The study of the extended Higgs boson sector within 2HDM model

Consideration of the latest experimental data on the searches for extended sector of Higgs bosons produced at the LHC at a center-of-mass energy of 13TeV, allows for computer modeling of the properties of supersymmetric particles within 2HDM model. The experimental restrictions on model parameters a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Obikhod, T.V., Petrenko, E.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136069
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The study of the extended Higgs boson sector within 2HDM model / T.V. Obikhod, E.A. Petrenko // Вопросы атомной науки и техники. — 2017. — № 3. — С. 3-10. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136069
record_format dspace
spelling irk-123456789-1360692018-06-16T03:03:51Z The study of the extended Higgs boson sector within 2HDM model Obikhod, T.V. Petrenko, E.A. Ядерная физика и элементарные частицы Consideration of the latest experimental data on the searches for extended sector of Higgs bosons produced at the LHC at a center-of-mass energy of 13TeV, allows for computer modeling of the properties of supersymmetric particles within 2HDM model. The experimental restrictions on model parameters accounted in FeynHiggs code that is implemented in SusHi program, gave us the possibility to calculate the cross sections and branching fractions for three mechanisms of production and decay of Higgs bosons: 1) pp→H→ττ, 2) pp→A →Zh→llbb, 3) pp→H→ hh→bbττ at a center-of-mass energy of 14TeV. The considered computer modelling make it possible to draw conclusions about the need to take into account the b-associated production process of Higgs bosons for fermionic decay channel at large values of tanβ. Differential cross sections with respect to the Higgs transverse momentum pₜ and pseudorapidity η are calculated and the peculiarities of the kinematics of the Higgs boson decay products are recognized. Облiк останнiх експериментальних даних з пошуку розширеного сектора бозонiв Хiггса, отриманих на БАК при енергiї протон-протонного зiткнення 13 ТеВ, дозволяє провести комп’ютерне моделювання властивостей суперсиметричних частинок у рамках 2HDM-моделi. Експериментально отриманi обмеження на параметри моделi, якi врахованi в iмплементованому в SusHi кодi FeynHiggs, дали нам можливiсть порахувати перерiзи, ширини розпадiв для трьох механiзмiв народження i розпаду бозонiв Хiггса: 1) pp→H→ττ, 2) pp→A →Zh→llbb, 3) pp→H→ hh→bbττ при енергiї в системi центра мас 14 ТеВ. Розглянутi розрахунки дають можливiсть зробити висновки про необхiднiсть врахування b-асоцiйованого процесу народження бозонiв Хiггса для фермiонного каналу розпаду при великих значеннях параметра tanβ. Отримано розподiли диференцiальних перерiзiв по поперечному iмпульсу pₜ i по псевдошвидкостi η, i виявлено особливостi кiнематики продуктiв розпаду бозонiв Хiггса. Учет последних экспериментальных данных по поиску расширенного сектора бозонов Хиггса, полученных на БАК при энергии протон-протонного взаимодействия 13 ТэВ, позволяет провести компьютерное моделирование свойств суперсимметричных частиц в рамках 2HDM-модели. Экспериментально полученные ограничения на параметры модели, учтенные в имплементированном в SusHi коде FeynHiggs, дали нам возможность посчитать величины сечений, ширины распадов для трех механизмов рождения и распада бозонов Хиггса: 1) pp→H→ττ, 2) pp→A →Zh→llbb, 3) pp→H→ hh→bbττ при энергии в системе центра масс 14 ТэВ. Рассмотренные расчеты дают возможность сделать выводы о необходимости учета b-ассоциированного процесса рождения бозонов Хиггса для фермионного канала распада при больших значениях параметра tanβ. Получены распределения дифференциальных сечений по поперечному импульсу pₜ и по псевдобыстроте η, и выявлены особенности кинематики продуктов распада бозонов Хиггса. 2017 Article The study of the extended Higgs boson sector within 2HDM model / T.V. Obikhod, E.A. Petrenko // Вопросы атомной науки и техники. — 2017. — № 3. — С. 3-10. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 11.25.-w, 12.60.Jv, 02.10.Ws http://dspace.nbuv.gov.ua/handle/123456789/136069 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Obikhod, T.V.
Petrenko, E.A.
The study of the extended Higgs boson sector within 2HDM model
Вопросы атомной науки и техники
description Consideration of the latest experimental data on the searches for extended sector of Higgs bosons produced at the LHC at a center-of-mass energy of 13TeV, allows for computer modeling of the properties of supersymmetric particles within 2HDM model. The experimental restrictions on model parameters accounted in FeynHiggs code that is implemented in SusHi program, gave us the possibility to calculate the cross sections and branching fractions for three mechanisms of production and decay of Higgs bosons: 1) pp→H→ττ, 2) pp→A →Zh→llbb, 3) pp→H→ hh→bbττ at a center-of-mass energy of 14TeV. The considered computer modelling make it possible to draw conclusions about the need to take into account the b-associated production process of Higgs bosons for fermionic decay channel at large values of tanβ. Differential cross sections with respect to the Higgs transverse momentum pₜ and pseudorapidity η are calculated and the peculiarities of the kinematics of the Higgs boson decay products are recognized.
format Article
author Obikhod, T.V.
Petrenko, E.A.
author_facet Obikhod, T.V.
Petrenko, E.A.
author_sort Obikhod, T.V.
title The study of the extended Higgs boson sector within 2HDM model
title_short The study of the extended Higgs boson sector within 2HDM model
title_full The study of the extended Higgs boson sector within 2HDM model
title_fullStr The study of the extended Higgs boson sector within 2HDM model
title_full_unstemmed The study of the extended Higgs boson sector within 2HDM model
title_sort study of the extended higgs boson sector within 2hdm model
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/136069
citation_txt The study of the extended Higgs boson sector within 2HDM model / T.V. Obikhod, E.A. Petrenko // Вопросы атомной науки и техники. — 2017. — № 3. — С. 3-10. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT obikhodtv thestudyoftheextendedhiggsbosonsectorwithin2hdmmodel
AT petrenkoea thestudyoftheextendedhiggsbosonsectorwithin2hdmmodel
AT obikhodtv studyoftheextendedhiggsbosonsectorwithin2hdmmodel
AT petrenkoea studyoftheextendedhiggsbosonsectorwithin2hdmmodel
first_indexed 2025-07-09T21:22:50Z
last_indexed 2025-07-09T21:22:50Z
_version_ 1837205996763611136
fulltext NUCLEAR PHYSICS AND ELEMENTARY PARTICLES THE STUDY OF THE EXTENDED HIGGS BOSON SECTOR WITHIN 2HDM MODEL T.V.Obikhod, E.A.Petrenko ∗ Institute for Nuclear Research National Academy of Sciences of Ukraine, 03068, Kiev, Ukraine (Received March 10, 2017) Consideration of the latest experimental data on the searches for extended sector of Higgs bosons produced at the LHC at a center-of-mass energy of 13TeV, allows for computer modeling of the properties of supersymmetric particles within 2HDM model. The experimental restrictions on model parameters accounted in FeynHiggs code that is imple- mented in SusHi program, gave us the possibility to calculate the cross sections and branching fractions for three mech- anisms of production and decay of Higgs bosons: 1) pp→ H → ττ , 2) pp→ A → Zh → llbb, 3) pp→ H → hh → bbττ at a center-of-mass energy of 14TeV. The considered computer modelling make it possible to draw conclusions about the need to take into account the b-associated production process of Higgs bosons for fermionic decay channel at large values of tanβ. Differential cross sections with respect to the Higgs transverse momentum pt and pseudorapidity η are calculated and the peculiarities of the kinematics of the Higgs boson decay products are recognized. PACS: 11.25.-w, 12.60.Jv, 02.10.Ws 1. INTRODUCTION The Higgs boson, which appears in the models of the spontaneous breaking of electroweak symmetry and is responsible for the occurrence of the masses of el- ementary particles was discovered on July 4, 2012 at the LHC [1]. This particle was observed in pp col- lisions, mainly as a result of the gluon-gluon fusion, and its search is performed in almost all possible de- cay channels: W and Z bosons (WW and ZZ), bottom quarks (bb), τ and µ leptons (ττ, µµ), photons (γγ). Search for the Higgs boson is based on the com- parison of experimental measurements with theoreti- cal predictions of the Standard Model (SM). The de- tailed study of the production and decay modes of the new particle with mass of 125...126 GeV at the LHC indicates that the new particle is indeed compatible with the SM Higgs boson. Nevertheless, many sce- narios of physics beyond SM include a SM-like Higgs boson as part of an extended sector of scalar parti- cles. In any case, searches for new Higgs bosons are connected with the measurements of the properties of the new particles of an extended sector. In this aspect, it is necessary to pay attention to the problem of the radiative corrections to the mass of the Higgs boson, the solution of which is associ- ated with the introduction of new particle, so-called superparticle presented in Fig.1 Fig.1. Presentation of hierarchy problem solution After mass renormalization between fermionic quark loop and scalar squark loop, the Higgs boson quadratic mass is limited ∆m2 H = λ2 f 8π2 [ 6m2 f ln Λ mf − 2m2 S ln Λ mS ] , where mf and mS are masses of fermion and its su- perparticle, λf is Yukawa coupling, Λ is the scale up to which the SM is valid. The limitation of SM is illustrated through the renormalization-group behavior of Higgs self-coupling λ. It depends on the numerical values of the SM pa- rameters and defines the Landau pole to the scale of 1019 GeV. This means that there must be a new physics at energies that are significantly lower the Planck scale [2]. Such behavior of self-coupling constant which depends also on other parameters (masses of the top quark, Mt, of Z boson, MZ , of the Higgs boson, Mh, and on the strong coupling con- stant, αs) λ(MPl) = −0.0143− 0.0066 ( Mt GeV − 173.34 ) + +0.0018 αs(MZ)− 0.1184 0.0007 + 0.0029 ( Mh GeV− 125.15 ) creates the problem of electroweak vacuum instabil- ity. The fact of possible existence of new physics at the TeV scale can be studied in deviations of the Higgs self-coupling constant from SM in the pro- cess of Higgs boson formation and decay. The signal ∗Corresponding author E-mail address: obikhod@kinr.kiev.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2017, N3(109). Series: Nuclear Physics Investigations (68), p.3-10. 3 strength µ for the production µi and decay µf mode of Higgs boson i → H → f is defined as µi = σi (σi)SM and µf = Bf (Bf )SM , where σi (i = ggF (Gluon fusion), VBF (Vector boson fusion), WH and ZH (Higgs Strahlung), ttH (Top fusion)) and Bf (f = ZZ, WW, γγ, ττ, bb, µµ) are respectively the production cross sections and the decay branching fractions for Higgs boson. The combined results of the ATLAS and CMS collaborations of Higgs boson production processes µggF , µV BF , µWH , µZH , µttH and decay signal strengths µγγ , µZZ , µWW , µττ , µbb for the combined √ 7 and √ 8 TeV data are presented in Fig.2. Fig.2. Production signal strengths (upper figure)and decay signal strengths (lower figure) for the com- bination of ATLAS and CMS Collaborations from [3] The results of experimental measurements show de- viations from the SM. Thus, the existance of Landau pole, the problem of electroweak vacuum instability as well as the ex- perimental data on the production and decay sig- nal strengths of Higgs boson, tiny Higgs mass pro- tected from quantum corrections, prove the necessity of searches for new physics beyond the SM. One of the models of beyond the SM physics is the two-Higgs doublet (2HDM) model [4]. This model provides a solution to the hierarchy problem and pre- dicts five Higgs bosons: two neutral CP-even Higgs bosons, h,H , one neutral CP-odd Higgs, A and two charged Higgs bosons, H±. Higgs sector of this model can be represented by two free parameters: the mass of the pseudoscalar Higgs boson, MA, and the ratio of the vacuum expectation values of the two Higgs doublets of Higgs sector, tanβ. The searches for evidence of beyond SM Higgs bosons is an integral part of Run II at the LHC with the center-of-mass energy of 13 TeV. Experimental searches for Higgs sector were performed at the LHC (CMS) [5] according to the following decay channels, presented in Fig.3 Fig.3. Decays of the Higgs boson via fermionic channel (left) and bosonic channel (right) In this paper we will consider the following decay channels of beyond SM Higgs bosons: 1) via fermionic decays • H → ττ 2) via bosonic decays • A → Zh • H → hh . With the help of SusHi code we will study the prop- erties of beyond SM Higgs bosons at 14 TeV center- of-mass energies. 2. HIGGS BOSON PRODUCTION CROSS SECTION IN pp-COLLISIONS As the main production mechanism of Higgs bosons is gluon fusion pp → gg → H, lowest order of the parton cross section σLO(gg → H) is expressed by the gluonic width of the Higgs boson ΓLO(H → gg) [6] σLO(gg → H) = 8π2 m5 H ΓLO(H → gg)δ(ŝ−m2 H) . The lowest-order proton-proton cross section σLO(pp → H) can be defined by gluon luminosity 4 as σLO(pp → H) = σ0τH dLgg dτH , where s is the invariant pp collider energy squared, τH = m2 H s and σ0 = GFα 2 s(µ 2) 288 √ 2π ∣∣∣∣∣34∑ Q AQ(τQ) ∣∣∣∣∣ 2 , where GF is Fermi coupling constant, αs is strong coupling, AQ denotes the quark amplitude and µ is the renormalization point and defines the scale pa- rameter of αs. The pp cross-section of Higgs bosons ϕ ∈ {h,H,A} formation at the NLO (next-to-leading or- der) QCD corrections, is written as follows: σ(pp → H +X) = σ0 [ 1 + C αs π ] τH dLgg dτH + +∆σgg +∆σgq +∆σqq , where C arises from two-loop corrections of partonic cross-section, the quantities ∆σgg, ∆σgq and ∆σqq of the partonic cross section arise from gg, gq and qq scattering. The coupling of the Higgs ϕ to the bottom quarks in supersymmetric theory can be significant value comparable with the gluon-gluon fusion that is as- sociated with large values of tanβ. Accounting for the large tanβ values leads to the associated Higgs production (bb)ϕ+X illustrated in Fig.4. Fig.4. Leading order diagrams of the a) gluon fusion and b-associated Higgs production in the b) four-flavour and c) five-flavour scheme from [5] With the help of SusHi code (1.6.1 version) [7], we carried out calculations of Higgs boson H cross- section formation that include NNLO QCD contri- butions to LO quantities. This program also allows to calculate the differential cross sections of these pro- cesses with respect to the Higgs transverse momen- tum pt and (pseudo-)rapidity y(η) through NNLO QCD contributions [8]. The branching ratio of the Higgs boson for differ- ent benchmark scenarios, as well as the Yukawa cou- pling constants of the Higgs boson that are needed for the calculation of cross-sections were modelled using FeynHiggs code (version 2.12.0) [9]. Minimal Supersymmetric Standard Model (MSSM) param- eters were determined from the experimental data according to [10], shown in Fig.5 Fig.5. Restrictions on the parameters of the MSSM model from [10] From Fig.5, it can be concluded that the decays of the Higgs boson via fermionic channel are sensitive to large tangents, while the decays of the Higgs bo- son via bosonic channel are sensitive to the range of small tangents. This fact will be used by us during the cross section and branching ratio calculations of Higgs boson for an optimal agreement with the experimental data at low energies and for the best predictions at energies of 14 TeV at the LHC. 3. CROSS SECTION AND BRANCHING FRACTION CALCULATIONS 3.1. The searches for a neutral Higgs boson, H via fermion decay, H → ττ Experimental data on the searches for the Higgs bo- son in the mass range 90...1000 GeV via decay chan- nel A\H\h → ττ are presented in [5]. The accuracy of the data calculations is based on the searches for three neutral Higgs bosons of MSSM model through the reconstruction of the invariant mass of two τ mesons with their subsequent decays into muons, electrons and hadrons, µµ, eµ, µτh, eτh, τhτh. To in- 5 crease the accuracy of data analysis was measured cross section of b quark associated Higgs boson pro- duction, as an increase in constant coupling with τ leptons is observed for this process of Higgs boson creation. This channel of Higgs decay to ττ final state is perfect one to test the viability of MSSM model. Experimental data on the search for the Higgs boson for the gluon fusion process (ggϕ) and the b-associated production process (bbϕ) recorded by the CMS detector at 13 TeV centre-of-mass en- ergy in 2015 are presented in Fig.6 Fig.6. σ(gg(bb) → ϕ)B(ϕ → ττ) for a) the gluon fusion process (ggϕ) and b) the b-associated produc- tion process (bbϕ) from [5] Using the experimental data for the restriction of the numerical values of MSSM parameters, shown in Fig.6, with the help of computer program SusHi, we have calculated σ(pp → H)B(H → ττ(bb)) for the gluon-gluon fusion (ggϕ) and b-associated pro- duction process (bbϕ). From the perspective of the searches for new physics at the LHC at an energy of 14 TeV, we have carried out calculations for energy of proton-proton collisions of 14 TeV, via two most probable decay channels of the Higgs boson H → ττ and H → bb for the gluon-gluon or b-associated pro- cess of the Higgs boson formation. The results of our calculations are presented in Fig.7 Fig.7. σ(pp → H)B(H → ττ(bb)) for the gluon- gluon fusion and b-associated production process in the range of Higgs mass MH = 300...1000 GeV with tanβ=17 and energy 14 TeV for two decay channels of the Higgs boson, H → ττ (up) and H → bb (down) From Fig.7 it can be seen the increase (by one order of magnitude) of σ(ppH)B(H → bb) (pb) compared with the value σ(ppH)B(H → ττ) that emphasizes the importance of accounting of other neutral Higgs boson decay channels at the LHC, in particular, H → bb. In addition, we see a significant predom- inance of (bbϕ) Higgs production process compared with the process (ggϕ) that confirms the theoretical predictions of the prevalence of this process due to increase of Higgs boson Yukawa coupling constant for large values of tanβ. To study the kinematics of the processes, we have calculated differential cross sections with respect to the Higgs transverse momentum pt and pseudorapid- ity, η at 14 TeV, that are presented in Fig.8 6 Fig.8. Differential cross sections with respect to the Higgs boson H transverse momentum pt, (up) and pseudorapidity, η (down) at the energy of 14 TeV From Fig.8 is seen that differential cross section smoothly decreases for ggh process. The character of the differential cross section with respect to the pseudorapidity indicates that the process of Higgs boson decay is accompanied by the direction of de- cay products that are perpendicular to the axis of the of the proton-proton collisions. This process is also characterized by a large value of the differen- tial cross section in the region of pseudorapidity, η=1...2.2, that corresponds to the angles relative to the collision axis of ∼ 500...100. 3.2. The searches for a pseudoscalar boson, A via dibozon decay, A → Zh Experimental data on the searches for a pseudoscalar boson A in the mass range of 200...600 GeV decay- ing into a Z boson and the SM-like Higgs boson h, where h boson decays into a pair bb and Z boson decays into a pair of oppositely-charged electrons or muons, were presented in [11]. The data from proton-proton collisions at a center-of-mass energy 8 TeV collected with the CMS detector correspond to an integrated luminosity of 19.7 fb−1. A boson is produced via the gluon-gluon fusion and its branch- ing fraction into Zh is relatively large compared to other channels. Furthermore, this channel is selected because of the lightness of detection of Z and h decay products, Z → ll and h → bb. Branching fractions for these decay channels are large values all over pa- rameter space of 2HDM model. The upper limit on the σAB(A → Zh → llbb) , in the mass range of A boson MA = 200-600 GeV is presented in Fig.9 Fig.9. Observed and expected 95% CL upper limit on σAB(A → Zh → llbb) as a function of MA from [11] Since in this mass range exists a peak with a local significance of 2.6σ or a global 1.1σ significance, it would be interesting to check its presence at higher energies and luminosities. With the help of the pro- gram SusHi we have calculated σAB(A → Zh → llbb) in the mass range MA = 300...1000 GeV with tanβ = 2. The results of our calculations at a center-of-mass energy of 8 TeV and at the projected at the LHC energies of 14 TeV are presented in Fig.10 Fig.10. σAB(A → Zh → llbb) as a function of MA at a center-of-mass energy of 8TeV (up) and of 14TeV (down) From Fig.14 is seen an increase (by one order of mag- 7 nitude) of the value σAB(A → Zh → llbb) at MA = 1000 GeV, that allows us to assume optimistically the possible discovery of a pseudoscalar boson, A at higher energies and luminosities at the LHC. In addi- tion, we see the predominance of A boson production through gluon-gluon fusion, that emphasizes the cor- rectness of the theoretical predictions with respect to the substantial Higgs interaction with the b quarks only at high tanβ. The calculations of differential cross sections for pseudoscalar boson with respect to the transverse momentum pt and pseudorapidity η at a center-of- mass energy of 14 TeV are presented in Fig. 11 Fig.11. Differential cross sections for pseudoscalar boson, A with respect to the transverse momentum pt (up) and pseudorapidity η (down) at a center-of- mass energy of 14 TeV It should be noted that the differential cross sec- tion with respect to the transverse momentum pt, smoothly decreases for ggh process and is maximal for small values of transverse momentum. The char- acter of the differential cross section with respect to the pseudorapidity indicates that the process of Higgs boson decay does not have a preferred di- rection perpendicular to the proton-proton collision axis, that emphasizes the importance of searches for the Higgs boson A in all directions with respect to the collision axis. From Fig.11 is seen the significant predominance of the value of the differential cross sec- tions with respect to the pseudorapidity for process A → Zh → llbb compared to the data for H → ττ) process of the Higgs boson formation, presented in Fig.8. 3.3. The searches for a heavy scalar boson, H via dibozon decay, H → hh Due to the large amount of data on decay chan- nels, there was selected the decay channel, H → hh(bbττ), predicted in the MSSM model. We have performed calculations of cross sections of Higgs bo- son formation using experimental data with three fi- nal states, eτh, µτh, τhτh, where τh – a τ lepton de- caying into hadrons [12]. Parameter space is selected for largest cross section values and the range of MA is selected with respect to recent experimental data, presented in Fig.12. Fig.12. The upper limit on σ(pp → H)×BR(H → hh → bbττ) as the function of mH from [12] In the experiment was studied the resonant Higgs boson production via the process pp → H → hh → bbττ , where H is the CP-even Higgs boson of un- known mass. The branching ratio, H → hh can be large for small values of tanβ caused by the experi- mentally measured value of Higgs boson mass, mh ≃ 125 GeV. The searches for the final state bbττ are car- ried out taking into account the most probable decay channels of τ leptons: eτh, µτh, τhτh. Fig.12 presents the upper limit on the σ(pp → H)×BR(H → hh → bbττ) for the combination of the three channels as a function of the resonance mass mH . Using the experimental data presented in Fig.12, with the help of the computer program SusHi, we calculated σ(pp → H) × BR(H → hh → bbττ) for the gluon-gluon fusion (ggϕ) and b-associated pro- duction process (bbϕ) at a centre-of-mass energy of 14 TeV and tanβ = 2 in the mass range MH = 300... 1000 GeV, Fig.13 Fig.13. σ(pp → H) × BR(H → hh → bbττ) for the gluon-gluon fusion (ggϕ) and b-associated production process (bbϕ) at a centre-of-mass energy of 14 TeV at the LHC In addition, it should be noted the predominance of the process of the gluon-gluon fusion of the Higgs 8 boson production, compared with b-associated pro- duction process in the region of small values of tanβ that is differ from analogous calculations for large values of tanβ, where dominated bbh processes, pre- sented in Fig.7. The kinematics of the process pp → H → hh → bbττ is presented by calculations of differential cross sections with respect to the Higgs transverse momen- tum pt and pseudorapidity η at 14 TeV, Fig.14 Fig.14. Differential cross sections for Higgs boson, H with respect to the transverse momentum pt (up) and pseudorapidity η (down) at a center-of-mass energy of 14 TeV The character of the differential cross section does not differ from the previous cases. This fact underscores the dependence of this characteristic from many oth- ers factors beyond the parameter space data. Blurred peak also indicates the large range of emission angles of the decay products of the Higgs boson with respect to the axis of the proton-proton collisions. 4. CONCLUSIONS We have calculated the production of cross sec- tion on branching fraction, σ × Br for two mecha- nisms of production and three decay mechanisms of Higgs bosons within 2HDM model: 1)pp → H → ττ , 2)pp → A → Zh → llbb, 3) pp → H → hh → bbττ . With the help of a computer program SusHi were carried out calculations for 8 TeV, as well as for the projected at the LHC energies of 14 TeV in the center-of-mass energy. The obtained calculations present an increase in the value of σ × Br for three considered decay processes of the Higgs boson, but in the third case this increase is insignificant. In all three cases, were compared cross sections of the Higgs boson production via gluon-gluon fusion and b-associated production process and found the pre- dominance of the (bbϕ) process only for fermionic decay channel of the Higgs boson, H → ττ , when the value of tanβ was significant one. In the other two bozonic decay channels there was a significant excess of the cross-section of the Higgs boson production via gluon-gluon fusion for small values of tanβ. For three considered cases are calculated the differential cross sections for Higgs boson with respect to the transverse momentum pt and pseudorapidity η at a center-of-mass energy of 14 TeV. The distribution of the differential cross section with respect to pseudo- rapidity does not detect certain direction of decay products to the axis of the proton-proton collisions. References 1. S. Chatrchyan et al. CMS Collaboration. Obser- vation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC // Phys. Lett. 2012, v.B716, p.30-61. 2. B. Schrempp, M. Wimmer. Top Quark and Higgs Boson Masses: Interplay between Infrared and Ultraviolet Physics // Prog.Part.Nucl.Phys. 1996, v.37, p.1-90, arXiv:hep-ph/9606386. 3. ATLAS, CMS Collaborations. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined AT- LAS and CMS analysis of the LHC pp collision data at s=7 and 8 TeV // JHEP. 2016, v.08, p.045. 4. G.C. Branco et al. Theory and phenomenology of two-Higgs-doublet models // Phys. Rept. 2012, v.516, p.1-102. 5. CMS Collaboration. Search for a neutral MSSM Higgs boson decaying into tautau at 13 TeV // CMS-PAS-HIG-16-006 ; CMS Collaboration. Summary results of high mass BSM Higgs searches using CMS run-I data // CMS-PAS-HIG-16-007 ; CMS Collaboration. Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in llbb final states // Phys. Lett. 2015, v.B748, p.221-243; CMS Collaboration. Search for resonant Higgs boson pair production in the bbττ final state // CMS-PAS-HIG-16-013. 6. M. Spira, A.Djouadi, D.Graudenz and P.M. Zerwas. Higgs boson production at the LHC // Nucl. Phys. 1995, v.B453, p.17-82, hep-ph/9504378. 9 7. SusHi can be downloaded from: http : //sushi.hepforge.org/. 8. G. Bozzi, S. Catani, D. de Florian, M. Grazz- ini. Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC // Nucl. Phys. 2006, v.B737, p.73-120, hep-ph/0508068; H. Mantler and M. Wiesemann. Top- and bottom-mass effects in hadronic Higgs pro- duction at small transverse momenta through LO+NLL // arXiv:1210.8263. 9. S. Heinemeyer, W. Hollik, and G. Weiglein. Feyn- Higgs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM // Comput. Phys. Commun. 2000, v.124, p.76-89, hep-ph/9812320. 10. CMS Collaboration. Summary results of high mass BSM Higgs searches using CMS run-I data // CMS-PAS-HIG-16-007. 11. CMS Collaboration. Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in llbb final states // Phys. Lett. 2015, v.B748, p.221-243. 12. CMS Collaboration. Search for resonant Higgs boson pair production in the bbττ final state // CMS-PAS-HIG-16-013. ÈÇÓ×ÅÍÈÅ ÑÂÎÉÑÒ ÐÀÑØÈÐÅÍÍÎÃÎ ÑÅÊÒÎÐÀ ÁÎÇÎÍΠÕÈÃÃÑÀ  ÐÀÌÊÀÕ 2HDM-ÌÎÄÅËÈ Ò.Â.Îáèõîä, Å.À.Ïåòðåíêî Ó÷åò ïîñëåäíèõ ýêñïåðèìåíòàëüíûõ äàííûõ ïî ïîèñêó ðàñøèðåííîãî ñåêòîðà áîçîíîâ Õèããñà, ïî- ëó- ÷åííûõ íà ÁÀÊ ïðè ýíåðãèè ïðîòîí-ïðîòîííîãî âçàèìîäåéñòâèÿ 13 ÒýÂ, ïîçâîëÿåò ïðîâåñòè êîì- ïüþòåðíîå ìîäåëèðîâàíèå ñâîéñòâ ñóïåðñèììåòðè÷íûõ ÷àñòèö â ðàìêàõ 2HDM-ìîäåëè. Ýêñïåðèìåí- òàëüíî ïîëó÷åííûå îãðàíè÷åíèÿ íà ïàðàìåòðû ìîäåëè, ó÷òåííûå â èìïëåìåíòèðîâàííîì â SusHi êîäå FeynHiggs, äàëè íàì âîçìîæíîñòü ïîñ÷èòàòü âåëè÷èíû ñå÷åíèé, øèðèíû ðàñïàäîâ äëÿ òðåõ ìåõàíèçìîâ ðîæäåíèÿ è ðàñïàäà áîçîíîâ Õèããñà: 1) pp → H → ττ , 2) pp → A → Zh → llbb, 3) pp → H → hh → bbττ ïðè ýíåðãèè â ñèñòåìå öåíòðà ìàññ 14 ÒýÂ. Ðàññìîòðåííûå ðàñ÷åòû äàþò âîçìîæíîñòü ñäåëàòü âûâîäû î íåîáõîäèìîñòè ó÷åòà b-àññîöèèðîâàííîãî ïðîöåññà ðîæäåíèÿ áîçîíîâ Õèããñà äëÿ ôåðìèîííîãî êà- íàëà ðàñïàäà ïðè áîëüøèõ çíà÷åíèÿõ ïàðàìåòðà tanβ. Ïîëó÷åíû ðàñïðåäåëåíèÿ äèôôåðåíöèàëüíûõ ñå÷åíèé ïî ïîïåðå÷íîìó èìïóëüñó pt è ïî ïñåâäîáûñòðîòå η, è âûÿâëåíû îñîáåííîñòè êèíåìàòèêè ïðî- äóêòîâ ðàñïàäà áîçîíîâ Õèããñà. ÂÈÂ×ÅÍÍß ÂËÀÑÒÈÂÎÑÒÅÉ ÐÎÇØÈÐÅÍÎÃÎ ÑÅÊÒÎÐÀ ÁÎÇÎÍI ÕIÃÃÑÀ  ÐÀÌÊÀÕ 2HDM-ÌÎÄÅËI Ò.Â.Îáiõîä, Å.Î.Ïåòðåíêî Îáëiê îñòàííiõ åêñïåðèìåíòàëüíèõ äàíèõ ç ïîøóêó ðîçøèðåíîãî ñåêòîðà áîçîíiâ Õiããñà, îòðèìàíèõ íà ÁÀÊ ïðè åíåðãi¨ ïðîòîí-ïðîòîííîãî çiòêíåííÿ 13 ÒåÂ, äîçâîëÿ¹ ïðîâåñòè êîìï'þòåðíå ìîäåëþ- âàííÿ âëàñòèâîñòåé ñóïåðñèìåòðè÷íèõ ÷àñòèíîê ó ðàìêàõ 2HDM-ìîäåëi. Åêñïåðèìåíòàëüíî îòðèìàíi îáìåæåííÿ íà ïàðàìåòðè ìîäåëi, ÿêi âðàõîâàíi â iìïëåìåíòîâàíîìó â SusHi êîäi FeynHiggs, äàëè íàì ìîæëèâiñòü ïîðàõóâàòè ïåðåðiçè, øèðèíè ðîçïàäiâ äëÿ òðüîõ ìåõàíiçìiâ íàðîäæåííÿ i ðîçïàäó áîçîíiâ Õiããñà: 1) pp → H → ττ , 2) pp → A → Zh → llbb, 3) pp → H → hh → bbττ ïðè åíåðãi¨ â ñèñòåìi öåíòðà ìàñ 14 ÒåÂ. Ðîçãëÿíóòi ðîçðàõóíêè äàþòü ìîæëèâiñòü çðîáèòè âèñíîâêè ïðî íåîáõiäíiñòü âðàõóâàí- íÿ b-àñîöiéîâàíîãî ïðîöåñó íàðîäæåííÿ áîçîíiâ Õiããñà äëÿ ôåðìiîííîãî êàíàëó ðîçïàäó ïðè âåëèêèõ çíà÷åííÿõ ïàðàìåòðà tanβ. Îòðèìàíî ðîçïîäiëè äèôåðåíöiàëüíèõ ïåðåðiçiâ ïî ïîïåðå÷íîìó iìïóëüñó pt i ïî ïñåâäîøâèäêîñòi η, i âèÿâëåíî îñîáëèâîñòi êiíåìàòèêè ïðîäóêòiâ ðîçïàäó áîçîíiâ Õiããñà. 10