Converse magnetoelectricity in asymmetric magnetoelectric structures

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Radchenko, G.S., Radchenko, M.G.
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2010
Назва видання:Functional Materials
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/135151
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Converse magnetoelectricity in asymmetric magnetoelectric structures / G.S. Radchenko, M.G. Radchenko // Functional Materials. — 2010. — Т. 17, № 3. — С. 371-374. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-135151
record_format dspace
spelling irk-123456789-1351512018-06-15T03:05:12Z Converse magnetoelectricity in asymmetric magnetoelectric structures Radchenko, G.S. Radchenko, M.G. Modeling and simulation 2010 Article Converse magnetoelectricity in asymmetric magnetoelectric structures / G.S. Radchenko, M.G. Radchenko // Functional Materials. — 2010. — Т. 17, № 3. — С. 371-374. — Бібліогр.: 12 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/135151 en Functional Materials НТК «Інститут монокристалів» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Modeling and simulation
Modeling and simulation
spellingShingle Modeling and simulation
Modeling and simulation
Radchenko, G.S.
Radchenko, M.G.
Converse magnetoelectricity in asymmetric magnetoelectric structures
Functional Materials
format Article
author Radchenko, G.S.
Radchenko, M.G.
author_facet Radchenko, G.S.
Radchenko, M.G.
author_sort Radchenko, G.S.
title Converse magnetoelectricity in asymmetric magnetoelectric structures
title_short Converse magnetoelectricity in asymmetric magnetoelectric structures
title_full Converse magnetoelectricity in asymmetric magnetoelectric structures
title_fullStr Converse magnetoelectricity in asymmetric magnetoelectric structures
title_full_unstemmed Converse magnetoelectricity in asymmetric magnetoelectric structures
title_sort converse magnetoelectricity in asymmetric magnetoelectric structures
publisher НТК «Інститут монокристалів» НАН України
publishDate 2010
topic_facet Modeling and simulation
url http://dspace.nbuv.gov.ua/handle/123456789/135151
citation_txt Converse magnetoelectricity in asymmetric magnetoelectric structures / G.S. Radchenko, M.G. Radchenko // Functional Materials. — 2010. — Т. 17, № 3. — С. 371-374. — Бібліогр.: 12 назв. — англ.
series Functional Materials
work_keys_str_mv AT radchenkogs conversemagnetoelectricityinasymmetricmagnetoelectricstructures
AT radchenkomg conversemagnetoelectricityinasymmetricmagnetoelectricstructures
first_indexed 2025-07-09T21:10:03Z
last_indexed 2025-07-09T21:10:03Z
_version_ 1837205191072415744
fulltext Functional Materials, 17, 3, 2010 371 Converse magnetoelectricity in asymmetric magnetoelectric structures G.S. Radchenko, M.G. Radchenko* Institute of Physics, Southern Federal University, 194 Stachki Ave., 344090 Rostov-on-Don, Russia Pedagogical Institute, Southern Federal University, 33 Bolshaya Sadovaya St., 344022 Rostov-on-Don, Russia * Rostov Branch, Moscow State Technical University of Civil Aviation, 262b Sholokhova St., 344009 Rostov-on-Don, Russia Received November 30, 2010 A new computational approach is developed to analyze the asymmetric magnetoelectric struc- tures. The possibility to enhance considerably the composite main effective parameters is found. The acoustic and electromagnetic vibrations in such structures are described comprehensively. Развит новый вычислительный подход к анализу асимметричных магнитоэлектрических структур. Обнаружена возможность значительного усиления основных эффективных параметров композита. Приведено полное описание акустических и электромагнитных колебаний в таких структурах. 1. Introduction The rapid development of modern electronics requires novel materials with useful proper- ties. The promising magnetoelectric (ME) heterogeneous materials possessing converse ME effect (CMEF) are among materials of promise for practical applications. CMEF is the magnetization of a sample under external electric field. This offers an excellent potential for coil-free electromag- nets free of eddy-current existence, devices for sensitivity measurements and for development of ME memory devices and sensors. In literature, the CMEF is a rather new direction and there are some publications aimed at that matter [1-10]. The structures considered in the present work and in [1, 3-5, 7, 8, 10, 11] are layered heterogeneous structures containing combination of highly magnetostrictive and piezoactive substances. The applied external electric field creates mechanical straining of the piezoelectric plate and then this strain is transferred to magnetic phase, causing a magnetic flux therein due to the magnetostriction. Then the created flux is registered by a testing coil [1, 3, 4, 7, 8, 10], two Helmholtz coils [5], one coil above the vibrating magnet [9], or vibrating sample magnetometer in heterostructures [2]. In the region where the applied electric field is of resonance frequency, the response is increased drastically and this provides a way for CMEF to be practically essential. However, almost all these publications are aimed at the symmetric strictures, there piezo- and magnetostrictive layers are of similar length. However, in reality, the lengths may be very different, and no attempts to analyze this difference theoretically were made prior to this G.S. Radchenko, M.G. Radchenko / Converse magnetoelectricity in asymmetric ... Functional Materials, 17, 3, 2010 372 work. The converse ME susceptibility is poorly analyzed in literature, too. This has stimulated the present research. 2. Theoretical analysis and results Let us consider an asymmetric layered structure with different lengths of the components. The basic equations [11] for strain tensor component S1 and electric and magnetic induction vectors component D3 and B1 as functions of the x coordinate (X1 direction) can be written as follows (1). S s T x d Ep p p p 1 11 1 31 3= +( ) * D x d T x Ep p p p 3 31 1 33 3( ) ( ) *= +e (1) B x q T x Hm m m m bias 1 11 1 11 1( ) ( )= +m S x s T x q Hm m m m bias 1 11 1 11 1( ) ( ) .= + Here s11 p, d31 p and ε33 p are the elastic compliance, piezoelectric coefficient, and dielectric permittivity of piezoelectric, respectivegly; s11 m, q11 m and μ33 m are the elastic compliance, magnetostrictive coeffi- cient and magnetic permeability of ferrite, respectively. H1 bias is the applied bias magnetic field; E3 *, the electric field equal to the applied one. The mechanical coupling between the phases is supposed to be ideal. Using the basic equation governing acoustic oscillations [12] and boundary conditions [11, 12], we get the expression for the strain vector (2) u x d h s L E q h s L H k h L s kL x p p m p m m p m bias p p m p ( ) cos * = + æ è 31 11 3 11 11 1 11 2 çççççç ö ø ÷÷÷÷÷ + æ è ççççç ö ø ÷÷÷÷÷ æ è ççççç ö ø ÷÷÷÷÷÷ h L s kLm m p m 11 2 cos ssin .kx( ) (2) The expression (2) is derived for the first time and defines completely the strain of the plate- like sample due to converse ME interaction and different lengths of the plates. It takes into account the inertia forces and back moving forces of both the phases. Then we place the obtained result to the third equation of the set (1). The arising magnetic induction we obtain by averaging it. The expression for the effective ME susceptibility, taking the above-mentioned average into account, is given by (3). a13 31 11 11 11 2 2* sin cos = æ è ççççç ö ø ÷÷÷÷÷ d h s L q k L kL h L s k p p m p m m m p p m LL h L s kLp m m p m 2 211 æ è ççççç ö ø ÷÷÷÷÷ + æ è ççççç ö ø ÷÷÷÷÷ æ è ççççç ö ø ÷cos ÷÷÷÷÷÷ . (3) Fig. 1. Theoretical (3) frequency dependence of the L-T real and imaginary parts of ME susceptibility of PZT-Ter- fenol compound. The parameters for theory are: s11 p = 15,3·10–12 m2/N, d31 p = –175 pC/N; s11 m = 45,4·10–12 m2/N; q11 m = 4500 м/А; m11 62 2 10m = × -, Tm/A; Lm = 14 mm, Lp = 16 mm, hm = 1,2 mm, hp = 2 mm, c  = 8000 rad/s, ρm = 9200 kg/m. G.S. Radchenko, M.G. Radchenko / Converse magnetoelectricity in asymmetric ... Functional Materials, 17, 3, 2010 373 The lengths of the plates being taken to be the same, our formula turns into (6) from [4] and the model is analogous to [11]. To obtain the longitudinal coefficient α33 *, we have to substitute q31 m for q11 m. It is usually much smaller than transversal due to the influence of demagnetization fields created by the metal electrode surface currents. The attenuation can be regarded as a complex an- gular frequency ω = 2πf+iχ. We can also determine the effective dielectric response (4) which has another resonance fre- quency. e e33 3 2 2 3 33 31 2 1* / / *( ) /= ¶ æ è çççççç ö ø ÷÷÷÷÷÷ ¶ = - ( ) - òL D x dx E d p L L p p ss d h s k L ks h L s kp p p m p p p p m11 31 2 11 11 11 2 2 + ( ) æ è ççççç ö ø ÷÷÷÷÷ sin cos LL h L s kLp m m p m 2 211 æ è ççççç ö ø ÷÷÷÷÷ + æ è ççççç ö ø ÷÷÷÷÷ æ è ççççç ö ø ÷cos ÷÷÷÷÷÷ . (4) The dielectric response ε33 * consists of frequency-independent part (rigidly fixed sample) and resonance dynamic part, which at f→0 transforms ε33 * into the low-frequency response at constant stress. It is impossible to divide the piezoelectric and magnetoelectric contributions to the strain (both phases vibrate in the same manner). Thus, to calculate the effective converse piezoresponse, we need to consider the strains in both the phases according to the average from the total strain. The effective piezoelectric coefficient is determined by formula (5) d d h s L k L L k Lp p m p m m p 31 31 11 2 2 2* sin sin = æ è ççççç ö ø ÷÷÷÷÷ + æ è ççççç ö ø ÷÷÷÷÷÷ æ è ççççç ö ø ÷÷÷÷÷÷ æ è ççççç ö ø ÷÷÷÷÷ +kL h L s kL h Lm p p m p m m 11 2 cos ss kLp m 11 2 cos . æ è ççççç ö ø ÷÷÷÷÷ æ è ççççç ö ø ÷÷÷÷÷÷ (5) The resonance frequencies are determined by assuming the denominators in (3-5) to zero and are dependent on the elastic properties of both the phases and their volume densities and all the dimensions. If the oscillations of the external electric field are at the resonance frequencies, the sharp increase of induced magnetic induction (3), dynamic polarization (4), and mechanical vibra- tions (5) will occur in the sample. The physical nature of resonance frequency independence of other integral composite param- eters in this work and in [4], in contrast to [11], consists in what follows. The magnetic field and magnetic induction play opposite parts in the electromagnetic interactions in comparison with elec- tric field and induction. This results, for example, in the absence of the average induced magnetic Fig. 2. Theoretical (4) frequency dependence of the real and imaginary parts of effective dielectric per- mittivity ε33 * of PZT-Terfenol compound. The pa- rameters for theory are the same as in Fig. 1. Figure 3. Theoretical (5) frequency dependence of the transversal real and imaginary parts of piezoelectric coefficient d31 * of PZT-Terfenol compound. The param- eters for theory are the same as in Fig. 1. G.S. Radchenko, M.G. Radchenko / Converse magnetoelectricity in asymmetric ... Functional Materials, 17, 3, 2010 374 field H inside the sample due to the converse effect. The ME voltage coefficient is determined in [11] under open electric chain conditions (average D is equal to zero) as E/H comprises fields which play physically opposite roles. Therefore, αE depends upon most of the integral parameters. The attenuation can be regarded as a complex angular frequency ω = ω’+iχ. Here χ is the attenuation parameter. So we also take into account the attenuation as it was done in [11] for direct effect and in [4] for converse one. The resonant enhancements of the most important physi- cal constants are shown in Figs. 1-3. All the considered effective constants show a large resonance enhancement (both in real and imaginary parts). At low frequencies, the ME and other constants are much lower and practically independent of the frequency. 3. Conclusion So, in this work we have investigated and analyzed the converse magnetoelectric effect with- in the frames of resonance theory. The considerable resonance enhancement of basic effective pa- rameter in plate-like ME composites is shown. These results can help in designing of ME devices, magnetostrictive and piezoelectric transducers, actuators, and other technical devices. References 1. Y. M. Jia, S. W. Or, H. L. W. Chan et al., Appl. Phys. Lett. ,88, 242902 (2006). 2. W. Eerenstein, M. Wiora, J. L. Prieto et al., Nature Mater. Lett., 6, 348 (2007). 3. C. Popov, H. Chang, P. M. Record et al., J. Electroceram, 20, 53 (2008). 4. Y. K. Fetisov, V. M. Petrov, G. Srinivasan, J. Mater. Res., 22, 2074 (2007). 5. J. P. Zhou, W. Zhao, Y.-Y. Guo et al., J. Appl. Phys., 105, 063913 (2009). 6. X. Fang, N. Zhang, Z.L. Wang, Appl. Phys. Lett., 93, 102503 (2008). 7. Y.-M. Jia et al., Composites Sci. . Techn., 68, 1440 (2008). 8. Y. Wang et al., Appl. Phys. Lett., 93, 113503 (2008). 9. W. Y. Wong et al., J. Appl. Phys., 101, 09N508 (2007). 10. Y. Jia, H. Luo, S. W. Or et al., Chin. Sci. Bull., 53, 2129 (2008). 11. D. A. Filippov, Fiz. Tverd. Tela, 47, 1118 (2005). 12. G.S. Radchenko, J. Phys. D: Appl. Phys., 41, 155421 (2008). Зворотна магнітоелектричність в асиметричних магнітоелектричних структурах Г.С.Радченко, М.Г.Радченко Розвинуто новий обчислювальний підхід до аналізу асиметричних магнітоелектричних структур. Виявлено можливість значного підсилення основних ефективних параметрів композиту. Подано повний опис акустичних та електромагнітних коливань у таких структурах.