Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution
The paper presents results of the phase-composition and microstructure studies of the Zn–Mo alloy electrodeposited layers. The Zn–Mo coatings are electrodeposited from sulphate-citrate electrolytes on a steel substrate. As revealed in SEM, TEM and x-ray diffraction studies, the coatings consist of t...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2017
|
Schriftenreihe: | Металлофизика и новейшие технологии |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/130465 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution / Z. Świątek, H. Kazimierczak, P. Ozga, O. Bonchyk, H. Savytskyy // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 11. — С. 1547-1556. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-130465 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1304652018-02-14T03:03:26Z Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution Świątek, Z. Kazimierczak, H. Ozga, P. Bonchyk, O. Savytskyy, H. Металлические поверхности и плёнки The paper presents results of the phase-composition and microstructure studies of the Zn–Mo alloy electrodeposited layers. The Zn–Mo coatings are electrodeposited from sulphate-citrate electrolytes on a steel substrate. As revealed in SEM, TEM and x-ray diffraction studies, the coatings consist of the phase crystallized in hexagonal system and contain less than 0.8% wt. Mo built-in the Zn-crystal structure. The presence of Mo atoms causes fragmentation of the crystallites. В статье представлены результаты исследований фазового состава и микроструктуры, электролитически осаждённых слоёв сплавов Zn–Mo. Покрытия Zn–Mo были получены на стальной подложке электролитическим осаждением из сульфат-цитратных электролитов. Исследования методами СЭМ, TEM и рентгеновской дифракции показали, что покрытия состоят из кристаллизованной в гексагональной системе фазы и содержат менее 0,8% масс. Мо, встроенного в кристаллическую решётку цинка. Наличие атомов Мо вызывает фрагментацию кристаллитов. У статті представлено результати досліджень фазового складу та мікроструктури електролітично осаджених шарів стопів Zn–Mo. Покриття Zn–Mo було одержано на сталевому підложжі електролітичним осадженням з сульфат-цитратних електролітів. Дослідження методами СЕМ, TEM і рентґенівської дифракції показали, що покриття складаються з кристалізованої в гексагональній системі фази та містять менше 0,8% мас. Мо, вбудованого у кристалічну ґратницю цинку. Наявність атомів Мо викликає фраґментацію кристалітів. 2017 Article Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution / Z. Świątek, H. Kazimierczak, P. Ozga, O. Bonchyk, H. Savytskyy // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 11. — С. 1547-1556. — Бібліогр.: 12 назв. — англ. 1024-1809 PACS: 61.05.cp, 64.75.St, 68.35.bd, 68.35.Dv, 68.37.Hk, 68.37.Lp, 81.15.Pq DOI: doi.org/10.15407/mfint.39.11.1547 http://dspace.nbuv.gov.ua/handle/123456789/130465 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Металлические поверхности и плёнки Металлические поверхности и плёнки |
spellingShingle |
Металлические поверхности и плёнки Металлические поверхности и плёнки Świątek, Z. Kazimierczak, H. Ozga, P. Bonchyk, O. Savytskyy, H. Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution Металлофизика и новейшие технологии |
description |
The paper presents results of the phase-composition and microstructure studies of the Zn–Mo alloy electrodeposited layers. The Zn–Mo coatings are electrodeposited from sulphate-citrate electrolytes on a steel substrate. As revealed in SEM, TEM and x-ray diffraction studies, the coatings consist of the phase crystallized in hexagonal system and contain less than 0.8% wt. Mo built-in the Zn-crystal structure. The presence of Mo atoms causes fragmentation of the crystallites. |
format |
Article |
author |
Świątek, Z. Kazimierczak, H. Ozga, P. Bonchyk, O. Savytskyy, H. |
author_facet |
Świątek, Z. Kazimierczak, H. Ozga, P. Bonchyk, O. Savytskyy, H. |
author_sort |
Świątek, Z. |
title |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution |
title_short |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution |
title_full |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution |
title_fullStr |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution |
title_full_unstemmed |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution |
title_sort |
structural and microstructural analysis of zn–mo alloy layers electrodeposited from aqueous citrate solution |
publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
publishDate |
2017 |
topic_facet |
Металлические поверхности и плёнки |
url |
http://dspace.nbuv.gov.ua/handle/123456789/130465 |
citation_txt |
Structural and Microstructural Analysis of Zn–Mo Alloy Layers Electrodeposited from Aqueous Citrate Solution / Z. Świątek, H. Kazimierczak, P. Ozga, O. Bonchyk, H. Savytskyy // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 11. — С. 1547-1556. — Бібліогр.: 12 назв. — англ. |
series |
Металлофизика и новейшие технологии |
work_keys_str_mv |
AT swiatekz structuralandmicrostructuralanalysisofznmoalloylayerselectrodepositedfromaqueouscitratesolution AT kazimierczakh structuralandmicrostructuralanalysisofznmoalloylayerselectrodepositedfromaqueouscitratesolution AT ozgap structuralandmicrostructuralanalysisofznmoalloylayerselectrodepositedfromaqueouscitratesolution AT bonchyko structuralandmicrostructuralanalysisofznmoalloylayerselectrodepositedfromaqueouscitratesolution AT savytskyyh structuralandmicrostructuralanalysisofznmoalloylayerselectrodepositedfromaqueouscitratesolution |
first_indexed |
2025-07-09T13:38:33Z |
last_indexed |
2025-07-09T13:38:33Z |
_version_ |
1837176808223539200 |
fulltext |
1547
PACS numbers: 61.05.cp, 64.75.St, 68.35.bd, 68.35.Dv, 68.37.Hk, 68.37.Lp, 81.15.Pq
Structural and Microstructural Analysis of Zn–Mo Alloy Layers
Electrodeposited from Aqueous Citrate Solution
Z. Świątek, H. Kazimierczak, P. Ozga, O. Bonchyk*, and H. Savytskyy*
Institute of Metallurgy and Materials Science,
Polish Academy of Sciences,
25 Reymonta,
30-059 Krakow, Poland
*Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
N.A.S. of Ukraine,
3-b Naukova Str.,
79060 Lviv, Ukraine
The paper presents results of the phase-composition and microstructure
studies of the Zn–Mo alloy electrodeposited layers. The Zn–Mo coatings are
electrodeposited from sulphate-citrate electrolytes on a steel substrate. As
revealed in SEM, TEM and x-ray diffraction studies, the coatings consist of
the phase crystallized in hexagonal system and contain less than 0.8% wt. Mo
built-in the Zn-crystal structure. The presence of Mo atoms causes fragmen-
tation of the crystallites.
Key words: electrodeposition, corrosion, zinc-based alloys, phase composi-
tion, x-ray diffraction.
У статті представлено результати досліджень фазового складу та мікро-
структури електролітично осаджених шарів стопів Zn–Mo. Покриття Zn–
Mo було одержано на сталевому підложжі електролітичним осадженням з
сульфат-цитратних електролітів. Дослідження методами СЕМ, TEM і ре-
нтґенівської дифракції показали, що покриття складаються з кристалізо-
ваної в гексагональній системі фази та містять менше 0,8% мас. Мо, вбу-
дованого у кристалічну ґратницю цинку. Наявність атомів Мо викликає
Corresponding author: Zbigniew Świątek
E-mail: z.swiatek@imim.pl
Please cite this article as: Z. Świątek, H. Kazimierczak, P. Ozga, O. Bonchyk, and
H. Savytskyy, Structural and Microstructural Analysis of Zn–Mo Alloy Layers
Electrodeposited from Aqueous Citrate Solution, Metallofiz. Noveishie Tekhnol., 39,
No. 11: 1547–1556 (2017), DOI: 10.15407/mfint.39.11.1547.
Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol.
2017, т. 39, № 11, сс. 1547–1556 / DOI: 10.15407/mfint.39.11.1547
Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ
Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî
â ñîîòâåòñòâèè ñ ëèöåíçèåé
2017 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè
èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû)
Íàïå÷àòàíî â Óêðàèíå.
https://doi.org/10.15407/mfint.39.11.1547
https://doi.org/10.15407/mfint.39.11.1547
1548 Z. ŚWIĄTEK, H. KAZIMIERCZAK, P. OZGA et al.
фраґментацію кристалітів.
Ключові слова: електролітичне осадження, корозія, стопи на основі цин-
ку, фазовий склад, рентґенівська дифракція.
В статье представлены результаты исследований фазового состава и мик-
роструктуры, электролитически осаждённых слоёв сплавов Zn–Mo. По-
крытия Zn–Mo были получены на стальной подложке электролитическим
осаждением из сульфат-цитратных электролитов. Исследования метода-
ми СЭМ, TEM и рентгеновской дифракции показали, что покрытия состо-
ят из кристаллизованной в гексагональной системе фазы и содержат ме-
нее 0,8% масс. Мо, встроенного в кристаллическую решётку цинка.
Наличие атомов Мо вызывает фрагментацию кристаллитов.
Ключевые слова: электролитическое осаждение, коррозия, сплавы на ос-
нове цинка, фазовый состав, рентгеновская дифракция.
(Received October 11, 2017)
1. INTRODUCTION
Protective layers of zinc and zinc-based materials belong to the most
cost-effective anticorrosion coatings and thus are widely used in the
automotive and aircraft industries, fuel industry, armaments indus-
try, and many other branches of economics [1, 2].
For plenty of years, intensive search has been conducted for thinner
corrosion-resistant zinc-based coatings, which could also replace pro-
tective layers containing cadmium [3]. Among the most promising ma-
terials, there are electrolytic alloys of zinc with molybdenum. They are
especially interesting as replacement materials for cadmium layers and
for zinc coatings with Cr (VI)-based conversion layers.
The purpose of this work is to carry out the microstructural and
structural characterizations of the zinc–molybdenum alloy layers ob-
tained by an electrolytic deposition from sulphate-citrate electrolytes.
2. EXPERIMENT DETAILS
2.1. Electrodeposition Process and Chemical Composition
The Zn–Mo coatings were electrodeposited from sulphate-citrate elec-
trolytes on a steel substrate. The chemical composition of the used
electrolytes and details of electrodeposition process are presented in
[4] (see also Table 1).
The chemical composition and mass of the deposits are determined
by EDS (energy dispersive x-ray spectroscopy) and WDXRF (wave-
length dispersive x-ray fluorescence) analyses.
STRUCTURAL AND MICROSTRUCTURAL ANALYSIS OF Zn–Mo ALLOY LAYERS 1549
2.2. Phase and Microstructure Effects’ Analysis
The x-ray powder diffraction data were collected on the Philips dif-
fractometer type X’Pert in the Bragg–Brentano geometry. CuK -
radiation ( 0.154184 nm wavelength) diffracted by sample was se-
lected by a graphite monochromator. The scanning voltage of the x-ray
tube was 40 kV, the current was 25 mA, the exposure time was 1 s and
the measured angle, 2 , was from 10 to 100 . The scanning step was
0.02 . The x-ray diffraction data were processed by the FullProf Suite
program (version September-2012) [5].
Structural refinement was performed using the whole-pattern de-
composition (Profile Matching) procedure (also known as LeBail fit-
ting [6]), as implemented in the FullProf program [7]. The lattice pa-
rameters were precisely determined by Dicvol04 program [8]. The peak
profiles were modelled using the Thompson–Cox–Hastings modified
pseudo-Voigt (TCH-pV) function [9] to evaluate isotropic size and
strain effects. The background was modelled by linear interpolation
between consecutive break points of the pattern. Symmetrized cubic
harmonics were used to model size anisotropy and quartic forms to de-
scribe strain anisotropy effects [10], according to the procedure de-
scribed in the FullProf software manual. The instrumental contribu-
tion was evaluated by refining the trend of the peak parameters with
2 on a suitable reference pattern.
The morphology of the resulting coatings was studied by scanning
electron microscopy (SEM). The SEM analysis was performed using a
JEOL JSM-7500F Field Emission Scanning Electron microscope
equipped with INCA PentaFETx3 Oxford Instruments EDS system.
The microstructure of obtained layers was investigated using FEI
TECNAI SuperTWIN FEG (200 kV) microscope. Thin foils for TEM
were cut out using FEI Quanta 200 dual beam focused ion beam (FIB).
TABLE 1. Chemical composition of electrolytic bath, values of selected oper-
ating parameters and Mo content in deposited layers (Cit C6H4O7).
Sample Cit,
mol/dm3
ZnSO4,
mol/dm3
Na2MoO4,
mol/dm3
Q,
C
E,
V
,
rps
Mo,
% wt.
1 0.25 0.16 0 100 2.8 39.77 0
2 0.25 0.16 0.24 350 2 15.7 0.5
3 0.65 0.16 0.24 150 1.4 15.7 0.8
4 0.25 0.16 0.24 50 1.3 15.7 3.6
5 0.25 0.16 0.24 100 1.3 15.7 6.7
6 0.45 0.16 0.24 350 1.3 15.7 12
7 0.25 0.16 0.24 50 1.3 1.05 24.8
1550 Z. ŚWIĄTEK, H. KAZIMIERCZAK, P. OZGA et al.
3. RESULTS AND DISCUSSION.
STRUCTURE AND MICROSTRUCTURE OF DEPOSITED ALLOYS
The surface morphology of Zn–Mo coatings definitely differs accord-
ing to the content of molybdenum in them. Figure 1 presents SEM im-
ages of selected coatings with 0.8 (Fig. 1, a) and 3.6% wt. Mo (Fig. 1,
b). For the low content of molybdenum, a compact fine cellular-platelet
structure can be observed. The morphology of coatings with 3.6% wt.
molybdenum content is characterized by flake-like particles protrud-
ing from the compact cellular-platelet layer. The layers with high mo-
lybdenum content additionally consist of agglomerates of short needles
and elongated platelets. Even these simple observations using SEM
technique provide information about fine-crystalline nature of the lay-
ers.
From the analysis of the x-ray diffraction patterns of Zn–Mo layers,
it is evident that practically single-phase deposits with the same type
of crystal lattice (of hexagonal close-packed one) were obtained (Fig.
2). The exception is the sample No. 2 in which additionally ZnO was
identified. In the crystal structure of these (Zn, Mo) phases, the Mo at-
oms are ‘substituted’ by the Zn atoms from the crystal lattice of zinc.
The replacement of Zn by Mo in the hexagonal lattice cell leads to a
fast decrease in the cell parameter c and a slight increase in a (Fig. 2,
b). Moreover, the unit cell parameters do not much change when the
content of Mo in Zn–Mo layers increases up to about 24.8% wt. Ob-
served change in the unit cell parameters’ value, when there is such a
large difference in the atomic radii of the two components (1.90 Å vs.
1.42 Å), leads to the conclusion that the maximum content of molyb-
a b
Fig. 1. SEM images of Zn–Mo coatings with 0.8 (a) and 3.6% wt. Mo (b) depos-
ited on steel substrate.
STRUCTURAL AND MICROSTRUCTURAL ANALYSIS OF Zn–Mo ALLOY LAYERS 1551
denum in the hexagonal phase is very low—probably about 0.5–0.8%
wt. (see Fig. 2, b). It should be noted that the layer containing 0.5% of
molybdenum has two phases—(Zn, Mo) and ZnO. Hence, the actual
content of molybdenum in the (Zn, Mo) phase crystal structure in this
layer may be a bit larger than 0.5%. Even better, this is shown in Fig.
3.
As noted above, both unit cell parameters of zinc vary with the num-
ber of Mo atoms substituted in place of Zn. Thus, the magnitude of the
number of Mo atoms introduced into places of Zn atoms in the zinc
structure can be determined from the ratio of the unit cell parameters
of zinc: c/a. As one can see in Fig. 3, all measurement points are be-
tween 0 and 0.5% wt. Mo. Hence, it is concluded that under the given
conditions of the electrolysis process and the composition of the bath,
the resulting layers have one crystalline phase. This phase is crystal-
lized in the zinc structure, and the maximum Mo content in it is slight-
Fig. 3. The c/a ratio value vs. % wt. Mo content in deposits.
a b
Fig. 2. Diffraction patterns of the Zn–Mo deposits (a). Dependence of the unit
cell parameters’ values on the content of molybdenum in deposits (b).
1552 Z. ŚWIĄTEK, H. KAZIMIERCZAK, P. OZGA et al.
ly greater than 0.5% wt.
Figure 4 shows the results of x-ray analysis of phase composition
and microstructure of layers. In addition to values of lattice parame-
ters of the identified hexagonal (Zn, Mo) phase, the approximate shape
and characteristic sizes of the crystallites are also shown.
The analysis of x-ray diffraction data indicates that the presence of
Mo causes a fragmentation of the crystallites. This is perfectly evident
in Fig. 5, a, which shows the relationship between relative volume of
Fig. 4. The diffraction patterns of the Zn–Mo deposits. On the right of each
diffraction pattern, the designated shape and characteristic size of the crys-
tallites for phases crystallizing in a hexagonal system are shown.
STRUCTURAL AND MICROSTRUCTURAL ANALYSIS OF Zn–Mo ALLOY LAYERS 1553
crystallite V/VZn (V—volume of the (Zn, Mo) phase crystallite, VZn—
volume of zinc crystallite) and c/a ratio. With the increase in the con-
tent of Mo atoms in the zinc structure (decrease in c/a ratio), the crys-
tallite volume initially drops sharply and then reaches an almost con-
stant value. The shape of the crystallite is also slightly altered. Figure
5, b shows the dependence of the shape parameter of crystallite, D/H
(D—crystallite diameter, H—crystallite height; see Fig. 4), on the c/a
ratio. As can be perfectly seen initially with the increase in the content
of Mo atoms in the zinc structure, the shape of the crystallite varies
from flattened oval to almost spherical, and then tends to plate. It
should be noted that in the layer containing the highest number of Mo
atoms in the zinc structure the presence of ZnO was detected.
Next, it is known that only a small amount of Mo is introduced into
the crystal lattice of (Zn, Mo) phase crystallizing in a hexagonal system
(as evidenced by small changes in the unit cell parameters of hexagonal
phase identified—compare values of the lattice parameters in Fig. 2,
b).
We estimated that a maximum of only about 0.5 wt. percent Mo is
introduced into the crystal structure of hexagonal system. The rest of
molybdenum atoms can remain in the amorphous phase, nanocrystal-
line or Zn–Mo particles (look at the characteristic for amorphous phase
greatly broadened peaks X1 and X2 in Fig. 4). Nature of this indetermi-
nate phase is currently unclear. However, already based on these re-
sults of XRD, it can be assumed that this phase was rather created by
blockade of the crystallization of hexagonal phase by molybdenum at-
oms than by the crystallization of the equilibrium phase from the cubic
or orthorhombic system (MoZn7 or MoZn22 according to [11]). Thus, the
deposition process takes place by crystallization of the hexagonal
phase, and the excess of Mo atoms causes blocking the crystal struc-
ture development.
In our previous study [4], we showed that a uniform alloy composi-
Fig. 5. Relationship between both the relative volume of crystallite (V/VZn)
and its shape parameter (D/H) and c/a ratio.
1554 Z. ŚWIĄTEK, H. KAZIMIERCZAK, P. OZGA et al.
tion along its cross-section was observed. The molybdenum and zinc
were very evenly distributed within the coating. The coating appears
to be continuous, no cracks were observed. This observation confirms
our above supposition about a microstructure of layers obtained: the
layers contain a fine crystalline hexagonal phase (Zn, Mo) ‘surround-
ed’ by an amorphous phase, nanocrystalline or Zn–Mo particles. The
presence of amorphous and nanocrystalline phases has been confirmed
in transmission electron microscopy experiments (Fig. 6).
Figure 6 shows cross-sectional bright-field (Fig. 6, a) and dark-field
(Fig. 6, b) TEM images of selected part of the Zn–Mo coating contain-
ing 3.6% wt. Mo. In the Fig. 6, b, very small crystallites (with size of
several nanometres and smaller) are clearly visible on the background
of amorphous phase.
Lattice parameters are basic characteristics of crystalline materials.
Any variation of cell parameters can be caused by a change in the chem-
ical composition of crystalline material and/or by a strain of its crystal
lattice. Such deviations of the actual crystal lattice from a reference
lattice can be determined from the geometry of high order Laue zone
lines present in convergent beam electron diffraction (CBED) patterns
[12]. The CBED based method offers reasonable accuracy of a very good
nanoscale spatial resolution. The resolution makes this technique suit-
able for correlating the variation of cell parameters with elements of
microstructure. This method was applied to detection of any changes
in cell parameters of (Zn, Mo) phase in the deposit containing 0.8% wt.
Mo.
Figure 7, a shows the mapped area in conducted research. This area
covered 100 100 measuring points with the step of 20 nm. As an ex-
ample, Fig. 7, b shows the diffraction patterns in the immediate vicini-
ty of the selected point A (50, 38) (Fig. 7, a). Very complex diffraction
patterns composed of overlapping diffraction patterns of neighbour-
Fig. 6. Bright-field (a) and dark-field (b) TEM images showing the presence of
amorphous and nanocrystalline phases in the layer containing 3.6% of mo-
lybdenum.
STRUCTURAL AND MICROSTRUCTURAL ANALYSIS OF Zn–Mo ALLOY LAYERS 1555
ing crystallites were obtained. The analysis of such diffraction pat-
terns is very difficult, and the results would be affected by significant
errors. For this reason, the changes in the unit cell parameters were
not determined. Nevertheless, the results obtained not only confirm
the fine-crystalline nature of (Zn, Mo) phase, but also indicate differ-
ent orientations of the crystallites.
4. CONCLUSIONS
The single-phase deposits with the same type of crystal lattice (of hex-
agonal close packed one) were obtained by electrodeposition from sul-
phate-citrate baths. In the structure of this phase, the molybdenum
atoms were introduced into the zinc places. Introduction of the alloy-
ing atoms into places of the Zn atoms causes a change of the crystal lat-
tice unit cell parameters as well as a fragmentation of the crystallites.
Based on the analysis of the x-ray diffraction patterns of Zn–Mo lay-
ers, it is estimated that a maximum of only about 0.5–0.8% wt. Mo is
introduced into the crystal structure of hexagonal system, and the rest
of molybdenum atoms can remain in the amorphous phase, nanocrys-
talline or Zn–Mo particles.
ACKNOWLEDGEMENTS
The authors wish to express their thanks to Prof. Adam Morawiec from
the Institute of Metallurgy and Materials Science for the TEM investi-
gations.
Fig. 7. Cross-section electron micrograph showing mapped area in the micro-
structural studies (a) and electron diffraction patterns from the nearest
neighbourhood of selected point A (50, 38) (b).
1556 Z. ŚWIĄTEK, H. KAZIMIERCZAK, P. OZGA et al.
REFERENCES
1. F. C. Porter, A. M. Stoneman, and R. G. Thilthorpe, Transactions of the
Institute of Metal Finishing, 66: 28 (1998).
2. R. Pfiz and G. Strube, Transactions of the Institute of Metal Finishing, 74: 158
(1996).
3. R. Sard, Plating and Surface Finishing, 74: 30 (1987).
4. H. Kazimierczak, P. Ozga, Z. Swiatek, and E. Bielanska, J. Alloys Compd., 578:
82 (2013).
5. J. Rodriguez-Carvajal, Physica B: Condensed Matter, 192: 55 (1993),
http://www.ill.eu/sites/fullprof/php/downloads.html
6. A. LeBail, H. Duroy, and J. L. Fourquet, Materials Research Bulletin, 23: 447
(1988).
7. J. Rodriguez-Carvajal, J. Phys. B, 192: 55 (1993); Recent Developments of the
Program FULLPROF, Commission on Powder Diffraction (IUCr), Newsletter,
No. 26: 12 (2001).
8. A .Boultif and D. Louer, J. Appl. Crystallogr., 37: 724 (2004).
9. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr, 20: 79 (1987).
10. Defect and Microstructure Analysis by Diffraction (Eds. R. L. Snyder, J. Fiala,
and H. J. Bunge) (Chester, Oxford: IUCr/Oxford University Press: 1999),
p. 41.
11. T. B. Massalski, P. R. Subramanian, H. Okamoto, and L. Kacprzak, Binary
Alloy Phase Diagrams (Materials Park, OH: ASM International: 1990).
12. A. Morawiec, Ultramicroscopy, 107: 390 (2007).
https://doi.org/10.1080/00202967.1988.11870800
https://doi.org/10.1080/00202967.1988.11870800
https://doi.org/10.1080/00202967.1996.11871117
https://doi.org/10.1080/00202967.1996.11871117
https://doi.org/10.1016/j.jallcom.2013.04.205
https://doi.org/10.1016/j.jallcom.2013.04.205
https://doi.org/10.1016/0921-4526(93)90108-I
http://www.ill.eu/sites/fullprof/php/downloads.html
https://doi.org/10.1016/0025-5408(88)90019-0
https://doi.org/10.1016/0025-5408(88)90019-0
https://doi.org/10.1016/0921-4526(93)90108-I
https://doi.org/10.1107/S0021889804014876
https://doi.org/10.1107/S0021889887087090
https://doi.org/10.1016/j.ultramic.2006.10.003
|