The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture
The work analyses a nature of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture for low-carbon microalloyed steel 06Kh1. To reach the purpose of the work, the experiment is carried out. It includes stretching of a series of samples with deformati...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2017
|
Schriftenreihe: | Металлофизика и новейшие технологии |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/130441 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture / D.V. Laukhin, O.V. Beketov, N.O. Rott, I.A. Tyuterev, S.V. Ivantsov, V.D. Laukhin // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1335-1343. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-130441 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1304412018-02-14T03:03:42Z The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture Laukhin, D.V. Beketov, O.V. Rott, N.O. Tyuterev, I.A. Ivantsov, S.V. Laukhin, V.D. Физика прочности и пластичности The work analyses a nature of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture for low-carbon microalloyed steel 06Kh1. To reach the purpose of the work, the experiment is carried out. It includes stretching of a series of samples with deformation deceleration after reaching a certain level of loading. The study of the corresponding samples shows that the stage of crack origination is made through blocking the propagation of spreading the plastic deformation by the separation surfaces of the general and special types. At the same time, it is determined that the second stage (growth of microcracks) develops due to the simultaneous action of two mechanisms: accumulation of dislocations (the Cottrell model) and aggregation of several microcracks into single one. В работе проанализирован характер взаимосвязи между кинетикой распространения пластической деформации и зарождением вязкого разрушения для низкоуглеродистой микролегированной стали 06Х1. Для достижения поставленной в работе цели был осуществлён эксперимент, который включал растяжение серии образцов с торможением деформации при достижении определённого уровня нагрузки. Исследование соответствующих образцов показали, что на стадии зарождения трещины её рост осуществляется путём блокирования распространения пластической деформации поверхностями раздела как общего, так и специального типа. Вместе с этим установлено, что вторая стадия (рост микротрещин) происходит за счёт одновременного действия двух механизмов: дислокационного накопления (модель Коттрелла) и объединения нескольких микротрещин в одну. У роботі проаналізовано характер взаємозв’язку між кінетикою поширення пластичної деформації та зародженням в’язкого руйнування для низьковуглецевої мікролеґованої сталі 06Х1. Для досягнення поставленої в роботі мети було здійснено експеримент, який включав розтягання серії зразків з гальмуванням деформації по досягненні певного рівня навантаження. Дослідження відповідних зразків показали, що на стадії зародження тріщини її зростання здійснюється шляхом блокування поширення пластичної деформації поверхнями поділу як загального, так і спеціяльного типу. Разом з цим встановлено, що друга стадія (зростання мікротріщин) відбувається за рахунок одночасної дії двох механізмів: дислокаційного накопичення (модель Коттрелла) й об’єднання кількох мікротріщин в одну. 2017 Article The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture / D.V. Laukhin, O.V. Beketov, N.O. Rott, I.A. Tyuterev, S.V. Ivantsov, V.D. Laukhin // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1335-1343. — Бібліогр.: 11 назв. — англ. 1024-1809 PACS: 62.20.mm, 62.20.mt, 68.37.Hk, 81.05.Bx, 81.40.Lm, 81.40.Np, 83.60.Uv DOI: doi.org/10.15407/mfint.39.10.1335 http://dspace.nbuv.gov.ua/handle/123456789/130441 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика прочности и пластичности Физика прочности и пластичности |
spellingShingle |
Физика прочности и пластичности Физика прочности и пластичности Laukhin, D.V. Beketov, O.V. Rott, N.O. Tyuterev, I.A. Ivantsov, S.V. Laukhin, V.D. The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture Металлофизика и новейшие технологии |
description |
The work analyses a nature of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture for low-carbon microalloyed steel 06Kh1. To reach the purpose of the work, the experiment is carried out. It includes stretching of a series of samples with deformation deceleration after reaching a certain level of loading. The study of the corresponding samples shows that the stage of crack origination is made through blocking the propagation of spreading the plastic deformation by the separation surfaces of the general and special types. At the same time, it is determined that the second stage (growth of microcracks) develops due to the simultaneous action of two mechanisms: accumulation of dislocations (the Cottrell model) and aggregation of several microcracks into single one. |
format |
Article |
author |
Laukhin, D.V. Beketov, O.V. Rott, N.O. Tyuterev, I.A. Ivantsov, S.V. Laukhin, V.D. |
author_facet |
Laukhin, D.V. Beketov, O.V. Rott, N.O. Tyuterev, I.A. Ivantsov, S.V. Laukhin, V.D. |
author_sort |
Laukhin, D.V. |
title |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture |
title_short |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture |
title_full |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture |
title_fullStr |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture |
title_full_unstemmed |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture |
title_sort |
analysis of interrelation between kinetics of propagation of plastic deformation and initiation of ductile fracture |
publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
publishDate |
2017 |
topic_facet |
Физика прочности и пластичности |
url |
http://dspace.nbuv.gov.ua/handle/123456789/130441 |
citation_txt |
The Analysis of Interrelation between Kinetics of Propagation of Plastic Deformation and Initiation of Ductile Fracture / D.V. Laukhin, O.V. Beketov, N.O. Rott, I.A. Tyuterev, S.V. Ivantsov, V.D. Laukhin // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 10. — С. 1335-1343. — Бібліогр.: 11 назв. — англ. |
series |
Металлофизика и новейшие технологии |
work_keys_str_mv |
AT laukhindv theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT beketovov theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT rottno theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT tyuterevia theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT ivantsovsv theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT laukhinvd theanalysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT laukhindv analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT beketovov analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT rottno analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT tyuterevia analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT ivantsovsv analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture AT laukhinvd analysisofinterrelationbetweenkineticsofpropagationofplasticdeformationandinitiationofductilefracture |
first_indexed |
2025-07-09T13:34:55Z |
last_indexed |
2025-07-09T13:34:55Z |
_version_ |
1837176557816250368 |
fulltext |
1335
PACS numbers: 62.20.mm, 62.20.mt, 68.37.Hk, 81.05.Bx, 81.40.Lm, 81.40.Np, 83.60.Uv
The Analysis of Interrelation between Kinetics of Propagation
of Plastic Deformation and Initiation of Ductile Fracture
D. V. Laukhin, O. V. Beketov, N. O. Rott, I. A. Tyuterev,
S. V. Ivantsov, and V. D. Laukhin
Prydniprovs’ka State Academy of Civil Engineering and Architecture,
24-a Chernyshevs’ky Str.,
49600 Dnipro, Ukraine
The work analyses a nature of interrelation between kinetics of propagation
of plastic deformation and initiation of ductile fracture for low-carbon mi-
croalloyed steel 06Kh1. To reach the purpose of the work, the experiment is
carried out. It includes stretching of a series of samples with deformation
deceleration after reaching a certain level of loading. The study of the corre-
sponding samples shows that the stage of crack origination is made through
blocking the propagation of spreading the plastic deformation by the separa-
tion surfaces of the general and special types. At the same time, it is deter-
mined that the second stage (growth of microcracks) develops due to the sim-
ultaneous action of two mechanisms: accumulation of dislocations (the Cot-
trell model) and aggregation of several microcracks into single one.
Key words: hypopearlitic structure, ductile fracture, kinetics of crack prop-
agation, blocking of dislocations, mechanisms of crack origination, mecha-
nism of crack growth.
У роботі проаналізовано характер взаємозв’язку між кінетикою поши-
рення пластичної деформації та зародженням в’язкого руйнування для
низьковуглецевої мікролеґованої сталі 06Х1. Для досягнення поставленої
в роботі мети було здійснено експеримент, який включав розтягання серії
зразків з гальмуванням деформації по досягненні певного рівня наванта-
ження. Дослідження відповідних зразків показали, що на стадії заро-
дження тріщини її зростання здійснюється шляхом блокування поши-
Corresponding author: D. V. Laukhin
E-mail: d.v.laukhin@gmail.com
Please cite this article as: D. V. Laukhin, O. V. Beketov, N. O. Rott, I. A. Tyuterev,
S. V. Ivantsov, and V. D. Laukhin, The Analysis of Interrelation between Kinetics of
Propagation of Plastic Deformation and Initiation of Ductile Fracture, Metallofiz.
Noveishie Tekhnol., 39, No. 10: 1335–1343 (2017), DOI: 10.15407/mfint.39.10.1335.
Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol.
2017, т. 39, № 10, сс. 1335–1343 / DOI: 10.15407/mfint.39.10.1335
Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ
Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî
â ñîîòâåòñòâèè ñ ëèöåíçèåé
2017 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè
èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû)
Íàïå÷àòàíî â Óêðàèíå.
mailto:d.v.laukhin@gmail.com
https://doi.org/10.15407/mfint.39.10.1335
https://doi.org/10.15407/mfint.39.10.1335
1336 D. V. LAUKHIN, O. V. BEKETOV, N. O. ROTT et al.
рення пластичної деформації поверхнями поділу як загального, так і спе-
ціяльного типу. Разом з цим встановлено, що друга стадія (зростання мі-
кротріщин) відбувається за рахунок одночасної дії двох механізмів: дис-
локаційного накопичення (модель Коттрелла) й об’єднання кількох мік-
ротріщин в одну.
Ключові слова: феритоперлітна структура, в’язке руйнування, кінетика
поширення тріщини, блокування дислокацій, механізми зародження
тріщини, механізм зростання тріщини.
В работе проанализирован характер взаимосвязи между кинетикой рас-
пространения пластической деформации и зарождением вязкого разру-
шения для низкоуглеродистой микролегированной стали 06Х1. Для до-
стижения поставленной в работе цели был осуществлён эксперимент, ко-
торый включал растяжение серии образцов с торможением деформации
при достижении определённого уровня нагрузки. Исследование соответ-
ствующих образцов показали, что на стадии зарождения трещины её рост
осуществляется путём блокирования распространения пластической де-
формации поверхностями раздела как общего, так и специального типа.
Вместе с этим установлено, что вторая стадия (рост микротрещин) проис-
ходит за счёт одновременного действия двух механизмов: дислокацион-
ного накопления (модель Коттрелла) и объединения нескольких микро-
трещин в одну.
Ключевые слова: ферритоперлитная структура, вязкое разрушение, ки-
нетика распространения трещины, блокировка дислокаций, механизмы
зарождения трещины, механизм роста трещины.
(Received August 18, 2017)
1. INTRODUCTION
While studying the issue of plastic deformation under the influence of
external loading, the following conclusion can be made: this process
happens unevenly, which results in the creation of periodically hetero-
geneous reinforced surroundings (e.g. works [1, 2]).
In addition to that, while analysing the regularities of deformative
grinding of metal structure and alloys, the authors of the works [3, 4]
proved that plastic deformation spreads from grain to grain at the ex-
pense of tension occurrence (under the influence of external loading),
which are conditioned by the interaction between the accumulation of
dislocations and the barriers for their movement.
Theoretical study of the results of the mentioned works made it pos-
sible to conclude that while blocking the accumulation of dislocations
by the barriers, activating of the sources of dislocations takes place, i.e.
next to the barriers the density of crystal constitution defects increas-
es [2]. Thus, the increase in the density of dislocation may lead to the
appearance of atomic areas offset in one active area of slip [5]. Because
THE ANALYSIS OF PLASTIC DEFORMATION AND DUCTILE FRACTURE 1337
of this, the main condition of crack appearance is the work of plastic
deformation, which leads to the critical accumulation of defects, and
as a result, to the creation of fracture origination [6]. Hence, the aim
of this work is to analyse the probable places of origination of ductile
fracture by means of the studying the work of plastic deformation.
2. METHODOLOGY OF EXPERIMENTAL INVESTIGATIONS
As a material for the investigation, 06Kh1 steel was chosen. Chemical
composition and mechanical properties of this steel are given in Tables
1 and 2, respectively.
To carry out the investigation, the samples of 06Kh1 steel were
made. The samples were of cylindrical shape (according to the State
Standard 1497-84) and one burnished and polished surface suitable for
structural studies. Schematic image of the studied samples is given in
Fig. 1. The preparation for structural studies was done according to
the methodology offered in the work [7].
The samples underwent the extension without reaching the stage of
fracture. The extension of the samples stopped at loading given in Ta-
ble 3 and in Fig. 2. After loading stopped, the samples structure was
studied (at places schematically depicted in Fig. 1) with the use of
scanning electron microscope according to the methods offered in the
work [8].
Figure 3 represents the structure of steel 06Kh1 before the begin-
ning of deformation. The analysis of the data shows that the steel
structure is ferrite-pearlite conglomerate. Herewith, as interphase and
inner-phase surfaces of separation, there are both boundaries of gen-
eral type (indicated with the arrow in Fig. 3, a) and boundaries of spe-
cial type (indicated with the arrow in Fig. 3, b). The identification of
TABLE 1. The chemical composition of 06Kh1 steel.
No.
melting
Content of chemical elements, % mass
C Cr Cu Mn P S Si Ni Al N Mo Nb
26475 0.062 1.11 0.19 0.49 0.004 0.004 0.27 0.11 0.022 0.012 0.013 0.002
TABLE 2. The complex of mechanical properties of 06Kh1 steel.
Tube size,
mm
Mechanical properties
S,
N/mm2
S,
N/mm2 Y/ S 5, %
KCV, J/cm2
at Т, С
20 40 60
114 9 m 430–470 381–413 0.67–0.70 32–37 381–413 378–403 356–396
1338 D. V. LAUKHIN, O. V. BEKETOV, N. O. ROTT et al.
boundaries’ types was made according to the methodology offered in
the work [9].
3. RESULTS AND DISCUSSION
The investigation results of the places of fracture origination are given
in Figs. 4–5.
The analysis of the data shows that strengthening as a result of plas-
tic deformation prevents the development of fracture in the direction
perpendicular to the active areas of slip, however, it promotes the
growth of microcracks in the direction of the areas of slip at the edges
of these areas situated near the boundaries of grains or fragile struc-
tural components (see for example Figs. 4, b, c, and 5, b).
Despite the fact that the local concentration of tensions in pearlite
under the deformation of ‘grain’ in general can be higher than ferrite
grain after a significant deformation, the static strength of pearlite
grains is higher than the strength of ferrite grains. It is proved by the
fact that pearlite structure (to a certain level of loading) withstands
the spread of plastic deformation (see for example Fig. 5, d).
The overall analysis of the investigation data given in this work and
TABLE 3. The efforts of samples’ loading at testing for extension.
Number of sample 1 2 3 4 5
Effort of loading Р, N
3033.8 3079.0 3806.3 3900.0 3981.0
Fig. 1. The schematic image of the studied sample (L 50 mm, d0 5 mm, h
10 mm) with places of structure control on periphery and centre.
THE ANALYSIS OF PLASTIC DEFORMATION AND DUCTILE FRACTURE 1339
scientific sources (e.g., [1, 3, 5, 6]) makes it possible to conclude that
the origination of microcracks is not the only criterion of the re-
sistance of steel fracture. The same importance is given to the factor of
the conditions, which make it possible to unite the cracks after reach-
ing their certain density until the material fracture. This process is
influenced by not only the quantity and the direction of tensions in the
area of fracture origination, but also structural state of the material,
the surface type of division, and the strength of structural compo-
nents.
For example, in Fig. 5, b, there is the situation when inner-phase
boundary simultaneously prevents the process of microcracks coales-
cence and is the origin of transcrystalline fracture. Herewith, the
growth of this microcrack more likely takes place according to Cot-
trell’s mechanism [10], which is proved by the existence of slip stripes,
which are included to microcracks.
Figure 5, d represents the case where the interphase boundary fer-
a b
Fig. 3. The 06Kh1 steel structure before the beginning of deformation: a—the
boundaries of general type (the example is indicated with the arrow); b—the
boundary of special type (the example is indicated with the arrow).
Fig. 2. The diagram of the experimental extension of the samples (Nos. 1–5)
of 06Kh1 steel.
1340 D. V. LAUKHIN, O. V. BEKETOV, N. O. ROTT et al.
rite–pearlite is a barrier for the spread of plastic deformation and the
growth of microcracks.
At the same time, in the place of the ternary joint of the surfaces di-
vision (indicated with the arrow in the Fig. 5), the branching of cracks
takes place, which is a characteristic feature of a fragile mechanism of
fracture [11]. That is, in this case, unlike the situations in Fig. 5, b,
there is a bit different mechanism of fracture spreading. It can be sup-
posed that together with the growth of external loading, the crack
a
b
c
d
e
f
Fig. 4. The samples of structures after the extension with the loading: a, b—
3033.8 N; c, d—3079 N; e, f—3806.3 N; a, c, e—centre, b, d, f—periphery.
THE ANALYSIS OF PLASTIC DEFORMATION AND DUCTILE FRACTURE 1341
branching will continue. This will lead to the origination of mi-
crocracks on the boundary ferrite–pearlite, which will grow into a
pearlite colony at the expense of the fracture of the separation surface
ferrite–cementite.
Summarizing the investigation data, it is possible to define several
probable places of fracture origination in low-carbon microalloyed
a
b
c
d
Fig. 5. The samples of structures after extension with the loading: a, b—3900
N; c, d—3981 N; a, c—centre, b, d—periphery.
Fig. 6. The scheme of cracks origination in ferrite component of steel structure.
1342 D. V. LAUKHIN, O. V. BEKETOV, N. O. ROTT et al.
steels. Schematically these places are given in Fig. 6.
4. CONCLUSIONS
1. Under the even distribution of tension on the sample intersection,
plastic deformation develops almost simultaneously in several ferrite
grains. Herewith, the increase in external loading leads to the devel-
opment of plastic deformation at the structural components.
2. The investigations carried out showed that blocking of plastic de-
formation takes place on the separation surfaces, which have height-
ened level of free energy.
3. For the ferrite component of low-carbon microalloyed steels, it was
shown that deformation blocking takes place on the separation surfac-
es, a portion of the second phase is matrix and interphase and inner-
phase boundaries.
4. The results show that in low-carbon microalloyed steels the origina-
tion and development of ductile fracture can happen at the expense of
simultaneous actions of two mechanisms: the origination and coales-
cence of microcavities and by the way of blocking the active areas of
slip by the ferrite–ferrite and ferrite–pearlite boundaries. Herewith,
the growth of microcracks to the critical size happens at the expense of
both accumulation of dislocations (Cottrell’s model) and aggregation
of several microcracks into single one.
REFERENCES
1. Kh. A. Rakhmatullin, E. I. Shemyakin, Yu. A. Dem’yanov, and A. V. Zvyagin,
Prochnost’ i Razrushenie pri Kratkovremennykh Nagruzkakh [Strength and
Fracture under Short-Term Loads] (Moscow: Universitetskaya Kniga ‘Logos’:
2008) (in Russian).
2. O. V. Beketov, S. V. Ivantsov, I. A. Tyuterev, N. O. Rott, and E. O. Babenko,
Stroitel’stvo, Materialovedenie, Mashinostroenie, Iss. 95: 26 (2017)
(in Ukrainian).
3. G. F. Sarafanov and V. N. Perevezentsev, Zakonomernosti Deformatsionnogo
Izmel’cheniya Struktury Metallov i Splavov [Regularities of Deformation
Grinding of the Structure of Metals and Alloys] (Nizhniy Novgorod: 2007) (in
Russian).
4. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Granitsy Zeren v Metallakh
[Boundaries of Grains in Metals] (Moscow: Metallurgiya: 1980) (in Russian).
5. A. Nadai, Plastichnost i Razrushenie Tverdykh Tel [Plasticity and Destruction
of Solids] (Moscow: Izd. Inostrannoy Literatury: 1954) (in Russian).
6. J. F. Nott, Osnovy Mekhaniki Razrusheniya [Fundamentals of Fracture
Mechanics] (Moscow: Metallurgiya: 1978) (Russian translation).
7. Kh. Vashul’, Prakticheskaya Metallografiya. Metody Izgotovleniya Obraztsov
[Practical Metallography. Methods for Samples Fabrication] (Moscow:
Metallurgiya: 1988) (in Russian).
THE ANALYSIS OF PLASTIC DEFORMATION AND DUCTILE FRACTURE 1343
8. J. Goldstein, Prakticheskaya Rastrovaya Elektronnaya Mikroskopiya
[Practical Scanning Electron Microscopy] (Moscow: Mir: 1978) (Russian
translation).
9. V. I. Bol’shakov, G. D. Sukhomlin, and D. V. Laukhin, Atlas Metallov i Splavov:
Uchebnoe Posobie [Atlas of Metals and Alloys: Tutorial] (Dnipro: GVUZ
‘Pridneprovskaya Gosudarstvennaya Akademiya Stroitel’stva i Arkhitektury’:
2010) (in Russian).
10. V. M. Finkel’, Fizika Razrusheniya [Fracture Physics] (Moscow: Metallurgiya:
1970) (in Russian).
11. V. Z. Parton and V. G. Barkovskiy, Dinamika Khrupkogo Razrusheniya
[Dynamics of Brittle Fracture] (Moscow: Mashinostroenie: 1988) (in Russian).
|