Interpolation Problems for Random Fields from Observations in Perforated Plane
The problem of estimation of linear functionals which depend on the unknown values of a homogeneous random field ξ(k, j) in the region K ⊂ Z² from observations of the sum ξ(k, j)+η(k, j) at points (k, j) Z²\K is investigated. Formulas for calculating the mean square errors and the spectral char...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | Moklyachuk, M.P., Shchestyuk, N.Yu., Florenko, A.S. |
Format: | Article |
Language: | English |
Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
Series: | Математичне та комп'ютерне моделювання. Серія: Технічні науки |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/133755 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Interpolation Problems for Random Fields from Observations in Perforated Plane / M.P. Moklyachuk, N.Yu. Shchestyuk, A.S. Florenko // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 83-97. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Interpolation Problems for Random Fields from Observations in Perforated Plane
by: M. P. Moklyachuk, et al.
Published: (2016) -
Interpolation Problems for Random Fields from Observations in Perforated Plane
by: Моклячук, Михайло Павлович, et al.
Published: (2016) -
Interpolation of homogeneous and isotropic random field in the center of the sphere by uniform distributed observations
by: Semenovs’ka, N.
Published: (2007) -
Prediction problem for random fields on groups
by: Moklyachuk, M.
Published: (2007) -
Modeling of perforated random variables on the basis of mixtures of shifted distributions
by: A. I. Krasilnikov
Published: (2018)