлоты с помощью вертикального электрического зондирования в
двух регионах Морской Антарктики.
Е. В. Абакумов, И. Ю. Парникоза
Исследована глубина почвенно-мерзлотной толщи методами вертикального электрического зондирования.
Установлено, что толща деятельного слоя почвы оазиса Поинт Томас, о-ва Кинг-Джордж составляет 100−150
см, в то время как на Аргентинских островах — 40−50 см, что связано в первую очередь с рельефными и кли-
матическими условиями. Маломощные почвы Аргентинских островов испытывают влияние мерзлоты через
скальную породу, в то время как рыхлые мелкоземисто-щебнистые почвы оазиса Поинт Томаса о-ва Кинг-
Джордж залегают, в основном, непосредственно на толще мерзлой почвы.
139
E. V. Abakumov, I. Yu. Parnikoza
DETERMINATION OF THE SOIL-PERMAFROST BORDER IN TWO MARITIME ANTARCTIC REGIONS
OF ANTARCTIC PENINSULA ON THE BASE OF VERTICAL ELECTRIC SOUNDING DATA
1. Introduction
Maritime Antarctica is zone of very developed soil formation in comparison with continental
Antarctica (Abakumov, 2011). But in different regions this processes have differ intensivity (Abakumov,
2010; Parnikoza et al., 2011). Active layer thickness and the depth of the permafrost layer are the basic
features of soil cover of the Antarctic region, but level of study of these characteristics for Antarctic soils is
not satisfactory. Additionally the depth of the permafrost can be assessed by different direct or indirect
methods. The classic method is to dig the soil profile or to drill the soil mass with the aim of fixing the
border of the active layer and permafrost morphologically. Nowadays, direct-current resistivity (DC
resistivity) methods have to been used for the identification of permafrost depth and soil profile heterogeneity.
These geophysical methods have many advantages (Scot et al., 1990, Korchagin et al., 2013) and have been
widely used for permafrost identification (Hauck and Muchel, 1999). One of the main advantages of these
methods is that the equipment is portable and easy to handle. The second one is the ability to detect the
permafrost depth without so invasive drilling or soil-pit preparation.
The one-dimensional model is known to be effective for mapping of the permafrost depth in
relatively homogenous conditions, whereas the two-dimensional approach was proposed for plots with a
high degree of inhomogeneity (Hauck and Muchel, 1999; Pozdnyakov, 2008). Electric conductivity and
resistance depend on soil chemical composition, especially salt content, texture of the fine earth and soil
moisture content (Pozdnyakov, 2008; Magnin et al. 2015). The method of vertical electrical sounding
(VES) allows us to identify contrast soil horizons and layers changes in vertical scale and provides the
precise information about solum-parent material organization. On the basis of the published data
(Pozdnyakov et al., 1996; Hauck and Muchel, 1999; Smernikov et al., 2008; Vanhala et al., 2009; Turu I
Michels and Ros Visus, 2013) we suppose that there are essential changes in values of electrical resistance
(ER) on the border of the soil and permafrost.
So this work was aimed to identify the depth of permafrost and active layer thickness in different
maritime Antarctic regions by ER method.
2. Materials and Methods
During 18-th Ukraine Antarctic Expedition soil-permafrost complexes has been investigated on the
central Argentine Islands − Galindez and Winter Islands in the vicinities of Ukrainian Vernadsky base, S
65.245686°, W 64.257051°) and on the Point Thomas oasis, King George Island, in surroundings of the
Polish Arсtowski base, S 62.160250°, W 58.473882°. Argentine Islands Archipelago is situated in 5−7 km
far from the western coast of Antarctic Peninsula al part (Graham Land, Kyiv Peninsula). It consist of 15
small islands with the total area about 10 km2. The biggest islands are: Galindez, Uruguay, Skua, Winter,
Grotto, Corner, Irizar with average area of every one about 1 km2 (Govorukha, 1997). Argentine Islands
presented by elevations of submarine plateau, formed by volcanic rocks. Weathering of volcanic rocks re-
sults in formation of hills relief in periglacal landscape. The most typical hill is Woozle Hill on Galindez
Island (51 m height). The ridges are also places for current soil formation mainly for Leptosols or Lithosols
(Kozeretska et al., 2015). It is divided each from other by permanent snow layers, were sometimes streams
form in the spring. The gravel beaches aren’t typical for investigated Islands, and occupied small area. The
Point Thomas oasis is the area of abrasion accumulation. In front of some retreating glaciers, young lagoons
occur, what are separated from the main part of the bay by underwater ridges or slightly emergent peninsu-
las of sand and rocks, representing frontal moraines (Rakusa-Suszczewski, 2002). There is deglaciation on
the territory of oasis, new fresh sediments are colonized by plants and show the evident features of initial
soil formation (see Abakumov, 2011). The main factors that influence on biological and chemical processes
in both studied regions are increase of minimum winter air temperature, increase in the number of the
freeze-thaw cycles, temperature limit, decrease in summer precipitation, relatively rapid deglaciation on
lend, decrease in extent of sea ice (Rakusa-Suszczewski, 2002).
There were 4 and 3 VERS (vertical electric resistivity sounding) measurements in Argentine Islands
and King George Island correspondingly. Study sites of the Argentine Island were presented by:
1. Winter Island, Wordie House Point, Angelica Thumb, мassive rock, covered by lichens and moss-
es, S 65.250210°, W 64.255630°, 8 m.a.s.l.;
2. Galindez Island, Stella Ridge northern margin near Fairy Meadow, Leptosol 5 cm deep under-
layed by andesite massive rock, covered by sparse lichens, S 65.247500°, W 64.248993°, 23 m.a.s.l.;
3. Galindez Island, Sterna Point, zone of Galindez glacier retreat, coarse ground of the moraine gla-
cial genesis with sparse lichens and mosses, S 65.251230°, W 64.251620°, 9 m.a.s.l.;
140
E. V. Abakumov, I. Yu. Parnikoza
DETERMINATION OF THE SOIL-PERMAFROST BORDER IN TWO MARITIME ANTARCTIC REGIONS
OF ANTARCTIC PENINSULA ON THE BASE OF VERTICAL ELECTRIC SOUNDING DATA
4. Galindez Island, Coarse textured Leptosol underplayed by andesite massive rock, mosses cover
and Usnea antarctica Du Rietz formation on rock, S 65.248440°, W 64.246620°, 44 m.a.s.l.;
Study sites of the Point Thomas oasis were presented by:
1. Fresh gravel moraine in zone of deglaciation near Ecology Glacier, start of plant colonization by
mosses and both vascular plants − cover not more than 1 %, S 62.166480°, W 58.468290°, 30 m.a.s.l;
2. 40 m on south-west from Puchalski grave, 90% vegetation cover of both vascular plants, mosses
and lichens, Cryosol with the boulders on the surface; S 62.163660°, W 58.469710°, 28 m.a.s.l;
3. Slope of hill in W. Puchalski grave point, 90% vegetation cover of both vascular plants, mosses
and lichens, Leptosol, underplayed by a granite massive rock; S 62.163660°, W 58.469710°, 28 m.a.s.l.
The ER was measured directly in the soil profiles using the vertical electrical resistivity sounding
(VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from
the soil surface. The resistivity measurements were performed using four-electrode arrays of the AMNB
configuration. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements
in this study. A VES modification with shorter electrode spans was used to study the upper 0 to 3-m thick
layer in greater detail. The distance between the A and B electrodes ranged from 5 to 300 cm. The soils had
been ‘sounded’ thoroughly and found to vary between 5 cm and 3–5 m in depth. As it was substantiated
previously that the depths of VES coverage are the same as the distance between electrodes A and B, we
have therefore measured the ER values at the minimum depth of 5 cm and values were collected for
maximum depths of about 3 m. Field data were recalculated to the specific values following by
recommendations of Pozdnyakov (1996, 2008).
3. Results and discussion
Processed data of electric resistivity measurements within the soil depth are shown in the Fig. 1 for the
Argentine Islands and Fig. 2 for Point Thomas oasis correspondingly. All the soils and substrates, investigated
show an increasing of specified electrical resistivity within the soil depth. This is typical for soils, underlayed
by permafrost, as well as for grounds, without any features of soils formation. This fact confirms the hypothesis,
that electric resistivity in high scales caused mostly by permafrost abundance that by organic matter content or
other factors. The depth of the permafrost the uppermost permafrost layer is about 40−50 cm for Galindez
Island. In all investigated plots the permafrost not faced with friable ground or fine textured soil. Permafrost
uppermost layer is situated in massive rock, which can be separated into active layer and frozen one.
Fig. 1. The vertical electrical resistivity sounding results for Argentine Islands study sites,
141
E. V. Abakumov, I. Yu. Parnikoza
DETERMINATION OF THE SOIL-PERMAFROST BORDER IN TWO MARITIME ANTARCTIC REGIONS
OF ANTARCTIC PENINSULA ON THE BASE OF VERTICAL ELECTRIC SOUNDING DATA
Specific Electric Resistivity, Om*m
Fig. 2. The vertical electrical resistivity for Point Thomas oasis study sites, Specific Electric Resistivity, Om*m
Soils of Point Thomas oasis show the same trends of rapid increasing of resistance within the
ground depth. The main difference of the Point Thomas oasis sites from Argentine Islands one is the
higher thickness of the active layer — 100−150 cm. Geological (thick layers of friable ground) cause
this and climatic conditions, namely, King George Island situated in relatively warm zone of maritime
Antarctica near 400 km on north from Argentine Islands. In previous studies was shown that soil for-
mation processes in King George Island go ahead in comparison with Argentine Island area (Korsun
et al., 2008; Parnikoza et al., 2011). Analyzing the curves of resistance in Point Thomas oasis study
sites was shown that first increasing is deeper that 100 cm, after what the second maximum is possible
deeper than 200 cm. This can be interpreted that zone between 100−200 cm are dynamic layer,
changed from year to year, with cracks, accumulated melted soil materials and spots of not degraded
permafrost. This hypothesis supported by those facts that in case of massive rock there are not 2 peaks
of permafrost.
4. Conclusions
Field measurements of VERS allow assessing the depth of the soil and base material active layers
in conditions of Antarctic Peninsula. It was shown, that on the area of Argentine Islands the soils general-
ly not contact directly with permafrost layer and they are fenced off from permafrost by not frozen mas-
sive rock. Thus they can be classified like Leptosols or Lithosols, but not Cryosols, because there is no
mass turnover in soil profile. In opposite, in case of Point Thomas oasis there is both type of soil — per-
mafrost layer. The first is typical for Argentine Islands where friable soil is sub laid by rock. The second
one is while friable soil faced to permafrost without transitional massive layer. In general, the average
deepness of the active layer is about 40-50 cm in Argentine Islands, while it is 100−150 cm in Point
Thomas oasis, King George Island.
Acknowledgments. This work was partially supported by Russian Foundation for Basic research, grants №
15-04-06118-а, 16-34-60010 and realized in frame of join project between NASU and PAS “Adaptive strategy of mu-
tual survival of organisms in extreme environments”, 2015−17. Authors also thanks National Antarctic Scientific centre
of Ukraine Ministry of Education and Science of Ukraine and Antarctic Biology Department of Polish Institute of
Biochemistry and Biophysics Polish Academy of Sciences, National Science Foundation (USA), teams of Vernadsky
and Arctowski bases for possibility to provide work in both Antarctic regions. We also thank V. Lytvynov, I. Moroz, Dr.
V. Papitashvili, Dr. I. Kozeretska and Prof. V. Kunakh for assistance in this work.
142
E. V. Abakumov, I. Yu. Parnikoza
DETERMINATION OF THE SOIL-PERMAFROST BORDER IN TWO MARITIME ANTARCTIC REGIONS
OF ANTARCTIC PENINSULA ON THE BASE OF VERTICAL ELECTRIC SOUNDING DATA
References
1. Abakumov E. V. Particle size distribution in soils of West Antarctica // Eurasian Soil Science. —
2010. — V. 43. — P. 297−304.
2. Abakumov E. V. Soils of Western Antarctica. Saint-Petersburg, 2011. — 112 p.
3. Govorukha L. S. Short geographical and glaciological characteristic of Argentine Islands Archipelago //
Ukrainian Antarctic Сenter Bulletin. — Vol. 1. — 1997. — P. 17−19.
4. Hauk C., Muhl D.V., Using D. C. Resistivity tomography to detect and characterize mountain per-
mafrost // EAGE 61st Conference and Technical Expedition, Helsinki-Finland, 7−11 June 1999. − P. 273 — 284.
[http://www.researchgate.net/publication/227651251].
5. Korchagin I. N., Solovyov V. D., Bakhmutov V. G., Levashov S. P., Yakymchuk N. A., Bozhe-
zha D. N. New crustal models of Drake Passage and the hydrocarbon reservoir searching in the Antarctic Pen-
insula continental margin structures (by the 17th Ukrainian Antarctic Expedition results) // Ukranian Antrarctic
Journal. — 2013. — № 12. — P. 21−29.
6. Korsun S., Kozeretska I., Parnikoza I., Skarivska L., Lugovska K., Klimenko I. Effect of natural and
anthropogenic factors on the chemical composition of soils of the King George in littoral Antarctic // Agroeco-
logical Journal. — 2008. — № 4. — P. 45−52.
7. Kozeretska I., Parnikoza I., Abakumov E., Shvydun P., Korsun S. The soils of Argentine Islands:
diversity of organic matter on the edge of life / 26th International Congress on Polar Research: High latitudes
and high mountains: driver of or driven by global change? 6 — 11 September 2015, Munich, Germany, German
Society for Polar Research. — P. 86−87.
8. Magnin F., Krautblatter M., Deline P., Ravanel L., Malet E., Bevington A. Determination of warm,
sensitive permafrost areas in near-vertical rockwalls and evaluation of distributed models by electrical resistivity
tomography // Journal of Geophysical Research. — 2015. — In press.
9. Parnikoza I., Korsun S., Kozeretska I., Kunakh V. A Discussion Note on Soil Development under the
Influence of Terrestrial Vegetation at two Distant Regions of the maritime Antarctic // Polarforschung, 2011. —
80 (3). — P. 181−185, hdl:10013/epic.38394.d001
10. Pozdnyakov A. I. Electrical parameters of soils and pedogenesis // Eurasian Soil Science. — 2008. —
10. — P. 1050−1058
11. Pozdnyakov A. I., Pozdnyakova L. A., Pozdnyakova D. A. Constant Electric Fields in Soils. —
1996. — P. 1−360.
12. Rakusa-Suszewski S. King George Islands — South Shetland Islands, maritime Antarctic. In: Beyer
and Bolter (eds.) Geoecology of Antarctic Icefree Coastal Landscapes. Ecological Studies 2002. — 156. Spring-
er, Berlin. — 429 p.
13. Scott W., Sellmann P., Hunter J.: Geophysics in the study of permafrost, Geotechnical and Environ-
mental Geophysics, ed. S.Ward, Soc. of Expl. Geoph., Tulsa. − P. 355−384.
14. Smernikov S. A., Pozdnyakov A. I., Shein E. V. Assessment of soil flooding in cities by electrohpys-
ical methods. Eurasian Soil Science, 2008. — 10. — P. 1059−1065
15. Turu I Michels V., Ros Visus X. Geophysical survey carried out in the Hansbreen glacial front
(Hornsund, SW Spitzberguen): Surface Nuclear Magnetic Resonance (SNMR), Magnetic susceptibility of rocks
and Electrical Resistivity facies: Permafrost identification and subglacial aquifers // IV Congreso Ibérico de la
I.P.A. Núria (Vall de Ribes, Pirineo oriental), junio 2013 [http://www.igeotest.ad/igeofundacio/Activitats/Docs/
PDF/Abstract%20Hansbreen.pdf].
16. Vanhala H., Lintinen P., Ojala A. Electrical Resistivity Study of Permafrost on Ridnitšohkka Fell in
Northwest Lapland, Finland // Geophysica. — 2009. — 45(1–2). — P. 103–118.
|