Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type

Electrical properties (resistivity and temperature coefficient of resistivity) of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ solid solutions are studied using the model coatings deposited on mica substrate. Analysis of temperature dependences of the resistivity reveals that YGa₂ compound as well as the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Semen’ko, M.P., Bilyavina, N.M., Nakonechna, O.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2017
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/130438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type / M.P. Semen’ko, N.M. Bilyavina, O.I. Nakonechna // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1299-1306. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-130438
record_format dspace
spelling irk-123456789-1304382018-02-14T03:03:43Z Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type Semen’ko, M.P. Bilyavina, N.M. Nakonechna, O.I. Электронные структура и свойства Electrical properties (resistivity and temperature coefficient of resistivity) of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ solid solutions are studied using the model coatings deposited on mica substrate. Analysis of temperature dependences of the resistivity reveals that YGa₂ compound as well as the solid solutions on its base possess a metallic conductivity. Substitution of a certain part of the gallium atoms in YGa₂ compound belonging to AlB₂-type structure with germanium, silicon or aluminium atoms leads to decrease of resistivity in the Ga → Ge → Si → Al series that may be caused by both the nature of atoms themselves and technological parameters of coatings’ preparation (primarily, by their homogeneity). Электрические свойства (электросопротивление и температурный коэффициент электросопротивления) твёрдых растворов Y(Ga,Al)₂, Y(Ga,Si)₂ и Y(Ga,Ge)₂ исследованы с использованием модельных покрытий соответствующих сплавов на слюде. Анализ температурных зависимостей электросопротивления показал, что как соединению YGa₂, так и твёрдым растворам на его основе присущ металлический тип проводимости. Замещение определённой части атомов галлия в соединении YGa₂, которое относится к типу AlB₂, атомами германия, кремния или алюминия приводит к уменьшению электросопротивления в ряду Ga → Ge → Si → Al, что может быть обусловлено как природой самих атомов, так и технологическими особенностями изготовления покрытий (прежде всего, их гомогенностью). Електричні властивості (електроопір і температурний коефіцієнт електроопору) твердих розчинів Y(Ga,Al)₂, Y(Ga,Si)₂ та Y(Ga,Ge)₂ досліджено з використанням модельних покриттів відповідних стопів на слюді. Аналіза температурних залежностей електроопору показала, що як сполука YGa₂, так і тверді розчини на її основі мають металічну провідність. Заміщення певної частини атомів Ґалію в сполуці YGa₂, що належить до структури типу AlB₂, на атоми Ґерманію, Силіцію або Алюмінію приводить до зменшення електроопору в ряду Ga → Ge → Si → Al, що може бути зумовлено як природою самих атомів, так і технологічними особливостями одержання покриттів (перш за все, їх гомогенністю). 2017 Article Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type / M.P. Semen’ko, N.M. Bilyavina, O.I. Nakonechna // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1299-1306. — Бібліогр.: 11 назв. — англ. 1024-1809 PACS: 61.05.cp, 61.66.Dk, 68.37.Hk, 72.15.Eb, 73.61.At, 81.15.Ef, 81.40.Rs untranslated DOI: doi.org/10.15407/mfint.39.10.1299 http://dspace.nbuv.gov.ua/handle/123456789/130438 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Электронные структура и свойства
Электронные структура и свойства
spellingShingle Электронные структура и свойства
Электронные структура и свойства
Semen’ko, M.P.
Bilyavina, N.M.
Nakonechna, O.I.
Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
Металлофизика и новейшие технологии
description Electrical properties (resistivity and temperature coefficient of resistivity) of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ solid solutions are studied using the model coatings deposited on mica substrate. Analysis of temperature dependences of the resistivity reveals that YGa₂ compound as well as the solid solutions on its base possess a metallic conductivity. Substitution of a certain part of the gallium atoms in YGa₂ compound belonging to AlB₂-type structure with germanium, silicon or aluminium atoms leads to decrease of resistivity in the Ga → Ge → Si → Al series that may be caused by both the nature of atoms themselves and technological parameters of coatings’ preparation (primarily, by their homogeneity).
format Article
author Semen’ko, M.P.
Bilyavina, N.M.
Nakonechna, O.I.
author_facet Semen’ko, M.P.
Bilyavina, N.M.
Nakonechna, O.I.
author_sort Semen’ko, M.P.
title Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
title_short Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
title_full Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
title_fullStr Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
title_full_unstemmed Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type
title_sort electrical resistivity of the y(ga,al)₂, y(ga,si)₂ and y(ga,ge)₂ solid solutions with structure of alb₂ type
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2017
topic_facet Электронные структура и свойства
url http://dspace.nbuv.gov.ua/handle/123456789/130438
citation_txt Electrical Resistivity of the Y(Ga,Al)₂, Y(Ga,Si)₂ and Y(Ga,Ge)₂ Solid Solutions with Structure of AlB₂ Type / M.P. Semen’ko, N.M. Bilyavina, O.I. Nakonechna // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1299-1306. — Бібліогр.: 11 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT semenkomp electricalresistivityoftheygaal2ygasi2andygage2solidsolutionswithstructureofalb2type
AT bilyavinanm electricalresistivityoftheygaal2ygasi2andygage2solidsolutionswithstructureofalb2type
AT nakonechnaoi electricalresistivityoftheygaal2ygasi2andygage2solidsolutionswithstructureofalb2type
first_indexed 2025-07-09T13:34:29Z
last_indexed 2025-07-09T13:34:29Z
_version_ 1837176531619676160
fulltext 1299 ЭЛЕКТРОННЫЕ СТРУКТУРА И СВОЙСТВА PACS numbers: 61.05.cp, 61.66.Dk, 68.37.Hk, 72.15.Eb, 73.61.At, 81.15.Ef, 81.40.Rs Electrical Resistivity of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 Solid Solutions with Structure of AlB2 Type M. P. Semen’ko, N. M. Bilyavina, and O. I. Nakonechna Taras Shevchenko National University of Kyiv, Department of Physics, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine Electrical properties (resistivity and temperature coefficient of resistivity) of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions are studied using the model coatings deposited on mica substrate. Analysis of temperature de- pendences of the resistivity reveals that YGa2 compound as well as the solid solutions on its base possess a metallic conductivity. Substitution of a certain part of the gallium atoms in YGa2 compound belonging to AlB2-type structure with germanium, silicon or aluminium atoms leads to decrease of resistivity in the Ga  Ge  Si  Al series that may be caused by both the nature of at- oms themselves and technological parameters of coatings’ preparation (pri- marily, by their homogeneity). Key words: intermetallics, electrical properties, crystal structure, x-ray dif- fraction. Електричні властивості (електроопір і температурний коефіцієнт елект- роопору) твердих розчинів Y(Ga,Al)2, Y(Ga,Si)2 та Y(Ga,Ge)2 досліджено з використанням модельних покриттів відповідних стопів на слюді. Аналі- за температурних залежностей електроопору показала, що як сполука YGa2, так і тверді розчини на її основі мають металічну провідність. За- міщення певної частини атомів Ґалію в сполуці YGa2, що належить до структури типу AlB2, на атоми Ґерманію, Силіцію або Алюмінію приво- дить до зменшення електроопору в ряду Ga  Ge  Si  Al, що може бути зумовлено як природою самих атомів, так і технологічними особливостя- Corresponding author: Nadiya Mykolayivna Bilyavina E-mail: nnbelyavina@gmail.com Please cite this article as: M. P. Semen’ko, N. M. Bilyavina, and O. I. Nakonechna, Electrical Resistivity of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 Solid Solutions with Structure of AlB2 Type, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1299–1306 (2017), DOI: 10.15407/mfint.39.10.1299. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2017, т. 39, № 10, сс. 1299–1306 / DOI: 10.15407/mfint.39.10.1299 Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî â ñîîòâåòñòâèè ñ ëèöåíçèåé 2017 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû) Íàïå÷àòàíî â Óêðàèíå. https://doi.org/10.15407/mfint.39.10.1299 https://doi.org/10.15407/mfint.39.10.1299 1300 M. P. SEMEN’KO, N. M. BILYAVINA, and O. I. NAKONECHNA ми одержання покриттів (перш за все, їх гомогенністю). Ключові слова: інтерметаліди, електричні властивості, кристалічна структура, рентґеноструктурна аналіза. Электрические свойства (электросопротивление и температурный коэф- фициент электросопротивления) твёрдых растворов Y(Ga,Al)2, Y(Ga,Si)2 и Y(Ga,Ge)2 исследованы с использованием модельных покрытий соответ- ствующих сплавов на слюде. Анализ температурных зависимостей элек- тросопротивления показал, что как соединению YGa2, так и твёрдым рас- творам на его основе присущ металлический тип проводимости. Замеще- ние определённой части атомов галлия в соединении YGa2, которое отно- сится к типу AlB2, атомами германия, кремния или алюминия приводит к уменьшению электросопротивления в ряду Ga  Ge  Si  Al, что может быть обусловлено как природой самих атомов, так и технологическими особенностями изготовления покрытий (прежде всего, их гомогенно- стью). Ключевые слова: интерметаллиды, электрические свойства, кристалли- ческая структура, рентгеноструктурный анализ. (Received January 12, 2017; in final version, September 26, 2017) 1. INTRODUCTION Binary intermetallic YGa2 is a congruently melting at 1350C com- pound [1] with the enthalpy of formation defined by the high tempera- ture reaction calorimetry method equals to 64,4 kJ/(gatom) at 298C and 61,8 kJ/(gatom) at 1125C [2]. Gallide YGa2 is crystallized in the AlB2-type structure (a  0.4217 nm, c  0.4111 nm). Structurally Ga atoms in YGa2 are centred the trigonal prism of yttrium atoms and form itself the graphite-like nets. Calculations of the charge density distribution by using the plane wave pseudopotential method have re- vealed that Ga–Ga bond in these gallium nets possess strong covalent nature, which results in shorter distances between Ga atoms [3]. According to Refs. [4–7], in the Y–{Al, Si, Ge}–Ga ternary systems, intermetallic YGa2 forms substitutional solid solutions with homoge- neity regions that extended along the 33.3 at.% Y isoline up to (at.%) 18 Al, 12 Si and 4 Ge, respectively. Moreover, the crystal structure of these solid solutions is characterized by the replacement of some galli- um atoms in the graphite-like nets by atoms of the third component. As far as we know, results on study the electrical and magnetic properties of these solid solutions are not published yet. Thus, it would be fasci- nating and beneficial to study electric properties of this system and to analyse the connection between crystal structure transformations and features of these materials. Here, we present our study of electrical resistivity of the Y(Ga,Al)2, https://en.wikipedia.org/wiki/Graphite ELECTRICAL RESISTIVITY OF THE Y(Ga,Al)2, Y(Ga,Si)2 AND Y(Ga,Ge)2 SOLUTIONS 1301 Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions with the AlB2-type structure. 2. EXPERIMENTAL DETAILS The alloys of the Y–{Al, Si, Ge}–Ga systems (33.3 at.% Y) were pre- pared by arc melting from yttrium (99.8% wt.) and gallium (99.999% wt.) with electrolytic aluminium (99.99% wt.), silicon (99.999% wt.) or germanium (99.999% wt.) under purified argon atmosphere. The metal foils of these alloys have deposited by vacuum resistivity evapo- ration method (W-evaporator) simultaneously on K8 optic glass (of 22 mm diameter) and the mica strips (of 2–3 mm wide) (the tempera- ture of a single folder was about 600) using a standard vacuum VUP- 5M equipment. The compactness, homogeneity, elemental composi- tion, and thickness of the deposited coatings have been monitored by both scanning electron microscopy (SEM) and microprobe analysis (BS- 340 Camebax equipment). X-ray powder diffraction (XRD) data of the alloys and deposited coatings were collected with DRON-3 automatic diffractometer (CuK radiation). The diffraction patterns were obtained in a discrete mode under the scanning parameters as follow: observation range 2  20– 130, step scan is of 0.05, counting time per step is of 3 s. The original software package [8] elaborated for the automated DRON equipment and including full complex of standard Rietveld refinement procedure has been used. This software package is created for the following: de- termination of both peak positions and integral intensities of the Bragg reflections by means of full profile analysis; carrying out quali- tative and quantitative phase analysis using PDF data for phase iden- tification and least square method for lattice-constants’ refinement; testing of the structure models and refining the crystal structure pa- rameters, etc. Resistivity of coatings deposited on mica strips was measured at 300–900 K under purified argon atmosphere by the standard four- probe method with platinum contacts. 3. RESULTS AND DISCUSSION Because of the high fragility of alloys prepared by the arc melting, it was not possible to synthesize thin samples of regular geometric shape being suitable for the resistivity measurements. Therefore, it was de- cided to carry out the measurements on the coatings deposited on mica strips instead of the bulk alloys. Assurance to obtain a coating being isophase to alloy studied is based on following facts. Foremost, YGa2 compound is formed congruently and it is characterized by high en- thalpy of formation (64.4 kJ/(gatom)) [2]. Next, the enthalpy of mix- 1302 M. P. SEMEN’KO, N. M. BILYAVINA, and O. I. NAKONECHNA ing of liquid gallium and yttrium reaches its extreme value near YGa2 stoichiometric composition (at 40 at.% Y) [9]. As a result of deposition mode tuning, the crystalline coatings with chemical and phase compositions relevant to the initial alloys have been synthesized (Table 1, Fig. 1, a). Besides, it was shown that amor- phous thin film or textured coatings ([001] direction) could be pre- pared by varying the temperature of substrate (Fig. 1, b, c). Further improvement of synthesis technology allowed us to prevent the oxida- tion of coating (caused by Y2O3 appearance) as well as the overheating of alloy (caused by the YGa6 formation). SEM study has revealed the compact dendritic structure (Fig. 2) of the most coating obtained, which is quite important to provide the electrical contacts between individual grains. Results of microprobe analysis have shown that the prepared coat- ings are homogeneous enough and contain an additive metal (alumini- um, silicon or germanium) except yttrium and gallium. However, the content of these additive metals in coatings (right part of Table 1) dif- fer from those in initial alloys (left part of Table 1) that causes a change of lattice constant values. Resistivity measurements have been carried out for the coatings TABLE 1. Results of study of the coatings obtained from initial alloys (solid solution on the base of YGa2). No. Initial alloy prepared by arc melting Coating deposited on mica substrate Me1, at.% Phase composi- tion Lattice constant, nm Me2, at.% Phase composition Lattice constant, nm 103, K1 , Оmcm a c a c 1 – YGa2 0.4197(1) 0.4094(1) – YGa2 0.4237(8) 0.4142(8) 1.63(7) 48(2) 2 – Amorphous – – Y–Al–Ga system 3 5 Y(Ga,Al)2 0.4211(8) 0.4094(2) 2(1) Y(Ga,Al)2 0.4198(2) 0.4085(2) 2.46(5) 20(1) 4 10 Y(Ga,Al)2 0.4218(2) 0.4085(2) 3(1) Y(Ga,Al)2 0.4230(1) 0.4119(1) 5 16 Y(Ga,Al)2 0.4234(3) 0.4075(3) 6(2) Y(Ga,Al)2 0.4238(1) 0.4137(1) 6 – Amorphous – – Y–Si–Ga system 7 7 Y(Ga,Si)2 0.4178(1) 0.4086(2) 10(2) Y(Ga,Si)2 0.4240(1) 0.4142(1) 1.72(6) 29(1) 8 – Amorphous – – 9 12 Y(Ga,Si)2 0.4157(2) 0.4079(3) 5(2) Y(Ga,Si)2 0.4222(4) 0.4116(7) 10 8(2) Y(Ga,Si)2 0.4199(9) 0.4103 Y–Ge–Ga system 11 5 Y(Ga,Ge)2 0.4214(2) 0.4130(2) 8(2) Y(Ga,Ge)2 0.4190(4) 0.4106(3) 1.64(5) 33(2) 1 Metal content according to charge composition. 2 Metal content according to microprobe analysis data. ELECTRICAL RESISTIVITY OF THE Y(Ga,Al)2, Y(Ga,Si)2 AND Y(Ga,Ge)2 SOLUTIONS 1303 with the closest to the initial alloy phase and chemical compositions. The typical temperature dependences of electrical resistance (RT/R300) for YGa2 as well as for the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid so- lutions are shown at Fig. 3. The obtained results have revealed that all coatings studied here possess the conductivity of metallic type. By means of analytical treatment of the temperature dependences of resistivity, the tempera- ture coefficient of resistivity () and the electrical resistivity at room temperature () have been determined (Table 1). It should be men- tioned that the thicknesses of the coatings has been determined (dur- ing the study) by microprobe analysis method and its value has been used for the  calculations. So, the study of temperature dependences of electrical resistivity has revealed that YGa2 compound and the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions on its base have the metallic conductivity. a b c Fig. 1. XRD patterns of Y(Ga,Me)2 coatings deposited by different modes: crystalline non-textured coating (a), amorphous coating (b), crystalline coat- ing with [001] texture (c). 1304 M. P. SEMEN’KO, N. M. BILYAVINA, and O. I. NAKONECHNA Moreover, substitution of the gallium atoms onto germanium, sili- con or aluminium ones results in a decrease of the resistivity value as well in increase of temperature coefficient of resistivity as in the Ga  Ge  Si  Al series (Table 1, Fig. 4). It should be noted that ac- Fig. 2. SEM images of the coating contained aluminium (a, b), silicon (c) and germanium (d). Fig. 3. Temperature dependences of the relative electrical resistance RT/R300 for YGa2 compound (marked by ■), Y(Ga,Al)2 (○), Y(Ga,Si)2 (▲) and Y(Ga,Ge)2 () solid solutions. ELECTRICAL RESISTIVITY OF THE Y(Ga,Al)2, Y(Ga,Si)2 AND Y(Ga,Ge)2 SOLUTIONS 1305 cording to the microprobe analysis data the compositions of formed solid solution (8–15 at.% of Me, Table 1) are similar and close to the compositions corresponding to replacement of gallium atom occupied the graphite-like nets in the crystal structure of YGa2 onto an atom of additive metal (Ge, Si or Al). This phenomenon along with Pauli para- magnetism of the gallium rich alloys of these systems [10, 11] indi- cates that the changes in properties of studied solid solutions are caused by the change in the electron concentration. In our opinion, the formation of solid solutions of substitution is ac- companied by a change in the configuration of spd-hybridized atomic orbitals that leads to delocalization of some of the interatomic bonds of the YGa2 compound. This peculiarity causes an increase in the conduc- tion electrons’ concentration and, hence, leads to a change in  values and RT/R300 temperature dependences. The degree of delocalization (the number of delocalized bonds) depends on a size of the component dissolved and determines the changes of resistivity. The tendency of an increase in  values (Fig. 4) is caused by a decrease in  value since   (1/)(d/dT). In general, the specific resistivity is determined not only by concentration of the conduction electrons, but also by defects of the crystal structure and by the microstructure of material as   D  (Т), where D is the temperature-independent contribution from the defects, and (Т) is the temperature-dependent contribution to electrical resistivity. According to data of crystal structure refine- ments, the structural defects (vacancies and included atoms) are ab- sent in the structures of the studied Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions and do not contribute to the D value. Howev- er, parameters indicating the non-homogeneity of the coating (the presence of a dendritic microstructure) can contribute to D. Thus, both these factors, namely the electron concentrations and inhomoge- Fig. 4. Resistivity values () (circles) and the temperature coefficient of the resistivity values () (triangles) for the components solved in YGa2 compound. 1306 M. P. SEMEN’KO, N. M. BILYAVINA, and O. I. NAKONECHNA neity of the obtained coatings, determine the decrease in electrical re- sistivity of the studied solid solutions according to the Ga  Ge  Si   Al series. 4. CONCLUSION Electrical properties (resistivity and temperature coefficient of resis- tivity) of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions have been studied. Based on XRD and electron microprobe analysis results, the deposition modes have been tuned and allowed to synthesize a mod- el coating, which is isophase to the initial alloy. Study of the tempera- ture dependences of electrical resistivity has revealed that YGa2 com- pound as well as the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions on its base have metallic conductivity. Substitution of a certain part of the gallium atoms onto germanium, silicon or aluminium ones leads to a decrease of resistivity in the Ga  Ge  Si  Al series may be caused both by the nature of atoms themselves and by technological parame- ters of coatings’ processing (primarily, by homogeneity). REFERENCES 1. S. P. Yatsenko, A. A. Semyannikov, B. G. Semenov, and K. A. Chuntonov, J. Less-Common Met., 64: 185 (1979). 2. R. Babu, K. Nagarajan, and V. Venugopal, J. Alloys Compd., 311: 200 (2000). 3. M. Sekar, N. V. Chandra Shekar, R. Babu, P. Ch. Sahu, A. K. Sinha, A. Upadhyay, M. N. Singh, K. Ramesh Babu, S. Appalakondaiah, G. Vaitheeswaran, and V. Kanchana, J. Solid State Chemistry, 226: 11 (2015). 4. M. V. Speka, V. Ya. Markiv, M. I. Zakharenko, and N. M. Belyavina, J. Alloys Compd., 348: 138 (2003). 5. M. V. Speka, V. Ya. Markiv, M. I. Zakharenko, and N. M. Belyavina, Doklady Academii Nauk USSR, No. 10: 89 (2002) (in Russian). 6. M. V. Speka, N. M. Belyavina, and V. Ya. Markiv, Vestnik Kievskogo Universiteta. Fiz.-Mat. Nauki, No. 2: 455 (1998) (in Russian). 7. N. M. Belyavina, V. Ya. Markiv, and M. V. Speka, J. Alloys Compd., 283: 162 (1999). 8. V. Markiv and N. Belyavina, Proc. of the Second International Scientific Conference ‘Engineering and Functional Materials’ (Oct. 14–16, 1997) (Lviv: Naukove Tovarystvo im. Shevchenka: 1997), p. 260 (in Russian). 9. V. M. Dubyna, O. A. Bieloborodova, T. M. Zinevich, and N. V. Kotova, Coll. 6th International School-Conference ‘Phase Diagrams in Materials Science’ (Oct. 14–20, 2001) (Kyiv: PDMS VI: 2001), p. 89. 10. M. I. Zakharenko, M. V. Speka, N. M. Belyavina, M. G. Babych, and V. Ya. Markiv, Metallofiz. Noveishie Tekhnol., 28, No. 3: 397 (2006) (in Russian). 11. M. V. Speka, M. I. Zakharenko, M. G. Babich, N. M. Belyavina, and V. Ya. Markiv, J. Alloys Compd., 353: 17 (2003). https://doi.org/10.1016/0022-5088(79)90170-X https://doi.org/10.1016/S0925-8388(00)01132-4 https://doi.org/10.1016/j.jssc.2015.01.030 https://doi.org/10.1016/S0925-8388(02)00800-9 https://doi.org/10.1016/S0925-8388(02)00800-9 https://doi.org/10.1016/S0925-8388(98)00858-5 https://doi.org/10.1016/S0925-8388(98)00858-5 https://doi.org/10.1016/S0925-8388(02)01209-4