Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films
The electrophysical properties of thermally deposited thin films of dihydrodibenzotetraaza[14]-annulene were investigated applying ohmic gold electrodes to them. The volt-ampere characteristic of planar thin films symmetric structure Au – dihydrodibenzotetraaza[14]annulene – Au under dark condition...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Науковий фізико-технологічний центр МОН та НАН України
2017
|
Schriftenreihe: | Журнал физики и инженерии поверхности |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/133451 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films / V.G. Udovitskiy, N.I. Slipchenko, B.N. Chichkov, E.V. Slipchenko // Журнал физики и инженерии поверхности. — 2017. — Т. 2, № 4. — С. 198-202. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-133451 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1334512018-05-29T03:02:54Z Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films Udovitskiy, V.G. Slipchenko, N.I. Chichkov, B.N. Slipchenko, E.V. The electrophysical properties of thermally deposited thin films of dihydrodibenzotetraaza[14]-annulene were investigated applying ohmic gold electrodes to them. The volt-ampere characteristic of planar thin films symmetric structure Au – dihydrodibenzotetraaza[14]annulene – Au under dark condition was measured. The direct current conductivity in this structure at room temperature and at a small applied voltage was ohmic, carried out by thermally generated carriers, and the conductivity, limited by space charges carried out by the injected carriers, was observed at a higher applied voltage. The transition from ohmic conductivity to conductivity limited by space charges occurred at an electric field strength in a thin film of Е ~ 4 × 10⁴ V/m. Исследовали электрофизические свойства термически нанесенных тонких пленок дигидродибензотетрааза[14]аннулена с использованием золотых омических контактов к ним. Измеряли темновую вольт-амперную характеристику планарной тонкопленочной структуры Au – дигидродибензотетрааза[ 14]аннулен – Au. Проводимость в этой структуре на постоянном токе при комнатной температуре и при небольшом приложенном напряжении была омической, осуществляемой термически генерированными носителями, а при более высоком приложенном напряжении наблюдалась проводимость, ограниченная пространственными зарядами, осуществляемая инжектированными носителями. Переход от омической проводимости к проводимости, ограниченной пространственными зарядами, происходил при напряженности электрического поля в тонкой пленке Е ~ 4 × 10⁴ В/м. Досліджували електрофізичні властивості нанесених термічним методом тонких плівок дигідродибензотетрааза[14]анулену з використанням золотих омічних контактів до них. Вимірювали темнову вольт-амперну характеристику планарної тонкоплівкової структури Au – дигідродибензотетрааза[14]анулен – Au. Провідність в цій структурі на постійному струмі при кімнатній температурі і невеликій прикладеній напрузі була омічною, що забезпечувалась термічно генерованими носіями, а при більш високій прикладеній напрузі спостерігали провідність, обмежену просторовими зарядами, що забезпечувалась інжектованими носіями. Перехід від омічної провідності до провідності, обмеженої просторовими зарядами, відбувався при напруженості електричного поля в плівці Е ~ 4 × 10⁴ В/м. 2017 Article Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films / V.G. Udovitskiy, N.I. Slipchenko, B.N. Chichkov, E.V. Slipchenko // Журнал физики и инженерии поверхности. — 2017. — Т. 2, № 4. — С. 198-202. — Бібліогр.: 15 назв. — англ. 2519-2485 http://dspace.nbuv.gov.ua/handle/123456789/133451 539.234 en Журнал физики и инженерии поверхности Науковий фізико-технологічний центр МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The electrophysical properties of thermally deposited thin films of dihydrodibenzotetraaza[14]-annulene were investigated applying ohmic gold electrodes to them. The volt-ampere characteristic of planar thin films symmetric structure Au – dihydrodibenzotetraaza[14]annulene – Au under dark condition was measured. The direct current conductivity in this structure at room temperature and at a small applied voltage was ohmic, carried out by thermally generated carriers, and the conductivity, limited by space charges carried out by the injected carriers, was observed at a higher applied voltage. The transition from ohmic conductivity to conductivity limited by space charges occurred at an electric field strength in a thin film of Е ~ 4 × 10⁴ V/m. |
format |
Article |
author |
Udovitskiy, V.G. Slipchenko, N.I. Chichkov, B.N. Slipchenko, E.V. |
spellingShingle |
Udovitskiy, V.G. Slipchenko, N.I. Chichkov, B.N. Slipchenko, E.V. Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films Журнал физики и инженерии поверхности |
author_facet |
Udovitskiy, V.G. Slipchenko, N.I. Chichkov, B.N. Slipchenko, E.V. |
author_sort |
Udovitskiy, V.G. |
title |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
title_short |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
title_full |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
title_fullStr |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
title_full_unstemmed |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
title_sort |
ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films |
publisher |
Науковий фізико-технологічний центр МОН та НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/133451 |
citation_txt |
Ohmic and space-sнarge limited conductivity іn dihydrodibenzotetraaza[14]annulene thin films / V.G. Udovitskiy, N.I. Slipchenko, B.N. Chichkov, E.V. Slipchenko // Журнал физики и инженерии поверхности. — 2017. — Т. 2, № 4. — С. 198-202. — Бібліогр.: 15 назв. — англ. |
series |
Журнал физики и инженерии поверхности |
work_keys_str_mv |
AT udovitskiyvg ohmicandspacesnargelimitedconductivityíndihydrodibenzotetraaza14annulenethinfilms AT slipchenkoni ohmicandspacesnargelimitedconductivityíndihydrodibenzotetraaza14annulenethinfilms AT chichkovbn ohmicandspacesnargelimitedconductivityíndihydrodibenzotetraaza14annulenethinfilms AT slipchenkoev ohmicandspacesnargelimitedconductivityíndihydrodibenzotetraaza14annulenethinfilms |
first_indexed |
2025-07-09T18:59:40Z |
last_indexed |
2025-07-09T18:59:40Z |
_version_ |
1837196991653740544 |
fulltext |
198
Журнал фізики та інженерії поверхні, 2017, том 2, № 4, сс. 198–202; Журнал физики и инженерии поверхности, 2017, том 2, № 4, сс. 198–202;
Journal of Surface Physics and Engineering, 2017, vol. 2, No. 4, pp. 198–202
© Udovitskiy V. G., Slipchenko N. I., Chichkov B. N., Slipchenko E. V., 2017
UDC 539.234
OHMIC AND SPACE-SНARGE LIMITED CONDUCTIVITY
IN DIHYDRODIBENZOTETRAAZA[14]ANNULENE THIN FILMS
V. G. Udovitskiy1, N. I. Slipchenko2, B. N. Chichkov3, E. V. Slipchenko4
1Scientific Center of Physical Technologies MES and NAS of Ukraine,
Kharkiv, Ukraine,
2Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine,
3Institut fur Quantenoptik, Leibniz Universitat Hannover,
Hannover, Germany,
4V. N. Karazin Kharkiv National University,
Kharkiv, Ukraine
Received 15.12.2017.
The electrophysical properties of thermally deposited thin films of dihydrodibenzotetraaza[14]-
annulene were investigated applying ohmic gold electrodes to them. The volt-ampere characteristic
of planar thin films symmetric structure Au – dihydrodibenzotetraaza[14]annulene – Au under dark
condition was measured. The direct current conductivity in this structure at room temperature and at
a small applied voltage was ohmic, carried out by thermally generated carriers, and the conductivity,
limited by space charges carried out by the injected carriers, was observed at a higher applied voltage.
The transition from ohmic conductivity to conductivity limited by space charges occurred at an
electric field strength in a thin film of Е ~ 4 × 104 V/m.
Keywords: organic semiconductors, dihydrodibenzotetraaza[14]annulene, thin films, electrical
conductivity, ohmic conductivity, space-charge-limited conductivity.
ОМИЧЕСКАЯ И ОГРАНИЧЕННАЯ ПРОСТРАНСТВЕННЫМ ЗАРЯДОМ
ПРОВОДИМОСТЬ В ТОНКИХ ПЛЕНКАХ
ДИГИДРОДИБЕНЗОТЕТРААЗА[14]АННУЛЕНА
В. Г. Удовицкий, Н. И. Слипченко, Б. Н. Чичков, Е. В. Слипченко
Исследовали электрофизические свойства термически нанесенных тонких пленок дигидроди-
бензотетрааза[14]аннулена с использованием золотых омических контактов к ним. Измеряли
темновую вольт-амперную характеристику планарной тонкопленочной структуры Au – диги-
дродибензотетрааза[14]аннулен – Au. Проводимость в этой структуре на постоянном токе при
комнатной температуре и при небольшом приложенном напряжении была омической, осу-
ществляемой термически генерированными носителями, а при более высоком приложенном
напряжении наблюдалась проводимость, ограниченная пространственными зарядами, осу-
ществляемая инжектированными носителями. Переход от омической проводимости к прово-
димости, ограниченной пространственными зарядами, происходил при напряженности элек-
трического поля в тонкой пленке Е ~ 4 × 104 В/м.
Ключевые слова: органические полупроводники, дигидродибензотетрааза[14]аннулен, тон-
кие пленки, электропроводность, омическая проводимость, проводимость, ограниченная про-
странственными зарядами.
ОМІЧНА ТА ОБМЕЖЕНА ПРОСТОРОВИМ ЗАРЯДОМ ПРОВІДНІСТЬ
В ТОНКИХ ПЛІВКАХ ДИГІДРОДИБЕНЗОТЕТРААЗА[14]АНУЛЕНУ
В. Г. Удовицький, М. І. Сліпченко, Б. М. Чичков, О. В. Сліпченко
Досліджували електрофізичні властивості нанесених термічним методом тонких плівок
дигідродибензотетрааза[14]анулену з використанням золотих омічних контактів до них.
Вимірювали темнову вольт-амперну характеристику планарної тонкоплівкової структури Au –
дигідродибензотетрааза[14]анулен – Au. Провідність в цій структурі на постійному струмі
при кімнатній температурі і невеликій прикладеній напрузі була омічною, що забезпечува-
лась термічно генерованими носіями, а при більш високій прикладеній напрузі спостерігали
провідність, обмежену просторовими зарядами, що забезпечувалась інжектованими носіями.
V. G. UDOVITSKIY, N. I. SLIPCHENKO, B. N. CHICHKOV, E. V. SLIPCHENKO
199ЖФІП ЖФИП JSPE, 2017, т. 2, № 4, vol. 2, No. 4
Перехід від омічної провідності до провідності, обмеженої просторовими зарядами, відбувався
при напруженості електричного поля в плівці Е ~ 4 × 104 В/м.
Ключові слова: органічні напівпровідники, дигідродибензотетрааза[14]анулен, тонкі плівки,
електропровідність, омічна провідність, провідність, обмежена просторовими зарядами.
INTRODUCTION
At the present time there is a great interest in
development of organic (molecular) electronics
(OE or ME), based on using of various organic
molecular materials (organic dielectrics,
organic semiconductors or organic «metals»)
for creating electronic devices. OE is now often
referred to as the next-generation electronics that
will enable to implement a number of significant
advantages over the traditional electronics based
on using inorganic semiconductors, Si being the
main of them. The unique properties of organic
materials create possibilities for many new
applications simply impossible with standard
inorganic materials. The main advantages of
organic materials and, consequently, electronic
devices based on it, are as follows: solubility in
many solvents, the possibility for a relatively
simple and inexpensive manufacturing of
flexible elements on a large area at a low
temperature, a light weight, opportunities for
obtaining materials with desired electronic
properties by purposeful chemical synthesis
or physicochemical modification of already
synthesized mater ia ls , a low cost of
manufacturing, environmental friendliness etc.
[1].
At present, macro-, micro- and nanoelectronic
devices, such as various displays (big panel
displays, computer displays, mobile phones,
iPads, iPhones, TV sets), thin-film transistors,
light-emitting diodes, photovoltaic solar cells,
electronic memory devices, chemo-, bio-
and physical sensors, etc. have already been
created on the basis of organic semiconductors
[2, 3]. Therefore, over the past years, many
aspects of organic electronics research,
production and market have progressed, and
the pace of progress has continued to accelerate.
According to IDTechEx the global market for
printed and potentially printed electronics,
including organics, inorganics and composites,
is forecast to rise from $1.92 billion in 2009 to
$57.16 billion in 2019 (see Fig. 1) [4], while
the Organic Electronics Association (OE-A)
predicts market growth to 200 billion over a
decade [5].
There are two basic classes of organic
semiconductors (OS): low molecular weight
compounds and polymers [6]. The first of them is
the OS class with a low molecular weight, based
on the individual molecules (often called «small
molecule organic semiconductors»), and it can
contain from tens to hundreds of atoms. The second
of them is the OS class with a high molecular weight
(polymer, i. e., forming a long chain polymer). The
common feature of both groups is the presence of a
conjugated system of π bonds formed of p-orbitals
of carbon atoms. The σ bonds, which form the
backbone of the molecule, are more stable than
the π bonds (fig. 2). As a result, conductivity in the
OS is provided mainly by the π-electron system
under ordinary conditions.
60
50
40
30
20
10
0
2009 2011 2013 2015 2017 2019
Fig. 1. Global market for organic and printed electronics
(US $ billions)
p orbital
C
sigma
bond
pi bondC
p orbital
Fig. 2. Schematic image of σ and π bonds in molecules of
organic semiconductors
OHMIC AND SPACE-SPARGE LIMITED CONDUCTIVITY IN DIHYDRODIBENZOTETRAAZA[14]ANNULENE THIN FILMS
200 ЖФІП ЖФИП JSPE, 2017, т. 2, № 4, vol. 2, No. 4
The molecules with different atomic
composition and molecular structure are
synthesized and used when creating OS-based
electronic devices. The low-molecular organic
semiconductors, based on the molecules with
macrocyclic structure, for instance such as
phthalocyanine (Pc, Fig. 3) and dihydrodiben-
zotetraaza[14]annulene (TAA, Fig. 4), provoke
special interest of researchers. These OS have a
high thermal and chemical stability, π-conjugated
electronic system as well as good sensitivity of
electrical properties for various parameters of
chemical and physical nature due to the nature
of their molecular structure and the presence of
the so-called macrocyclic effect in the closed
macrocyclic structures. This provides wide
opportunities of their application for creation
of various micro- and nanoelectronic devices,
where they are used usually as thin films that
can be deposited by thermal evaporation.
Phthalocyanines are now the most commonly
used in organic electronics based on small
molecule of OS and the mechanism of electrical
conductivity in its thin films has already been
well studied [7–9].
Until recently, the TAA and materials
based on it have been studied and used mainly
in chemistry, medicine and pharmacology,
however, in the last few years the study
of this OS use in engineering and electronics
is proceeding vigorously. Chemical gas
sensors, thin film transistors, compact discs
etc. based on TAA have already been created.
Questions, concerning the properties and use
of substances and materials based on TAA, were
highlighted in our review [10], but now there
are new interesting publications related to the
study of magnetic properties and applications
of such materials for spin filters creation
[11, 12]. They open new perspectives for
using this OS in actively evolving now spin
electronics and in other fields of electronics.
The TAA are generally p- type semiconductors;
they can be sublimed easily, as well as Pc,
resulting in high purity thin films without
decomposition.
The charge transport characteristics in thin
films of OS represent a key foundation for the
field of molecular electronics and development
of novel organic-based electronic devices.
Therefore, it is a fundamentally and practically
important subject for investigation. In the
present investigation the current — voltage
measurements (on direct current) were carried
on a planar symmetrical structure of the type:
metal (Au) – thin film TAA – metal (Au),
further – Au – TAA – Au – structure, to study
conduction mechanism in thin films of TAA at
various electric fields in the sample.
EXPERIMENTAL PART
The TAA powder, used in this work, was
synthesized and purified in the chemical
laboratory of the V. Karazin Kharkiv National
University (Department of Organic Chemistry,
thanks to Prof. V. Orlov and Prof. N. Kolos). The
TAA thin films were prepared through thermal
sublimation and condensation of the substance
of the TAA in vacuum (at pressure ~10–5 Torr)
with a VUP-5M setup. The TAA thin films were
deposited on a polished ceramic substrate with an
interdigital Au-electrode and this way the planar
structure of M-TAA-M was obtained (Fig.5).
The distance between the metal electrodes was
105 nm. The thickness of the TAA films was
about 100 nm and it was regulated by the weight
of the sublimed substance or duration of the
period of the open shutter position. Monitoring
of the thin films thickness was carried out by a
N
H
N
N
H
N
N
N
N
N
Fig. 3. Phthalocyanine
NH
NH
N
N
Fig. 4. Dihydrodibenzotetraaza[14]annulene
V. G. UDOVITSKIY, N. I. SLIPCHENKO, B. N. CHICHKOV, E. V. SLIPCHENKO
201ЖФІП ЖФИП JSPE, 2017, т. 2, № 4, vol. 2, No. 4
quartz resonator and additionally determined by
their optical transparency.
RESULT AND DISCUSSION
Fig . 6 demonst ra tes the vol t -ampere
characteristic of planar thin films Au – TAA –
Au – structure under dark conditions, obtained
by us.
It can be seen that this volt-ampere
characteristic is symmetric with respect to the
center of coordinates and has two sections with
different slopes. Charge transport in organic
semiconductor thin films with ohmic contacts,
as is known, depends on the electrical field
strength. Charge transport by thermal carrier
dominates at the low electrical field. The
injected carriers are compensated by dielectric
relaxation process and no net charges build up
in the film. At the high electrical field, however,
the injected carrier density exceeds the thermal
carrier density. The injected carriers form space
charges to limit the current flow. Therefore, the
conduction mechanism is called space-charge-
limited conduction (SCLC). The volt-ampere
characteristics, obtained by us, as can be seen
from the Fig. 6, have two regions. In region I
(at a lower voltage) conduction follows Ohm’s
law and I–V characteristic in this region can be
described by equation [13]:
0 0p p
VJ qp qp E
d
, (1)
where J is the current density, q is the elementary
charge, p0 is the thermal carrier density, μp is the
hole mobility and d is the electrode spacing. E
is electrical field strength.
In region II (at a higher voltage) conduction
is SCLC and can be described by the Geurst
equation [14], which is valid for metal-organic
semiconductor-metal structures of the planar
type:
2
2
2 p VJ
d
, (2)
where ε is dielectric permittivity of an organic
thin film.
The transition from ohmic to SCLC
conductivity in this investigation takes place at
a voltage of 4 V i. e. at an electric field strength
Е ~ 4 × 104 V/m. Our results obtained for
the TAA films agree well with the results
obtained in [15] for nickel phthalocyanine thin
films, in which the authors also observed the
ohmic conduction at lower voltages followed
by space-charge-limited current at higher
voltages.
CONCLUSION
In the present work the volt-ampere characteristic
of planar thin films symmetric structure Au –
dihydrodibenzotetraaza[14]annulene – Au is
investigated. Conductivity on direct current in
this structure at room temperature reveal an
ohmic conduction due to thermally generated
carriers in the lower voltage range, followed
by SCLC conductivity due to injected carrier in
the higher range. The transition from ohmic to
SCLC conductivity takes place at electric field
strength Е ~ 4 × 104 V/m.
This work was partially funded by the
scientific research, funding by Ministry of
Education and Science of Ukraine, the State
registration number 0117U004875.
2
1
3
Fig. 5. Planar symmetrical thin films structure Au – TAA –
Au: 1 — substrate, 2 — thin film of TAA, 3 — Au electrodes
I, nA
80
60
40
20
0
–8 –6 –4 –2
–20
–40
–60
–80
2 4 6 8
U, В
Fig. 6. Volt-ampere characteristic of planar Au – TAA –
Au – structure
OHMIC AND SPACE-SPARGE LIMITED CONDUCTIVITY IN DIHYDRODIBENZOTETRAAZA[14]ANNULENE THIN FILMS
202 ЖФІП ЖФИП JSPE, 2017, т. 2, № 4, vol. 2, No. 4
REFERENCES
1. Eugenio Cantatore (ed.) Applications of Organic
and Printed Electronics. A Technology-Enabled
Revolution. — Springer Science+Business
Media New York, 2013 — 180 p.
2. Ostroverkhova O. Organic Optoelectronic
Materials: Mechanisms and Applications //
Chemical Reviews. — 2016. — Vol. 116,
No. 22. — P. 13279–13412.
3. Ogawa S. (Ed.) Organic Electronics Materials
and Devices. — Springer Japan, 2015. —
245 p.
4. Global markets for printed electronics / pub-
lication of the company Amonanoink http://
www.amonanoink.co.kr/amotech/keshet_
Content.php?kc_id=90
5. Chang J. S., Facchetti A. F., Reuss R. A. Cir-
cuits and Systems Perspective of Organic /
Printed Electronics: Review, Challenges, and
Contemporary and Emerging Design Ap-
proaches // IEEE Journal on emerging and
selected topics in circuits and systems. —
2017. — Vol. 7, No. 1. — P. 7–26.
6. Koch N. Organic Electronic Devices and Their
Functional Interfaces // Chem. Phys. Chem. —
2007. — Vol. 8, No. 10. — P. 1438–1455.
7. Socol M., Preda N., Stanculescu A., Stancu-
lescu F., Socol G. Heterostructures Based on
Porphyrin / Phthalocyanine Thin Films for
Organic Device Application. — Ch. 5 (P. 85–
118) in book: Yilmaz Y. (ed.) Phthalocyanines
and Some Current Applications. — InTech.,
2017. — 244 p.
8. Rani V., Sharma A., Kumar P., Singh B.,
Ghosh S. Charge transport mechanism in
copper phthalocyanine thin films with and
without traps // RSC Advances. — 2017. —
Vol. 7. — P. 54911–54919.
9. Kiran M. R., Ulla H., Satyanarayan M. N.,
Umesh G. Effect of deposition rate on the
charge transport in Vanadyl-phthalocyanine
thin films // Synthetic Metals. — 2017. —
Vol. 224. — P. 63–71.
10. Orlov V., Udovitskiy V. The dibenzotet ra-
aza[14]annulene-based compounds and ma-
te rials: properties and applications // Physical
Surface Engineering. — 2014. — Vol. 12,
No. 3. — Р. 372–385.
11. Wu Q. H., Zhao P., Su Y., Li S. J., Guo J. H.,
Chen G. Spin transport of dibenzotetraaza[14]-
annulene complexes with first row transition
metals // RSC Advances. — 2015. — Vol. 5. —
Р. 52938–52944.
12. Wu Q. H., Zhao P., Chen G. Magnetic transport
properties of DBTAA-based nanodevices with
graphene nanoribbon electrodes // Organic
Electronics. — 2015. — Vol. 25. — P. 308–316.
13. Kao K. C, Hwang W. Electrical Transport in
Solids, With Particular Reference to Organic
Semiconductors. — Oxford: Pergamon Press,
1981. — 660 р.
14. Geurst J. A. Theory of space-charge-limited
currents in thin semiconductor layers // Physica
Status Solidi, B. — 1966. — Vol. 15, No. 1. —
P. 107–118.
15. Anthopoulos T. D, Shafai T. S. SCLC measu-
rements in nickel phthalocyaninethin films //
Physica Status Solidi, A. — 2000. — Vol. 181,
No 2. — P. 569–574.
|