Aggressive and peaceful behavior in multiagent systems on cellular space
One of the key issues in Multi-Agent simulation approach is a consolidation of great model variety. Many researches govern own unique models that are similar in basic principles but for complex adaptive systems such as Artificial Ecosystems slight difference in architecture and parameters calibratio...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2016
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/134012 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Aggressive and peaceful behavior in multiagent systems on cellular space / V. Zavertanyy, A. Makarenko // Системні дослідження та інформаційні технології. — 2016. — № 2. — С. 36-44. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | One of the key issues in Multi-Agent simulation approach is a consolidation of great model variety. Many researches govern own unique models that are similar in basic principles but for complex adaptive systems such as Artificial Ecosystems slight difference in architecture and parameters calibration could affect crucially on the emergent properties of the model. As it was denoted by the pioneers of the Artificial Ecosystems modelling Robert Axtell and Robert Axelrod: variety of Multi-Agent models need introduction of methods and technics that allows consolidating of its results. In work we present modification of model similar to classic Artificial Life spatial lattice models and trace the exhibition of aggressive and peaceful behavior depending on the income resource. We consider results of both models’ simulation as it was proposed in «docking models» method by Axtell and Axelrod. |
---|