Dynamic properties of antiferromagnets in alternating magnetic and electric fields
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
НТК «Інститут монокристалів» НАН України
2010
|
Schriftenreihe: | Functional Materials |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/135130 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Dynamic properties of antiferromagnets in alternating magnetic and electric fields / V.S. Gerasimchuk, A.A. Shitov // Functional Materials. — 2010. — Т. 17, № 3. — С. 355-362. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-135130 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1351302018-06-15T03:05:35Z Dynamic properties of antiferromagnets in alternating magnetic and electric fields Gerasimchuk, V.S. Shitov, A.A. Modeling and simulation 2010 Article Dynamic properties of antiferromagnets in alternating magnetic and electric fields / V.S. Gerasimchuk, A.A. Shitov // Functional Materials. — 2010. — Т. 17, № 3. — С. 355-362. — Бібліогр.: 16 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/135130 en Functional Materials НТК «Інститут монокристалів» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Modeling and simulation Modeling and simulation |
spellingShingle |
Modeling and simulation Modeling and simulation Gerasimchuk, V.S. Shitov, A.A. Dynamic properties of antiferromagnets in alternating magnetic and electric fields Functional Materials |
format |
Article |
author |
Gerasimchuk, V.S. Shitov, A.A. |
author_facet |
Gerasimchuk, V.S. Shitov, A.A. |
author_sort |
Gerasimchuk, V.S. |
title |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields |
title_short |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields |
title_full |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields |
title_fullStr |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields |
title_full_unstemmed |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields |
title_sort |
dynamic properties of antiferromagnets in alternating magnetic and electric fields |
publisher |
НТК «Інститут монокристалів» НАН України |
publishDate |
2010 |
topic_facet |
Modeling and simulation |
url |
http://dspace.nbuv.gov.ua/handle/123456789/135130 |
citation_txt |
Dynamic properties of antiferromagnets in alternating magnetic and electric fields / V.S. Gerasimchuk, A.A. Shitov // Functional Materials. — 2010. — Т. 17, № 3. — С. 355-362. — Бібліогр.: 16 назв. — англ. |
series |
Functional Materials |
work_keys_str_mv |
AT gerasimchukvs dynamicpropertiesofantiferromagnetsinalternatingmagneticandelectricfields AT shitovaa dynamicpropertiesofantiferromagnetsinalternatingmagneticandelectricfields |
first_indexed |
2025-07-09T21:08:31Z |
last_indexed |
2025-07-09T21:08:31Z |
_version_ |
1837205097686237184 |
fulltext |
Functional Materials, 17, 3, 2010 355
Dynamic properties of antiferromagnets
in alternating magnetic and electric fields
V.S. Gerasimchuk, A.A. Shitov*
National Technical University “Kyiv Polytechnical Institute”,
37 Peremohy Ave., 03056 Kyiv, Ukraine
*Donbass National Academy of Civil Engineering and Architecture,
2 Derzhavin Str., 86123 Makeevka, Ukraine
The dynamics of domain walls in external alternating magnetic and electric fields has been
studied in antiferromagnetic materials with linear magnetoelectric interaction. The features of
vibrational and drift motion of domain walls depending on the parameters of external fields and
the material characteristics are discussed.
Изучена динамика доменных границ во внешних переменных магнитном и электри
ческом полях в антиферромагнитных материалах с линейным магнитоэлектрическим
взаимодействием. Обсуждаются особенности колебательного и дрейфового движения
доменных границ в зависимости от параметров внешних полей и характеристик
материала.
1. Introduction
The investigations of magnetic domain structure and domain walls (DW) in magnetic materi
als which combine ferromagnetic and ferroelectric properties (multiferroics) are of great interest
now both from theoretical and applied standpoints [1, 2]. There is a growing attention to the inves
tigations of dynamical properties of magnetic inhomogeneities [37]. The influence of magnetic field
on the DW dynamics has been studied best of all. The effect of other factors (electrical field, etc.)
has been less investigated. The influence of stationary electrical field on the density of DW surface
energy and the velocity of its motion in ferroelectromagnetics were studied in [8]. In the case of spin
reorientation first order phase transition of Morin type in rhombic ferroelectric antiferromagnetics,
the magnetoelectric interaction excites vibrations of 90deg DW. The vibration amplitude of such
DW is proportional to the electric field amplitude [9]. The drift of 180deg DW occurs in magnetics
with a linear magnetoelectric interaction under the influence of external alternating electric and
magnetic fields [10]. The drift speed in this case is proportional to the square of the alternating
field amplitude.
At the same time, the controlled DW displacement under the influence of stationary electrical
field in garnet ferrite films was observed experimentally in [11]. The direction of DW displacement
is reversed as the electric field polarity changes. We have proposed the nonuniform magnetoelectric
effect as the mechanism of the observed phenomenon. The experimental observations of dynamical
transformations in a magnetic stripe domain structure in a bilayer thin film ferromagneticNi/fer
roelectriclead zirconate titanate heterostructure in electric field are presented in [12]. In this work,
the nonlinear dynamics of 180degrees DW in antiferromagnetic with linear magnetoelectric inter
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 356
action is studied analytically. As the study object, twosublattice model of antiferromagnetic (AFM)
[4] is used which can describe the magnetic subsystem of rhombic ferroelectromagnetics [13].
2. The model and equations of motion
Let the Lagrange density function L l( ) of a twosublattice AFM be expressed in terms of the
unit antiferromagnetic vector l , l2 1= [3, 4]:
L M
c
l l wz y ml l l( ) = ( )
é
ë
ê
ê
ê
- Ñ( ) - +
æ
è
ççç
ö
ø
÷÷÷÷-0
2
2
2 2 1 2 2 2
2 2 2 2
a a b b
ee
g M
l
h l l l h
( )+
+ × ´éëê
ù
ûú( )- ×( ) ù
û
ú
ú
4 2
0
2
d d
,
(1)
where l denotes the derivative with respect to time; M M M0
2
1
2
2
2 2= +( ) ; M0 is the length of the
sublattice magnetization vector; c gM= 0 2ad , the minimum spinwave phase velocity; d and a ,
the homogeneous and inhomogeneous exchange coupling constants, respectively; g , the gyromag
netic ratio (the same for each sublattice); b1 and b2 , the effective constants of rhombic anisotropy;
h = H M0 ; H H= +( )0 cos w ct , the external alternating magnetic field with frequency w and
phase shift c .
The magnetoelectric interaction energy density wme l( ) have the same form as for the mag
netic anisotropy one but with other phenomenological constants:
w E t b l b lme y z yl( ) = ( )× +
æ
è
ççç
ö
ø
÷÷÷÷
1 2 2 2
2 2
, (2)
where b1 and b2 are the magnetoelectric interaction constants.
Let the external electric field E Et t( ) = ( )0 cos w be directed along the pyroelectric axis, which
is considered to be directed along the Yaxis.
Let the dissipative function be introduced which takes into account the dynamic stopping of
the DW:
F M
g
=
l 0 2
2
l , (3)
where l is the dimensionless Gilbert damping constant.
Since the components of the vector l are connected by the relation l2 1= , it is convenient to
rewrite the Lagrange density function (1) in terms of two independent angle variables q and j which
parameterize the unit vector l :
l il i lx z y+ = ( ) =sin exp , cosq j q . (4)
Taking into account the parametrization from Eq. (4) and relaxation attenuation, we obtain from
the Lagrange density function (1) the following equations of motion for the angle variables q and j :
a q q q q a j jD -
æ
è
çççç
ö
ø
÷÷÷÷+ ( ) - Ñ( )
æ
è
çççç
ö
ø
÷÷÷÷
1 1
2 2
2 2
c c
sin cos ++ +( )-
é
ë
ê
ê
- +( ) ù
ûú - +( ) +
b
b j
d
j j q
2 2
1 1
2 4
b E
b E h h h
y
y x zsin cos sin sin yy
x y z
x z
h h h
g M
h h
cos
cos cos sin cos sin
sin c
q
q j q q j
d
j
( )×
- +( )+
+ -4
0
oos sin sin sin cos ,j j q j q j j l q+ + +( )é
ëê
ù
ûú =h h h
g My z x
2 2 2
0
(5)
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 357
a j q a j q b q j j
d
Ñ Ñ( )( )- ( )- +( ) +
+
sin sin sin sin cos2
2
2
1 1
2
4
c
d
dt
b E
h
y
x
ccos sin sin cos cos sin sinj j q q j j q
d
+( ) +é
ëê
ù
ûú -( ) +
+
h h h h
g M
z y z x
4
0
hh h
h h h
x z
y y
cos sin sin cos
sin sin sin
j j q q
q q q q q
+( ) -é
ëê
- - -
2 22 2 zz xh
g M
sin cos sin .j j l j q+( )ùûú = 0
2
(6)
In the case of b b1 2 0> > , the DW is stable in the absence of external fields. This DW cor
responds to j j= =0 0 , and the angle variable q q= ( )0 y satisfies the equation
aq b q q0 2 0 0 0// + =sin cos (7)
and boundary conditions q p0 2±¥( )= ± . Let the magnetization distribution be considered to be
inhomogeneous along the Yaxis (the prime denotes differentiation with respect to this coordi
nate).
The solution of Eq. (7) that describes the static 180deg DW with the rotation of the vector
l in the xy plane has the following form:
q q0
0
0
0
1
0
1 1/
y
y
y
y
y
=- ( )=-
æ
è
çççç
ö
ø
÷÷÷÷
-cos cosh , sin tanhq0
0
y y
y
( ) =-
æ
è
çççç
ö
ø
÷÷÷÷
, (8)
where y0 2= a b is the DW thickness.
3. Induced motion of domain walls
To describe the nonlinear macroscopic DW dynamics, let one of perturbation theory versions
be used for solitons [57]. Let a collective variable Y(t) be introduced which has the meaning of the
DW center coordinate at the point of time t, the derivative of which defines the instantaneous ve
locity of DW V t Y t( ) = ( ) . The DW drift speed is defined as the instantaneous DW speed V t( ) aver
aged over the oscillation period V V tdr = ( ) (the bar denotes averaging over the externalfield oscil
lation period). Assuming the amplitude of external electric Ey and magnetic h fields to be small,
we represent the functions q y t,( ) , j y,t( ) and V t( ) by series in powers of the field amplitude
q q x q x q x
j j x j x
y, t , t , t ...
y t , t , t ..
( ) = ( )+ ( )+ ( )+
( )= ( )+ ( )+
0 1 2
1 2
,
, ..
V V t V t
,
,= ( )+ ( )+
ì
í
ïïïï
î
ïïïï 1 2
(9)
where x = - ( )y Y t ; subscripts n =1 2, , denote the smallness order of the quantity to the field
amplitude qn , jn , V hn
n~ . The function q x0 ( ) describes the motion of an undistorted DW. The
functions of higher orders q xn t,( ) and j xn t,( ) , n =1 2, , describe the distortions of the DW shape
and the excitation of spin waves.
Let the expansions (9) be substituted in Eqs. (5)(6) and terms of different orders of smallness
be separated. Obviously, in the zero approximation we get Eq. (7) which describes a DW at rest.
The perturbation theory firstorder equations can be written in the form
L T t b E
g M
hy z
Ù Ù
+
æ
è
çççç
ö
ø
÷÷÷÷÷ ( ) = - +q x
b
q q
b d
q
1
2
2
0 0
2 0
4, sin cos
cos
00
0 1
2 1 1
x
w
w
( )
+( )
y
V Vr
, (10)
L T t d h
g M
h hx x
Ù Ù
+ +
æ
è
çççç
ö
ø
÷÷÷÷÷ ( ) = + ( )-s m x
b d b d
q x1
2 2 0
0
2 4, cos
y ssin q x0 ( )é
ëê
ù
ûú , (11)
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 358
where we denote
m x j x q x1 1 0, , sint t( ) = ( ) ( ) , T
t t
r
Ù
= ¶
¶
+ ¶
¶
1
1
2
2
2
1
2w
w
w
, s b b b= -( )1 2 2/ ,
w b d1 0 0 2 2= =c y g M is the activation frequency of the lower spinwave mode, and
w ldr g M= 0 4/ is the characteristic relaxation frequency.
The operator L
Ù
has the form of a Schrödinger operator with a nonreflecting potential:
L y d
d y
Ù
=- + -
( )0
2
2
2 2
0
1 2
x xch /
.
The spectrum and the eigenfunctions of L
Ù
are well known. It has one discrete level with
eigenvalue l0 0= corresponding to a localized wave function
f
y y0
0 0
1
2
x
x
( ) =
( )ch
and also a continuous spectrum lp p y= +1 2
0
2 corresponding to the eigenfunctions
f
b L y
ipy ipp
p
x x x( ) = -
æ
è
çççç
ö
ø
÷÷÷÷ ( )1
0
0th exp ,
where b p yp = +1 2
0
2 , and L is the crystal length.
We seek the solution of the system of equations of the first approximation (10)(11) as an
expansion over a complete orthonormalized set of the eigenfunctions f , fk0 x x( ) ( ){ } :
q x x x w1
1
0
1
0,t c f + c f i ky tp p
p
( ) = ( ) ( )é
ëê
ù
ûú -( )éë ùûRe exp( ) ( )åå
ì
í
ïïï
î
ïïï
ü
ý
ïïï
þ
ïïï
,
j x x x w1
1
0
1
0,t d f + d f i ky tp p
p
( ) = ( ) ( )é
ëê
ù
ûú -( )éë ùûRe exp( ) ( )åå
ì
í
ïïï
î
ïïï
ü
ý
ïïï
þ
ïïï
.
For a monochromatic external magnetic field of frequency w , with all three components dif
ferent from zero, we obtain
q x x x
m x q x
1 1 1 2 2
1 3 0 4
, ,
, cos s
t a t G a t G
t a t a t
( ) = ( ) ( )+ ( ) ( )
( ) = ( ) ( )+ ( ) iin .q x0 ( )
ì
í
ïïï
îïïï
(12)
Here we introduce the following notations:
a t b Ey1
2
24
( ) =
b , a t
gM
hz2
2 0
2( ) =-
b d
, a t h
gM q iq
x
3
2 0 1 2
4( ) =
- +[ ]
b d s
,
a t
h
gM q iq
y
4
2 0 1 2
4
1
( ) =
-
+ - +[ ]
b d s
,
G y
p y py p
p y
dp
p1 0
0 0
0 12
x
x x x
p w
( ) = ( )× ( )+( ) ( )
( ) (
-¥
+¥
ò
cos sin
,
th
ch W ))
,
G y
p y py p
p y
dp
pp
2 0
0 0
0 12
x
x x x
p l
( ) = ( )× ( )-( ) ( )
( )
-¥
+¥
ò
sin cos
,
th
sh W ww( )
,
where
q1 1
2= ( )w w , q r2 1
2= ( )ww w ,
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 359
W1 1 2p q iqp,w l( )= - + , W2 1 2p q iqp p,w l l s( ) = + - +( ) .
Basing on the requirement of vanishing of Goldstone mode amplitude d0
1 0( ) =( ) [14], we
come to the equation for defining the DW speed
V V y g M hr z1 1
0 0
2
+ =w
p . (13)
The solution of this equation describes the DW vibrations in an external oscillating field and
has the form
Y t y gM
i
h i t
r
z z( ) = ×
+( )
+( )éë ùû
é
ë
ê
êê
ù
û
ú
úú
Re expp
w w
w c
2
0 0
0 . (14)
Let the real part in the expression (14) be separated. Then the solution can be rewritted in
the following form:
Y t A t( ) = +( )cos w c0 , (15)
where A y g M h z
r r
=
× +( )
p
w w w
0 0 0
22 1
is the DW vibration amplitude, and c0 is the initial phase shift.
The DW drift motion is a secondorder effect relative to the field amplitude. Consequently, the
DW drift velocity is defined from the equation of the second order of perturbation theory:
L T t
y
V V Vr
Ù Ù
+
æ
è
çççç
ö
ø
÷÷÷÷÷ ( ) = +( )+ ¢
+q x
q
w
w
q
w
w2
0
0 1
2 2 2
1
1
2 1, cos
rr
y x y
V
V b E h h
g
1
1
1
2 1
0
2
2 1
2
2 2 4
4
( )+
+ ¢ + -
æ
è
ççç
ö
ø
÷÷÷÷+
+
w
q
q
b
q
d
b d
cos
MM
h h V
c
h hx x x y
0
1 1
2
0
0 1
2
2 2
2 22 2
2
4j j q
q
b d
s
+( )+ - -( )-
é
ë
ê
ê
ê
-
sin sin
++( ) +
( )
- ¢( ) - +
ù
û
ú
ú
úú
1 2 8
1
2 1
2
1
2 0
2
1
2
1
2
2 0
1j
j
w
j q
b d
j
y
g M
hy ,
(16)
where a prime denotes the differentiation with respect to variable x .
Since we are interested only in forced motion of DW, then for the determination of the veloci
ty V t2 ( ) , it is sufficient to find the coefficient corresponding to the Goldstone mode in the expansion
of q x2 , t( ) by eigenfunctions of the operator L
Ù
and to equate it to zero. Substituting the functions
q x1 , t( ) and j x1 , t( ) (12) into Eq. (16), averaging it over the vibration period and integrating, we
get the following expression for the drift speed V Vdr = 2 :
V A H H A H Ex y z z ydr = ( ) + ( )n w c n w c0 1 0 0 0 2 0 0; ; . (17)
Here
A q q
Q
q B B q1
1 2
1
2 1 2 2
2
4
w c p c c; cos sin ,( ) =- - +( )é
ëê
ù
ûú
A
gQ
q qz z r z2
2
1 1 1
2 2
2
2
3
2
14
1w c w h w w h c w h w c; cos sin( )=- +( ) - + +( )( )é
ëêê
ù
ûú
,
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 360
Q q q q q1 1 1 2
2 2
2
21= + -( ) -( )+é
ëê
ù
ûú +s s , Q q q r2 1
2
2
2 2 21= -( ) +é
ëê
ù
ûú
× +( )w w ,
n
w0
2
0=
g y
r
and n
b
n0
2
2
0=
b
are the DW motilities; c c c= -x y is the comparative phase displace
ment; h1 2 5» . , h2 0 1» . , h3 2 6= . .
It should be noted that A1 w c;( ) is dimensionless quantity, and A z2 w c;( ) have the units
Oe.
4. Discussion
1. First, let certain features of solutions (12) and (14) of the firstorder equations (10)(11) be
discussed. The eigenfunctions of operator L
Ù
were obtained by Winter [15] in the problem on spin
excitations of magnetics. In a 180deg DW, spins may be involved in the vibrations of two types. The
first vibration type is associated directly with DW. These vibrations are referred to as the intrawall
vibrations and are corresponded to the localized wave function f0 x( ) . The second vibration type is
the analog of common spin waves inside the domains. These vibrations correspond to the continu
ous spectrum which is described by the wave functions fp x( ) .
It follows from the relationships (12) and (14)
that the components of an external magnetic field
hy and hz and the electric field component Ey
excite the second type vibrations (while the com
ponent hy excites only the state with p = 0 ). The
components hx and hz also excite the first type
vibrations. The features of DW vibratory motion
are the consequence of the fact that the electric
field in the linear approximation does not cause
any DW motion (see also [10]), while a variable
electric field excites vibrations of 90deg DW near
the spinreorientation phase transition [9]. From
the relationship (15), it is easy to find the vibra
tory motion speed of DW: V A= w . Note that the
amplitude of DW vibrations A( ) has a relaxation
drop that is in agreement with [16].
2. Now let the features of DW drift motion
be considered. For an estimation of the DW drift
speed for different values of the frequency and
phase shift, we will use the characteristic values
of the parameters of ferroelectromagnetics [13]:
s = 2 , M0 10= Oe, y0
510= - cm, g = ×2 107
(s·Oe)1, w r ~ 109 s1, w1
1110~ s1,
b2
2
410
b
~ - .
Then the DW mobility is n0 4» cm/(s Oe) (accord
ingly, n0 ,is four orders less). Let the DW dynam
ics in the magnetic field H Hx y be considered. The
dependence A1 w c;( ) on the external magnetic
field frequency is presented in Fig. for different
values of phase shift c p p=
æ
è
ççç
ö
ø
÷÷÷÷0
4 2
, , in the field
H Hx y0 0 1= = Oe.
Fig. Dependences of A1 w c;( ) on the external field
frequency at c = 0 (a), c p= 4 (b) and c p= 2
(c).
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 361
Two typical resonances at the frequencies w w s= 1 and w w s= +1 1 take place in the
case c = 0 . Thus, A1 1 0 1 6w s; .( ) »- and A1 1 1 0 2 4w s+( ) »-; . which provides the absolute
values of DW drift speed 6.3 cm/s and 9.4 cm/s, respectively. In the case c p= 4 , the peculiarities
of “resonanceantiresonance” type arise at the same frequencies. The resonances in those regions
of the dependence which took place at c = 0 (the area of function A1 negative values) remain
pronounced. The width of the resonanceantiresonance region in this case is Dw » ×1 4 109. s1. The
function A1 4w p;( ) possesses the values A1 1 4
0 2
1 3
w s p; .
.
æ
è
ççç
ö
ø
÷÷÷÷ » -
ì
í
ïï
îïï
, A1 1 1
4
2 0
0 4
w s p+
æ
è
ççç
ö
ø
÷÷÷÷ »
-ì
í
ïï
îïï
; .
. . The
maximum drift speed (8 cm/s) in this case is attained at the frequency w s1 1+ .
In the case c p= 2 , the resonanceantiresonance behavior of the function A1 2w p;( ) holds,
and A1 1 2
0 8w s p; .
æ
è
ççç
ö
ø
÷÷÷÷ » ± and A1 1 1
2
1 2w s p+
æ
è
ççç
ö
ø
÷÷÷÷ »; . . The absolute values of drift speed 3.2 cm/s
and 4.7 cm/s correspond to these values, respectively. Near these frequencies, the DW changes the
motion direction into the opposite one. The transition between the resonance and antiresonance
behaviors occurs in a narrow frequency region which is of the same order for both peculiarities and
is equal to Dw »109 s–1.
Let us consider now the features of DW dynamics in electric and magnetic fields H0zE0y. The
dependence A z2 w c;( ) has the only resonance at the frequency w w= 1 . At the resonance frequency
for the values H z0 1 0= . Oe, E y0 0 1= . CGSE units, the DW drift speed is 12 cm/s, 61 cm/s, 1 m/s
for the phase shifts c = 0 , c p= 4 , c p= 2 , respectively.
5. Conclusion
The nonlinear dynamics of DW in magnetic materials with linear magnetoelectric interaction
in external alternating fields has been considered. It is established that, against the background of
DW fast vibrations, a slow component of translatory (drift) motion of DW exists. The drift motion of
DW can be caused either by the crossed alternating magnetic field polarized in the XY plane or by
the crossed electric E y0 and magnetic H z0 fields.
References
1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442, 759 (2006); R. Ramesh, N.A. Spaldin,
Nat. Mater. 6, 21 (2007).
2. A.M. Kadomtseva, A.K. Zvezdin, Yu.F. Popov et al., JETP Letters, 79, 705 (2004).
3. V.G. Bar’yakhtar, B.A. Ivanov, M.V. Chetkin, Usp. Fiz., 28, 563 (1985).
4. V.G. Bar’yakhtar, B.A. Ivanov, V.F. Lapchenko et al., Fiz. Nizk. Temp., 13, 312 (1987).
5. V.G. Bar’yakhtar, Yu.I. Gorobets, S.I. Denisov, Zh. Exper.Teor. Fiz.,71, 751 (1990).
6. V.S. Gerasimchuk, Zh. Exper.Teor. Fiz., 74, 731 (1992).
7. V.S. Gerasimchuk, A.L. Sukstanskii, Zh. Exper.Teor. Fiz., 91, 1198 (2000).
8. T.K. Soboleva, E.P. Stefanovskii, Fiz. Nizk. Temp. 10, 620 (1984).
9. T.K. Soboleva, E.P. Stefanovskii, A.L. Sukstanskii, Fiz. Tverd. Tela, 26, 2725 (1984).
10. V.S. Gerasimchuk, A.L. Sukstanskii, Ferroelectrics, 162, 293 (1994).
11. A.S. Logginov, G.A. Meshkov, A.V. Nikolaev et al., JETP Lett. 86, 115 (2007).
12. T.K. Chung, G.P. Carman, K.P. Mohanchandra, Appl. Phys. Lett. 92, 112509 (2008).
13. G.A. Smolenskii, I.E. Chupis, Usp.Fiz., 25, 475 (1982).
14. R. Rajaraman, Solitons and Instantons in Quantum Theory, NorthHolland, Amsterdam (1982).
15. J.M. Winter, Phys. Rev. 124, 452 (1961).
16. G.S. Krinchik, Physics of Magnetic Phenomena, MGU, Moscow (1985) [in Russian].
V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...
Functional Materials, 17, 3, 2010 362
Динамічні властивості
антиферомагнетиків у змінних полях
В.С. Герасимчук, A.A. Шитов
Досліджено динаміку доменних меж у зовнішніх змінних магнітному та електричному
полях в антиферомагнітних матеріалах з лінійною магнітоелектричною взаємодією.
Обговорюються особливості коливального та дрейфового руху доменних меж залежно від
параметрів зовнішніх полів і характеристик матеріала.
|