Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities

For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radia...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Iarmosh, I., Olkhovyk, Yu.
Формат: Стаття
Мова:English
Опубліковано: Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України 2016
Назва видання:Ядерна та радіаційна безпека
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/129829
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-129829
record_format dspace
spelling irk-123456789-1298292018-01-30T03:03:59Z Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities Iarmosh, I. Olkhovyk, Yu. For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of RW to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of ⁹⁰Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed. Для разработки стратегии обращения с радиоактивными отходами (РАО), которые планируется размещать в приповерхностных хранилищах для захоронения, необходимо обоснование долгосрочной безопасности таких хранилищ. Это можно сделать с помощью методов математического моделирования для долгосрочных прогнозов радиационных влияний РАО и оценки радиационных рисков от миграции радионуклидов. В статье описан подход к разработке концептуальной математической модели определения максимальной активности РАО для безопасного захоронения в приповерхностных хранилищах и ее апробирование на примере одного из хранилищ комплекса «Вектор» — Лот 3 (Чернобыльская зона отчуждения). Предложена концептуальная модель миграции ⁹⁰Sr из Лота 3 через почвы зоны аэрации и водоносного горизонта. Даны предложения по дальнейшему усовершенствованию модели. Для розробки стратегії поводження з радіоактивними відходами (РАВ), які планується розміщувати в приповерхневих сховищах для захоронення, необхідне обґрунтування довгострокової безпеки таких сховищ. Це можна зробити за допомогою методів математичного моделювання для довгострокових прогнозів радіаційних впливів РАВ та оцінки радіаційних ризиків від міграції радіонуклідів. У статті описано підхід до розробки концептуальної математичної моделі визначення максимальної активності РАВ для безпечного захоронення в приповерхневих сховищах та її апробування на прикладі одного зі сховищ комплексу «Вектор» — Лот 3 (Чорнобильська зона відчуження). Запропоновано концептуальну модель міграції ⁹⁰Sr з Лоту 3 через ґрунти зони аерації та водоносного горизонту. Наведено пропозиції для подальшого удосконалення моделі. 2016 Article Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ. 2073-6231 http://dspace.nbuv.gov.ua/handle/123456789/129829 621.039.74:517.9 en Ядерна та радіаційна безпека Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of RW to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of ⁹⁰Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed.
format Article
author Iarmosh, I.
Olkhovyk, Yu.
spellingShingle Iarmosh, I.
Olkhovyk, Yu.
Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
Ядерна та радіаційна безпека
author_facet Iarmosh, I.
Olkhovyk, Yu.
author_sort Iarmosh, I.
title Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
title_short Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
title_full Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
title_fullStr Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
title_full_unstemmed Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities
title_sort conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities
publisher Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/129829
citation_txt Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities / I. Iarmosh, Yu. Olkhovyk // Ядерна та радіаційна безпека. — 2016. — № 3. — С. 60-63. — Бібліогр.: 18 назв. — англ.
series Ядерна та радіаційна безпека
work_keys_str_mv AT iarmoshi conceptualmodeltodeterminemaximumactivityofradioactivewasteinnearsurfacedisposalfacilities
AT olkhovykyu conceptualmodeltodeterminemaximumactivityofradioactivewasteinnearsurfacedisposalfacilities
first_indexed 2025-07-09T12:15:15Z
last_indexed 2025-07-09T12:15:15Z
_version_ 1837171547753676800
fulltext ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 61 UDC 621.039.74:517.9 I. Iarmosh1, Yu. Olkhovyk2 1State Enterprise “State Scientific and Technical Center for Nuclear and Radiation Safety”, Kiev, Ukraine 2State Institution “Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine”, Kiev, Ukraine Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities For development of the management strategy for radioactive waste (RW) to be placed in near-surface disposal facilities (NSDF), it is necessary to justify long-term safety of such facilities. Use of mathematical modelling methods for long-term forecasts of RW radiation impacts and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of RW to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chernobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of 90Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed. K e y w o r d s: conceptual model, radioactive waste, near-surface disposal facilities, 90Sr, migration, radionuclide distribution coefficient. І. В. Ярмош, Ю. О. Ольховик Концептуальна модель визначення максимальної активності радіоактивних відходів у приповерхневих сховищах для захоронення Для розробки стратегії поводження з радіоактивними відходами (РАВ), які планується розміщувати в приповерхневих сховищах для за- хоронення, необхідне обґрунтування довгострокової безпеки таких сховищ. Це можна зробити за допомогою методів математичного мо- делювання для довгострокових прогнозів радіаційних впливів РАВ та оцінки радіаційних ризиків від міграції радіонуклідів. У статті описано підхід до розробки концептуальної математичної моделі визначення максимальної активності РАВ для безпечного за- хоронення в приповерхневих сховищах та її апробування на прикладі одного зі сховищ комплексу «Вектор» — Лот 3 (Чорнобильська зона від- чуження). Запропоновано концептуальну модель міграції 90Sr з Лоту 3 через ґрунти зони аерації та водоносного горизонту. Наведено пропо- зиції для подальшого удосконалення моделі. К л ю ч о в і с л о в а: концептуальна модель, радіоактивні відходи, приповерхневе сховище, 90Sr, міграція, коефіцієнт розподілення радіо- нуклідів. © I. Iarmosh, Yu. Olkhovyk, 2016 O ne of the fundamental safety principles of RW management declared by the IAEA [1] is to avoid imposing an undue burden on future generations. Therefore, justification of long-term safety of NSDF is one of the important issues that should be addressed by the safety case. According to current RW classification in Ukraine, only short-lived RW can be disposed in NSDF. For short-lived waste, levels for clearance from the regulatory control of the nuclear regulatory body are reached earlier than in 300 years [2]. Therefore, criteria for clearance of radioactive materials from regulatory control are established only for specific activity of RW [3]. However, the specific activity in aeration zone and/or the first aquifer can be increased 300 years after the facility closure due to leaching of radionuclides. That is why determination of maximum activity of RW to be disposed in specific NSDF is very important. According to Ukrainian legislation [4, 5], it is envisaged to dispose all short-lived low- and intermediate-level solid RW on the Vector site. It is located in the Chernobyl exclusion zone (ChEZ) in Ukraine at a distance of approximately 11 km from the Chernobyl NPP. This paper contains an approach for determining the maximum activity of RW to be disposed in Vector NSDF (called Lot 3) using mathematical modelling methods. The model was tested on 90Sr, which is one of the radionuclides typical for RW inventory of Vector NSDF. The maximum permissible values of 90Sr activity were calculated for the moment of the facility closure; in doing so, radioactive decay was taken into account. The model describes 90Sr migration in the soils of aeration zone and the first aquifer from Lot 3 NSDF, taking into account sorption of radionuclides. The following potential exposure scenario for Lot 3 is considered for the model development: 300 years after the facility closure, as a result of destruction of the engineered barriers, all radionuclides release from the facility and migrate through soils of aeration zone and the aquifer to the direction of the well with drinking water; the well is located at a certain distance from the NSDF; consumption of drinking water from the well is considered as a source of public exposure. Hence, period of the facility operation was not taken into account. This increases the conservativism of the approach applied in this paper. Radionuclide migration in geological environment is determined by a large number of interrelated physical and chemical processes. Taking into account the complexity and interdependencies of these processes, it is worthwhile to use mathematical modelling methods to describe radionuclide behavior [6]. Parameter of radionuclide sorption. In this paper, sorption could be considered as a determinative process for migration of radionuclides through the soils of aeration zone and the first aquifer. The following sorption parameter for conceptual model development was used in this paper. One of the most important sorption parameters used to develop models of radionuclide migration in a porous medium is distribution coefficient Kd between solid and liquid phases for equilibrium, which is defined as the ratio of specific activities of radionuclide [7]: , spec s d spec aq A K A = (1) where Kd — radionuclide distribution coefficient, m3/kg; spec sA — specific activity of radionuclide in the solid phase 62 ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 I. Iarmosh, Yu. Olkhovyk of the soil, Bq/kg; spec aqA — volume activity of radionuclide in the aqueous phase of the soil, Bq/m3. Kd characterizes sorption of radionuclides by underlying rocks and allows evaluating their mobility in the soil [8]. Kd value depends on numerous geochemical parameters and processes such as pH of solution; mineral composition; presence of organic matter, iron oxides; oxidization / deoxidization conditions; chemical form of radionuclide etc. The conceptual model description. The conceptual model is based on the following input data: overall size of storage compartment: 18.8 m×24.8 m×7.5 m; storage configuration: 2 rows of 11 modules, storage sizes respectively: 206.8 m×49.6 m (Fig. 1) [9]; period of the regulatory control of the facility after its closure is 300 years [10]; the volume of drinking water consumption for public is 0.8 m3/a [11]; 90Sr permissible concentration in drinking water based on limit of the individual effective exposure dose for the public (1 mSv/a) [11, 12] is 104 Bq/m3 [11]. Table 1 shows input parameters of the soils used for the model development [9, 13—16]. The following conservative assumptions were made for the model development: in 300 years after the facility closure, all the engineered barriers are instantly destroyed, all radionuclides in water-soluble form simultaneously release from the facility to underlying rocks and migrate toward the well with drinking water; the scenario of potential exposure takes place for Lot 3 only because simultaneous destruction of engineered barriers of all the facilities of the Vector site is too conservative approach; engineering-geologic elements where radionuclide migration occurs are represented as 4 blocks, homogeneous as regards physical and chemical properties: small quartz sand (Layer 3), red-brown sandy loam (Layer 2), fine-grained sand with clay lenses (Layer 1) and soils of the first aquifer (Layer 0); the dimensions of the above-mentioned blocks are the following: in the case of vertical migration, area of the blocks is equal to the area of Lot 3 (length×width) and height of the block is equal to the thickness of the layer; in the case of horizontal migration through the aquifer, height of the block is equal to thickness of the aquifer, width of the block is equal to width of Lot 3 foundation (conservative approach), and length is equal to the distance from far-end wall Lot 3 to the well; Lot 3 contains only one radionuclide (90Sr); the well is located at the distance of 1000 m from Lot 3; 90Sr penetrates into the aquifer only to the depth of several meters because of low vertical dispersion (5 m assumed as aquifer thickness); the value of 90Sr permissible concentration in drinking water (104 Bq/m3) [11] is not exceeded and is equal to specific activity 90Sr in aqueous phase of the aquifer. 5 The conceptual model description.The conceptual model is based on the following input data: overall size of storage compartment: 18.8 m×24.8 m×7.5 m; storage configuration: 2 rows of 11 modules, storage sizes respectively: 206.8 m×49.6 m (Fig. 1) [9]; period of the regulatory control of the facility after its closure is 300 years [10]; the volume of drinking water consumption for public is 0.8 m3/a [11]; 90Sr permissible concentration in drinking water based on limit of the individual effective exposure dose for the public (1 mSv/a) [11, 12] is 104 Bq/m3 [11]. Fig. 1. Illustrative layout of Lot 3 NSDF Table 1 shows input parameters of the soils used for the model development [9, 13—16]. Fig. 1. Illustrative layout of Lot 3 NSDF Table 1. Input parameters of the soils used for modelling 90Sr migration from Lot 3 to the well through the soils of aeration zone and the first aquifer Parameter / Layer Layer 3 Layer 2 Layer 1 Layer 0 (The first aquifer) Concise characteristic of the layer Small quartz sand Red-brown sandy loam Fine-grained sand+clay lenses Aquifer, medium size sand fluvioglacial and alluvial- fluvioglacial Length, m 2.07E+02 2.07E+02 2.07E+02 1.00E+03 Width, m 4.96E+01 4.96E+01 4.96E+01 2.13E+02 Thickness, m 7.50E+00 1.50E+00 1.00E+01 4.00E+01 Volume, m3 7.69E+04 1.54E+04 1.03E+05 8.51E+06 Porosity 3.87E-01 3.79E-01 3.87E-01 3.75E-01 Density of the solid phase, kg/m3 1.84E+03 1.95E+03 1.94E+03 2.01E+03 Mass of the solid phase, kg 7.08E+07 1.35E+07 7.36E+07 9.40E+09 Volume of the solid phase, m3 3.85E+04 6.92E+03 3.80E+04 4.68E+06 Volume of the aqueous phase, m3 3.85E+05 8.46E+03 6.46E+04 3.83E+06 Kd, m 3/kg 2.10E-03 7.00E-03 3.86E-03 4.10E-03 ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 63 Conceptual Model to Determine Maximum Activity of Radioactive Waste in Near-Surface Disposal Facilities Fig. 2 shows illustrative conceptual model of 90Sr migration using above-mentioned blocks. Hence, it is obvious that the value of 90Sr activity in the place of inlet of 90Sr flow to the next layer (A0, A1, A2, A3) is equal to the value of 90Sr activity in the place of outlet of 90Sr flow from the previous layer taking into account that the inverse task is resolved. Approach to development of the conceptual model. In this paper, the 90Sr maximum activity was determined by solving the inverse task provided that the scenario under which the radionuclides are leached from Lot 3 and reach the well would realize. To develop the conceptual model of calculation of RW maximum activity in case of Lot 3 NSDF, the approach using values of radionuclides distribution coefficient Kd for all layers of soil underlying Lot 3 (soils of aeration zone and the first aquifer) was considered. Model structure. For the above-mentioned approach the following calculation algorithm of 90Sr maximum activity in RW to be disposed in Lot 3 NSDF is proposed. 1. 90Sr total activity in the layer consists of radionuclide activity absorbed by the solid phase of the soil and radionuclide activity in the aqueous phase transferred through this layer. The value of 90Sr specific activity in aqueous phase is the input parameter. That is why the determination of 90Sr total activity in the aqueous phase of layer 0 (the first aquifer) is following: 0 0spec aq aqaqiA A V= ⋅ , (2) where 0 aqA — 90Sr total activity in aqueous phase of the layer 0, Bq; spec aqiA — 90Sr specific activity in the aqueous phase in layer i (for layer 0 it is equal to permissible concentration in drinking water (104 Bq/m3) established by Ukrainian legislation), Bq/m3; 0 aqV — volume of aqueous phase of layer 0, m3. 2. Taking into account the equation (1), 90Sr specific activity in solid phase of layer 0 is determined as 0 0 0 ,spec spec ds aqA K A= ⋅ (3) where 0 spec aqA — 90Sr specific activity in solid phase of layer 0, Bq/kg; 0 dK — 90Sr distribution coefficient for layer 0, m3/kg. 3. Determination of 90Sr total activity in the solid phase of layer 0: 0 0 0 ,spec s ssA A m= ⋅ (4) where 0 sm — mass of solid phase of layer 0, kg. 4. Determination of 90Sr activity in the place of inlet of 90Sr flow to layer 0: ( )0 0 0 0 0 ,spec s d aqaqA A m K V= ⋅ ⋅ + (5) where 0A — 90Sr activity in the place of inlet of 90Sr flow to layer 0, Bq. 5. Determination of 90Sr activity in the place of inlet of 90Sr flow to i layer (layers 1—3): 0 1 , i i s i d i aq m A A K V    = ⋅ ⋅ +      (6) where iA — 90Sr activity in the place of inlet of 90Sr flow to i layer (layers 1—3), Bq; i dK — 90Sr distribution coefficient for i layer (layers 1—3), m3/kg; i sm — mass of solid phase of i layer (layers 1—3), kg; i aqV – volume of aqueous phase of i layer (layers 1—3), m3. The obtained value 90Sr activity in the place of inlet of 90Sr flow to layer 3 is the value of activity in the bottom of Lot 3 at the moment of destruction of the engineered barriers, i.e. 300 years after the facility closure. 6. Taking into account radioactive decay, the maximum activity of 90Sr at the moment of the facility closure is calculated using the following formula: max 3 ,tA A eλ= ⋅ (7) where maxA — maximum activity of 90Sr at the moment of the facility closure, Bq; 3A — 90Sr activity in the place of inlet of 90Sr flow to layer 3, Bq; λ — decay constant, sec-1; t — time, sec. The calculations were carried out using MS Excel software. Modelling results. This paper contains preliminary results of the calculation of maximum activity of 90Sr in RW to be disposed in Vector NSDF (Lot 3). Preliminary results of modelling of 90Sr maximum activity using Kd approach at the moment of destruction of engineered barriers: Layer name 90Sr calculated maximum activity in the place of inlet of 90Sr flow to the Layer, Bq Layer 0 1.65E+10 Layer 1 2.13E+11 Layer 2 4.97E+12 Layer 3 3.54E+13 8 Fig. 2. Simplified illustrative conceptual model of 90Sr migration through engineering-geologic elements represented as blocks Approach to development of the conceptual model. In this paper, the 90Sr maximum activity was determined by solving the inverse task provided that the scenario under which the radionuclides are leached from Lot 3 and reach the well would realize. To develop the conceptual model of calculation of RW maximum activity in case of Lot 3 NSDF the approach with using the values of radionuclides Fig. 2. Simplified illustrative conceptual model of 90Sr migration through engineering-geologic elements represented as blocks 64 ISSN 2073-6231. Ядерна та радіаційна безпека 3(71).2016 I. Iarmosh, Yu. Olkhovyk Analysis of the preliminary results shows that the value of 90Sr maximum total activity at the moment of Lot 3 closure using Kd approach (4.85E+16 Bq) could be compared with the values presented in paper [17]. It shows that Kd approach can be considered as generally acceptable. It confirms the statement in [18] that soils of the Vector site play significant role in ensuring long-term safety of RW disposal. Conclusions In this paper, a simplified conceptual model for preliminary estimate of radionuclides maximum total activity in RW to be disposed in NSDF is shown. This model is based on representing soil layers where radionuclide migration occurs (aeration zone and the first aquifer) as blocks. The model was tested in the case of Vector site NSDF (Lot 3, ChEZ) where all Ukrainian RW are planned to be disposed. In order to simplify the model, it is assumed that these RW contain only one radionuclide (90Sr). The radionuclide distribution coefficient Kd approach was used for the model development. Based on the above-mentioned assumptions, the estimated value of 90Sr maximum total activity to be safely placed in Lot 3 at the moment of the facility closure is 4.85E+16 Bq. The modelling results show that Kd approach could be acceptable as a basis. However, this approach has some disadvantages. In particular, it does not reveal dependence of radionuclide activity on volume of the layer where radionuclide migration takes place. Therefore, the above-mentioned value could be used only as indicative value. Kd approach should be further improved taking into account different factors that have an influence on radionuclide migration. The developed conceptual model would probably be more accurate if values of input parameters, in particular, values of radionuclides Kd, were more reliable. For this purpose experimental data of Kd values of radionuclides are necessary. To obtain this information it is necessary to perform additional comprehensive investigations for soils of Vector site. References 1. Fundamental Safety Principles. Safety Fundamentals, IAEA, Vienna, 2006, No. SF-1, 37 p. 2. Law of Ukraine “On Radioactive Waste Management” dated 30 June 1995 No. 255/95-VR, Journal of the Verkhovna Rada of Ukraine, 1995, No. 27, 198 p. (Ukr) 3. Standards, Rules and Regulations: Procedure for Clearance and Exemption of Radioactive Materials from Regulatory Control in the framework of Practices (NP 306.4.159–2010), Kyiv, 2010, 17 p. (Ukr) 4. Law of Ukraine “On National Target Environmental Program for Radioactive Waste Management” No. 516-VI dated 17 September 2008, Journal of the Verkhovna Rada of Ukraine, 2009, No. 5, 130 p. (Ukr) 5. Radioactive Waste Management Strategy in Ukraine, Official Journal of Ukraine, 2009, No. 65, 25 p. (Ukr) 6. Istomin, A.D., Korableva, S.A., Noskov, M.D. (2005), “Math- ematical Modeling of Migration in the Surface Layer of Soil”, Bulletin of Tomsk Polytechnic University, No. 3, Vol. 308, pp. 74—78. (Rus) 7. Bondarenko, G.N., Kononenko, L.V., Kolyabina, I.L. (2014), “Kinetics of Formation of Radionuclides in the Soil as a Key Factor in Predicting the Ecological State of the Environment”, Kyiv, 202 p. (Ukr) 8. Dzhepo, S.P., Skalsky A.S., Bugay, D.A., Gudzenko, V.V., Mo- gilny, S.A., Proskura, N.I. (1995), “Field Research of Radionuclide Mi- gration in the Area of Temporary Confinement of Radioactive Waste Rudyi Lis”, Problems of Chornobyl Exclusion Zone, No. 2, pp. 77—84. (Ukr) 9. Engineered Near-Surface Disposal Facility for Solid Radioac- tive Waste. Safety Analysis, Report, Revision 1, Additions and Changes, Revision 2, Chapters 1—6. GSP “Technocenter”, 2009, 228 p. (Ukr) 10. Alekseeva Z.M., Kondratyev S.M., Nikolaev Ie.O., Mykolaichuk O.A., Makarovska O.A., Rybalka N.V. (2013), “Comprehensive Safe- ty Assessment of Radioactive Waste Management at the Vector Site”, No. 2(58), pp. 43—48. (Ukr) 11. State Health and Safety Standards: Radiation Safety Standards of Ukraine (NRBU-97), Approved by Resolution of Chief State Medi- cal Doctor of Ukraine No. 62 dated 1 December 1997, Kyiv, 1997, 121 p. (Ukr) 12. Guideline for the Assessment of the Radiological Impact of the “Vector” Site with Multiple Facilities for Radioactive Waste Processing, Storage and Disposal: INSC Project UK/TS/39. State Sci- entific and Technical Center for Nuclear and Radiation Safety, Kyiv, 2013, 38 p. 13. Yarmosh, I. (2014), “Comparative Analysis Of Values Of 90Sr Distribution Coefficients As In The Case Of Soils Of Chornobyl Exclu- sion Zone”, Nuclear Energy and the Environment, No. 2 (4), pp. 40— 46. (Ukr) 14. Derivation of Activity Limits for the Disposal of Radioac- tive Waste in Near Surface Disposal Facilities, IAEA, Vienna, 2003, IAEA-Tecdoc-1380, 150 p. 15. Olkhovyk, Yu.A., Koromyslychenko, T.I., Gorogotskaya, L.I., Sobotovich, E.V. (1992), “Estimation of Sorption Ability of Sandy Soil in the Near Zone of Chornobyl Nuclear Power Plant”, Reports of the Academy of Sciences of Ukraine, Math, Science, Engineering Science, No. 7, pp. 167—171. (Ukr) 16. Materials of Engineering and Geological Investigations on Vec- tor Complex, Design of Severnaya Site (Buryakovka Site), KIEP, 1992. (Rus) 17. Olkhovyk, Yu.A. (2015), “Natural Sorption Barrier during Passive Control of the Vector Site”, Nuclear and Radiation Safety, No. 3 (67), pp. 43—48. (Rus) 18. Olkhovyk, Yu.A. (2015), “On Protective Properties of Aeration Zone for Vector Facility Site”, Nuclear Power and the Environment, No. 2 (6), pp. 65—69. (Ukr) Received 18.07.2016.