Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radia...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України
2016
|
Назва видання: | Ядерна та радіаційна безпека |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/129829 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-129829 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1298292018-01-30T03:03:59Z Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities Iarmosh, I. Olkhovyk, Yu. For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of RW to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of ⁹⁰Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed. Для разработки стратегии обращения с радиоактивными отходами (РАО), которые планируется размещать в приповерхностных хранилищах для захоронения, необходимо обоснование долгосрочной безопасности таких хранилищ. Это можно сделать с помощью методов математического моделирования для долгосрочных прогнозов радиационных влияний РАО и оценки радиационных рисков от миграции радионуклидов. В статье описан подход к разработке концептуальной математической модели определения максимальной активности РАО для безопасного захоронения в приповерхностных хранилищах и ее апробирование на примере одного из хранилищ комплекса «Вектор» — Лот 3 (Чернобыльская зона отчуждения). Предложена концептуальная модель миграции ⁹⁰Sr из Лота 3 через почвы зоны аэрации и водоносного горизонта. Даны предложения по дальнейшему усовершенствованию модели. Для розробки стратегії поводження з радіоактивними відходами (РАВ), які планується розміщувати в приповерхневих сховищах для захоронення, необхідне обґрунтування довгострокової безпеки таких сховищ. Це можна зробити за допомогою методів математичного моделювання для довгострокових прогнозів радіаційних впливів РАВ та оцінки радіаційних ризиків від міграції радіонуклідів. У статті описано підхід до розробки концептуальної математичної моделі визначення максимальної активності РАВ для безпечного захоронення в приповерхневих сховищах та її апробування на прикладі одного зі сховищ комплексу «Вектор» — Лот 3 (Чорнобильська зона відчуження). Запропоновано концептуальну модель міграції ⁹⁰Sr з Лоту 3 через ґрунти зони аерації та водоносного горизонту. Наведено пропозиції для подальшого удосконалення моделі. 2016 Article Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ. 2073-6231 http://dspace.nbuv.gov.ua/handle/123456789/129829 621.039.74:517.9 en Ядерна та радіаційна безпека Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of RW to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of ⁹⁰Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed. |
format |
Article |
author |
Iarmosh, I. Olkhovyk, Yu. |
spellingShingle |
Iarmosh, I. Olkhovyk, Yu. Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities Ядерна та радіаційна безпека |
author_facet |
Iarmosh, I. Olkhovyk, Yu. |
author_sort |
Iarmosh, I. |
title |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities |
title_short |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities |
title_full |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities |
title_fullStr |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities |
title_full_unstemmed |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities |
title_sort |
conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities |
publisher |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/129829 |
citation_txt |
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ. |
series |
Ядерна та радіаційна безпека |
work_keys_str_mv |
AT iarmoshi conceptualmodeltodeterminemaximumactivityofradioactivewasteinnearsurfacedisposalfacilities AT olkhovykyu conceptualmodeltodeterminemaximumactivityofradioactivewasteinnearsurfacedisposalfacilities |
first_indexed |
2025-07-09T12:15:15Z |
last_indexed |
2025-07-09T12:15:15Z |
_version_ |
1837171547753676800 |
fulltext |
ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 61
UDC 621.039.74:517.9
I. Iarmosh1, Yu. Olkhovyk2
1State Enterprise “State Scientific and Technical Center
for Nuclear and Radiation Safety”, Kiev, Ukraine
2State Institution “Institute of Environmental Geochemistry
of National Academy of Sciences of Ukraine”, Kiev, Ukraine
Conceptual Model
to Determine Maximum
Activity of Radioactive Waste
in Near-Surface Disposal
Facilities
For development of the management strategy for radioactive waste
(RW) to be placed in near-surface disposal facilities (NSDF), it is necessary
to justify long-term safety of such facilities. Use of mathematical modelling
methods for long-term forecasts of RW radiation impacts and assessment
of radiation risks from radionuclides migration can help to resolve this issue.
The purpose of the research was to develop the conceptual model for
determining the maximum activity of RW to be safely disposed in the NSDF
and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone).
This paper describes an approach to the development of such a model.
The conceptual model of 90Sr migration from Lot 3 through aeration zone
and aquifer soils was developed. The results of modelling are shown.
The proposals on further steps for the model improvement were developed.
K e y w o r d s: conceptual model, radioactive waste, near-surface
disposal facilities, 90Sr, migration, radionuclide distribution coefficient.
І. В. Ярмош, Ю. О. Ольховик
Концептуальна модель визначення максимальної
активності радіоактивних відходів у приповерхневих
сховищах для захоронення
Для розробки стратегії поводження з радіоактивними відходами
(РАВ), які планується розміщувати в приповерхневих сховищах для за-
хоронення, необхідне обґрунтування довгострокової безпеки таких
сховищ. Це можна зробити за допомогою методів математичного мо-
делювання для довгострокових прогнозів радіаційних впливів РАВ
та оцінки радіаційних ризиків від міграції радіонуклідів.
У статті описано підхід до розробки концептуальної математичної
моделі визначення максимальної активності РАВ для безпечного за-
хоронення в приповерхневих сховищах та її апробування на прикладі
одного зі сховищ комплексу «Вектор» — Лот 3 (Чорнобильська зона від-
чуження). Запропоновано концептуальну модель міграції 90Sr з Лоту 3
через ґрунти зони аерації та водоносного горизонту. Наведено пропо-
зиції для подальшого удосконалення моделі.
К л ю ч о в і с л о в а: концептуальна модель, радіоактивні відходи,
приповерхневе сховище, 90Sr, міграція, коефіцієнт розподілення радіо-
нуклідів.
© I. Iarmosh, Yu. Olkhovyk, 2016
O
ne of the fundamental safety principles of RW
management declared by the IAEA [1] is to avoid
imposing an undue burden on future generations.
Therefore, justification of long-term safety
of NSDF is one of the important issues that should
be addressed by the safety case.
According to current RW classification in Ukraine, only
short-lived RW can be disposed in NSDF. For short-lived waste,
levels for clearance from the regulatory control of the nuclear
regulatory body are reached earlier than in 300 years [2].
Therefore, criteria for clearance of radioactive materials from
regulatory control are established only for specific activity
of RW [3]. However, the specific activity in aeration zone
and/or the first aquifer can be increased 300 years after
the facility closure due to leaching of radionuclides. That is
why determination of maximum activity of RW to be disposed
in specific NSDF is very important.
According to Ukrainian legislation [4, 5], it is envisaged
to dispose all short-lived low- and intermediate-level solid RW
on the Vector site. It is located in the Chernobyl exclusion zone
(ChEZ) in Ukraine at a distance of approximately 11 km from
the Chernobyl NPP.
This paper contains an approach for determining
the maximum activity of RW to be disposed in Vector
NSDF (called Lot 3) using mathematical modelling methods.
The model was tested on 90Sr, which is one of the radionuclides
typical for RW inventory of Vector NSDF. The maximum
permissible values of 90Sr activity were calculated for the moment
of the facility closure; in doing so, radioactive decay was taken
into account. The model describes 90Sr migration in the soils
of aeration zone and the first aquifer from Lot 3 NSDF, taking
into account sorption of radionuclides.
The following potential exposure scenario for Lot 3 is
considered for the model development:
300 years after the facility closure, as a result of destruction
of the engineered barriers, all radionuclides release from
the facility and migrate through soils of aeration zone and
the aquifer to the direction of the well with drinking water;
the well is located at a certain distance from the NSDF;
consumption of drinking water from the well is considered
as a source of public exposure.
Hence, period of the facility operation was not taken into
account. This increases the conservativism of the approach
applied in this paper.
Radionuclide migration in geological environment is
determined by a large number of interrelated physical and
chemical processes. Taking into account the complexity and
interdependencies of these processes, it is worthwhile to use
mathematical modelling methods to describe radionuclide
behavior [6].
Parameter of radionuclide sorption. In this paper, sorption
could be considered as a determinative process for migration
of radionuclides through the soils of aeration zone and the first
aquifer.
The following sorption parameter for conceptual model
development was used in this paper.
One of the most important sorption parameters used
to develop models of radionuclide migration in a porous
medium is distribution coefficient Kd between solid and liquid
phases for equilibrium, which is defined as the ratio of specific
activities of radionuclide [7]:
,
spec
s
d spec
aq
A
K
A
= (1)
where Kd — radionuclide distribution coefficient, m3/kg;
spec
sA — specific activity of radionuclide in the solid phase
62 ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016
I. Iarmosh, Yu. Olkhovyk
of the soil, Bq/kg; spec
aqA — volume activity of radionuclide
in the aqueous phase of the soil, Bq/m3.
Kd characterizes sorption of radionuclides by underlying
rocks and allows evaluating their mobility in the soil [8].
Kd value depends on numerous geochemical parameters and
processes such as pH of solution; mineral composition; presence
of organic matter, iron oxides; oxidization / deoxidization
conditions; chemical form of radionuclide etc.
The conceptual model description. The conceptual model is
based on the following input data:
overall size of storage compartment: 18.8 m×24.8 m×7.5 m;
storage configuration: 2 rows of 11 modules, storage sizes
respectively: 206.8 m×49.6 m (Fig. 1) [9];
period of the regulatory control of the facility after its
closure is 300 years [10];
the volume of drinking water consumption for public is
0.8 m3/a [11];
90Sr permissible concentration in drinking water based
on limit of the individual effective exposure dose for the public
(1 mSv/a) [11, 12] is 104 Bq/m3 [11].
Table 1 shows input parameters of the soils used for the model
development [9, 13—16].
The following conservative assumptions were made for
the model development:
in 300 years after the facility closure, all the engineered
barriers are instantly destroyed, all radionuclides in water-soluble
form simultaneously release from the facility to underlying
rocks and migrate toward the well with drinking water;
the scenario of potential exposure takes place for Lot 3 only
because simultaneous destruction of engineered barriers of all
the facilities of the Vector site is too conservative approach;
engineering-geologic elements where radionuclide migration
occurs are represented as 4 blocks, homogeneous as regards
physical and chemical properties: small quartz sand (Layer 3),
red-brown sandy loam (Layer 2), fine-grained sand with clay
lenses (Layer 1) and soils of the first aquifer (Layer 0);
the dimensions of the above-mentioned blocks are
the following: in the case of vertical migration, area of the blocks
is equal to the area of Lot 3 (length×width) and height
of the block is equal to the thickness of the layer; in the case
of horizontal migration through the aquifer, height of the block
is equal to thickness of the aquifer, width of the block is
equal to width of Lot 3 foundation (conservative approach),
and length is equal to the distance from far-end wall Lot 3
to the well;
Lot 3 contains only one radionuclide (90Sr);
the well is located at the distance of 1000 m from Lot 3;
90Sr penetrates into the aquifer only to the depth of several
meters because of low vertical dispersion (5 m assumed
as aquifer thickness);
the value of 90Sr permissible concentration in drinking water
(104 Bq/m3) [11] is not exceeded and is equal to specific activity
90Sr in aqueous phase of the aquifer.
5
The conceptual model description.The conceptual model is based
on the following input data:
overall size of storage compartment: 18.8 m×24.8 m×7.5 m; storage
configuration: 2 rows of 11 modules, storage sizes respectively: 206.8 m×49.6 m
(Fig. 1) [9];
period of the regulatory control of the facility after its closure is 300 years [10];
the volume of drinking water consumption for public is 0.8 m3/a [11];
90Sr permissible concentration in drinking water based on limit
of the individual effective exposure dose for the public (1 mSv/a) [11, 12] is
104 Bq/m3 [11].
Fig. 1. Illustrative layout of Lot 3 NSDF
Table 1 shows input parameters of the soils used for the model development [9,
13—16].
Fig. 1. Illustrative layout of Lot 3 NSDF
Table 1. Input parameters of the soils used for modelling 90Sr migration from Lot 3
to the well through the soils of aeration zone and the first aquifer
Parameter / Layer Layer 3 Layer 2 Layer 1 Layer 0 (The first aquifer)
Concise characteristic of the layer
Small quartz
sand
Red-brown
sandy loam
Fine-grained
sand+clay lenses
Aquifer, medium size sand fluvioglacial
and alluvial- fluvioglacial
Length, m 2.07E+02 2.07E+02 2.07E+02 1.00E+03
Width, m 4.96E+01 4.96E+01 4.96E+01 2.13E+02
Thickness, m 7.50E+00 1.50E+00 1.00E+01 4.00E+01
Volume, m3 7.69E+04 1.54E+04 1.03E+05 8.51E+06
Porosity 3.87E-01 3.79E-01 3.87E-01 3.75E-01
Density of the solid phase, kg/m3 1.84E+03 1.95E+03 1.94E+03 2.01E+03
Mass of the solid phase, kg 7.08E+07 1.35E+07 7.36E+07 9.40E+09
Volume of the solid phase, m3 3.85E+04 6.92E+03 3.80E+04 4.68E+06
Volume of the aqueous phase, m3 3.85E+05 8.46E+03 6.46E+04 3.83E+06
Kd, m
3/kg 2.10E-03 7.00E-03 3.86E-03 4.10E-03
ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 63
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
Fig. 2 shows illustrative conceptual model of 90Sr migration
using above-mentioned blocks. Hence, it is obvious that
the value of 90Sr activity in the place of inlet of 90Sr flow
to the next layer (A0, A1, A2, A3) is equal to the value of 90Sr
activity in the place of outlet of 90Sr flow from the previous
layer taking into account that the inverse task is resolved.
Approach to development of the conceptual model. In this
paper, the 90Sr maximum activity was determined by solving
the inverse task provided that the scenario under which
the radionuclides are leached from Lot 3 and reach the well
would realize.
To develop the conceptual model of calculation of RW
maximum activity in case of Lot 3 NSDF, the approach using
values of radionuclides distribution coefficient Kd for all layers
of soil underlying Lot 3 (soils of aeration zone and the first
aquifer) was considered.
Model structure. For the above-mentioned approach
the following calculation algorithm of 90Sr maximum activity
in RW to be disposed in Lot 3 NSDF is proposed.
1. 90Sr total activity in the layer consists of radionuclide
activity absorbed by the solid phase of the soil and radionuclide
activity in the aqueous phase transferred through this layer.
The value of 90Sr specific activity in aqueous phase is the input
parameter. That is why the determination of 90Sr total activity
in the aqueous phase of layer 0 (the first aquifer) is following:
0 0spec
aq aqaqiA A V= ⋅ , (2)
where 0
aqA — 90Sr total activity in aqueous phase of the layer 0, Bq;
spec
aqiA — 90Sr specific activity in the aqueous phase in layer i
(for layer 0 it is equal to permissible concentration in drinking
water (104 Bq/m3) established by Ukrainian legislation), Bq/m3;
0
aqV — volume of aqueous phase of layer 0, m3.
2. Taking into account the equation (1), 90Sr specific activity
in solid phase of layer 0 is determined as
0
0 0 ,spec spec
ds aqA K A= ⋅ (3)
where 0
spec
aqA — 90Sr specific activity in solid phase of layer 0,
Bq/kg; 0
dK — 90Sr distribution coefficient for layer 0, m3/kg.
3. Determination of 90Sr total activity in the solid phase
of layer 0:
0 0
0 ,spec
s ssA A m= ⋅ (4)
where 0
sm — mass of solid phase of layer 0, kg.
4. Determination of 90Sr activity in the place of inlet of 90Sr
flow to layer 0:
( )0 0 0
0 0 ,spec
s d aqaqA A m K V= ⋅ ⋅ + (5)
where 0A — 90Sr activity in the place of inlet of 90Sr flow
to layer 0, Bq.
5. Determination of 90Sr activity in the place of inlet of 90Sr
flow to i layer (layers 1—3):
0 1 ,
i
i s
i d i
aq
m
A A K
V
= ⋅ ⋅ +
(6)
where iA — 90Sr activity in the place of inlet of 90Sr flow
to i layer (layers 1—3), Bq; i
dK — 90Sr distribution coefficient
for i layer (layers 1—3), m3/kg; i
sm — mass of solid phase
of i layer (layers 1—3), kg; i
aqV – volume of aqueous phase of i
layer (layers 1—3), m3.
The obtained value 90Sr activity in the place of inlet of 90Sr
flow to layer 3 is the value of activity in the bottom of Lot 3
at the moment of destruction of the engineered barriers, i.e.
300 years after the facility closure.
6. Taking into account radioactive decay, the maximum
activity of 90Sr at the moment of the facility closure is calculated
using the following formula:
max 3 ,tA A eλ= ⋅ (7)
where maxA — maximum activity of 90Sr at the moment
of the facility closure, Bq; 3A — 90Sr activity in the place
of inlet of 90Sr flow to layer 3, Bq; λ — decay constant, sec-1;
t — time, sec.
The calculations were carried out using MS Excel software.
Modelling results. This paper contains preliminary results
of the calculation of maximum activity of 90Sr in RW to be
disposed in Vector NSDF (Lot 3). Preliminary results
of modelling of 90Sr maximum activity using Kd approach at
the moment of destruction of engineered barriers:
Layer
name
90Sr calculated maximum activity in the place of inlet
of 90Sr flow to the Layer, Bq
Layer 0 1.65E+10
Layer 1 2.13E+11
Layer 2 4.97E+12
Layer 3 3.54E+13
8
Fig. 2. Simplified illustrative conceptual model of 90Sr migration
through engineering-geologic elements represented as blocks
Approach to development of the conceptual model. In this paper, the 90Sr
maximum activity was determined by solving the inverse task provided that
the scenario under which the radionuclides are leached from Lot 3 and reach the well
would realize.
To develop the conceptual model of calculation of RW maximum activity
in case of Lot 3 NSDF the approach with using the values of radionuclides
Fig. 2. Simplified illustrative conceptual model of 90Sr migration
through engineering-geologic elements represented as blocks
64 ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016
I. Iarmosh, Yu. Olkhovyk
Analysis of the preliminary results shows that the value
of 90Sr maximum total activity at the moment of Lot 3 closure
using Kd approach (4.85E+16 Bq) could be compared with
the values presented in paper [17]. It shows that Kd approach
can be considered as generally acceptable. It confirms
the statement in [18] that soils of the Vector site play significant
role in ensuring long-term safety of RW disposal.
Conclusions
In this paper, a simplified conceptual model for preliminary
estimate of radionuclides maximum total activity in RW to be
disposed in NSDF is shown. This model is based on representing
soil layers where radionuclide migration occurs (aeration zone
and the first aquifer) as blocks. The model was tested in the case
of Vector site NSDF (Lot 3, ChEZ) where all Ukrainian RW
are planned to be disposed. In order to simplify the model, it
is assumed that these RW contain only one radionuclide (90Sr).
The radionuclide distribution coefficient Kd approach was used
for the model development. Based on the above-mentioned
assumptions, the estimated value of 90Sr maximum total activity
to be safely placed in Lot 3 at the moment of the facility closure
is 4.85E+16 Bq.
The modelling results show that Kd approach could be
acceptable as a basis. However, this approach has some
disadvantages. In particular, it does not reveal dependence
of radionuclide activity on volume of the layer where radionuclide
migration takes place. Therefore, the above-mentioned value
could be used only as indicative value. Kd approach should be
further improved taking into account different factors that have
an influence on radionuclide migration.
The developed conceptual model would probably be more
accurate if values of input parameters, in particular, values
of radionuclides Kd, were more reliable. For this purpose
experimental data of Kd values of radionuclides are necessary.
To obtain this information it is necessary to perform additional
comprehensive investigations for soils of Vector site.
References
1. Fundamental Safety Principles. Safety Fundamentals, IAEA,
Vienna, 2006, No. SF-1, 37 p.
2. Law of Ukraine “On Radioactive Waste Management” dated 30
June 1995 No. 255/95-VR, Journal of the Verkhovna Rada of Ukraine,
1995, No. 27, 198 p. (Ukr)
3. Standards, Rules and Regulations: Procedure for Clearance
and Exemption of Radioactive Materials from Regulatory Control
in the framework of Practices (NP 306.4.159–2010), Kyiv, 2010, 17 p.
(Ukr)
4. Law of Ukraine “On National Target Environmental Program
for Radioactive Waste Management” No. 516-VI dated 17 September
2008, Journal of the Verkhovna Rada of Ukraine, 2009, No. 5, 130 p.
(Ukr)
5. Radioactive Waste Management Strategy in Ukraine, Official
Journal of Ukraine, 2009, No. 65, 25 p. (Ukr)
6. Istomin, A.D., Korableva, S.A., Noskov, M.D. (2005), “Math-
ematical Modeling of Migration in the Surface Layer of Soil”, Bulletin
of Tomsk Polytechnic University, No. 3, Vol. 308, pp. 74—78. (Rus)
7. Bondarenko, G.N., Kononenko, L.V., Kolyabina, I.L. (2014),
“Kinetics of Formation of Radionuclides in the Soil as a Key Factor
in Predicting the Ecological State of the Environment”, Kyiv, 202 p.
(Ukr)
8. Dzhepo, S.P., Skalsky A.S., Bugay, D.A., Gudzenko, V.V., Mo-
gilny, S.A., Proskura, N.I. (1995), “Field Research of Radionuclide Mi-
gration in the Area of Temporary Confinement of Radioactive Waste
Rudyi Lis”, Problems of Chornobyl Exclusion Zone, No. 2, pp. 77—84.
(Ukr)
9. Engineered Near-Surface Disposal Facility for Solid Radioac-
tive Waste. Safety Analysis, Report, Revision 1, Additions and Changes,
Revision 2, Chapters 1—6. GSP “Technocenter”, 2009, 228 p. (Ukr)
10. Alekseeva Z.M., Kondratyev S.M., Nikolaev Ie.O., Mykolaichuk
O.A., Makarovska O.A., Rybalka N.V. (2013), “Comprehensive Safe-
ty Assessment of Radioactive Waste Management at the Vector Site”,
No. 2(58), pp. 43—48. (Ukr)
11. State Health and Safety Standards: Radiation Safety Standards
of Ukraine (NRBU-97), Approved by Resolution of Chief State Medi-
cal Doctor of Ukraine No. 62 dated 1 December 1997, Kyiv, 1997,
121 p. (Ukr)
12. Guideline for the Assessment of the Radiological Impact
of the “Vector” Site with Multiple Facilities for Radioactive Waste
Processing, Storage and Disposal: INSC Project UK/TS/39. State Sci-
entific and Technical Center for Nuclear and Radiation Safety, Kyiv,
2013, 38 p.
13. Yarmosh, I. (2014), “Comparative Analysis Of Values Of 90Sr
Distribution Coefficients As In The Case Of Soils Of Chornobyl Exclu-
sion Zone”, Nuclear Energy and the Environment, No. 2 (4), pp. 40—
46. (Ukr)
14. Derivation of Activity Limits for the Disposal of Radioac-
tive Waste in Near Surface Disposal Facilities, IAEA, Vienna, 2003,
IAEA-Tecdoc-1380, 150 p.
15. Olkhovyk, Yu.A., Koromyslychenko, T.I., Gorogotskaya, L.I.,
Sobotovich, E.V. (1992), “Estimation of Sorption Ability of Sandy
Soil in the Near Zone of Chornobyl Nuclear Power Plant”, Reports
of the Academy of Sciences of Ukraine, Math, Science, Engineering
Science, No. 7, pp. 167—171. (Ukr)
16. Materials of Engineering and Geological Investigations on Vec-
tor Complex, Design of Severnaya Site (Buryakovka Site), KIEP, 1992.
(Rus)
17. Olkhovyk, Yu.A. (2015), “Natural Sorption Barrier during
Passive Control of the Vector Site”, Nuclear and Radiation Safety,
No. 3 (67), pp. 43—48. (Rus)
18. Olkhovyk, Yu.A. (2015), “On Protective Properties of Aeration
Zone for Vector Facility Site”, Nuclear Power and the Environment,
No. 2 (6), pp. 65—69. (Ukr)
Received 18.07.2016.
|