Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction

The γ decay of the resonance-like structure (RLS), observed in the ²⁵Mg(p; γ)²⁶Al in the region of excitation energies of 7...9 MeV was studied. The excitation function of the ²⁵Mg(p; γ)²⁶Al reaction was measured. The resonance strengths in the accelerated proton energy range of Eₚ = 1.4...2.0 MeV w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Kachan, A.S., Kurguz, I.V., Mischenko, V.M., Utenkov, S.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136074
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction / A.S. Kachan, I.V. Kurguz, V.M. Mischenko, S.N. Utenkov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 16-20. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136074
record_format dspace
spelling irk-123456789-1360742018-06-16T03:03:26Z Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction Kachan, A.S. Kurguz, I.V. Mischenko, V.M. Utenkov, S.N. Ядерная физика и элементарные частицы The γ decay of the resonance-like structure (RLS), observed in the ²⁵Mg(p; γ)²⁶Al in the region of excitation energies of 7...9 MeV was studied. The excitation function of the ²⁵Mg(p; γ)²⁶Al reaction was measured. The resonance strengths in the accelerated proton energy range of Eₚ = 1.4...2.0 MeV were determined. The obtained distributions of the strength of M1 transitions between the resonance states and the low-lying bound states in ²⁶Al have resonance character. The position of the center of gravity of the magnetic dipole resonance (MDR) on the ground state is equal to 7.92 MeV . Total strength MDR in ²⁶Al is equal to 5.7 MeV μ²ₙ. Вивчено γ-розпад резонансноподібної структури (РПС), що спостерігається в реакції ²⁵Mg(p; γ)²⁶Al в районі енергій збудження 7…9 МеВ. Проведено вимірювання функції збудження даної реакції. Сили резонансних станів визначені в інтервалі енергій прискорених протонів Eₚ = 1.4...2.0 МеВ. Отримані розподіли сили М1 переходів між резонансними станами і низьколежачими пов'язаними в ²⁶Al мають резонансний характер. Положення центра ваги магнітного дипольного резонансу (МДР) на основному стані дорівнює 7,92 МеВ. Повна сила МДР дорівнює 5,7 МеВ μ²ₙ. Изучен γ-распад резонансноподобной структуры (РПС), наблюдаемой в реакции ²⁵Mg(p; γ)²⁶Al в районе энергий возбуждения 7…9 МэВ. Проведены измерения функции возбуждения данной реакции. Силы резонансных состояний определены в интервале энергий ускоренных протонов Eₚ = 1.4...2.0 МэВ. Полученные распределения силы М1 переходов между резонансными состояниями и низколежащими связанными в ²⁶Al имеют резонансный характер. Положение центра тяжести магнитного дипольного резонанса (МДР) на основном состоянии равно 7,92 МэВ. Полная сила МДР равна 5,7 МэВ μ²ₙ. 2017 Article Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction / A.S. Kachan, I.V. Kurguz, V.M. Mischenko, S.N. Utenkov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 16-20. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 25.85.Ig, 27.90.+b, 25.30.Fj, 27.10.+h http://dspace.nbuv.gov.ua/handle/123456789/136074 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Kachan, A.S.
Kurguz, I.V.
Mischenko, V.M.
Utenkov, S.N.
Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
Вопросы атомной науки и техники
description The γ decay of the resonance-like structure (RLS), observed in the ²⁵Mg(p; γ)²⁶Al in the region of excitation energies of 7...9 MeV was studied. The excitation function of the ²⁵Mg(p; γ)²⁶Al reaction was measured. The resonance strengths in the accelerated proton energy range of Eₚ = 1.4...2.0 MeV were determined. The obtained distributions of the strength of M1 transitions between the resonance states and the low-lying bound states in ²⁶Al have resonance character. The position of the center of gravity of the magnetic dipole resonance (MDR) on the ground state is equal to 7.92 MeV . Total strength MDR in ²⁶Al is equal to 5.7 MeV μ²ₙ.
format Article
author Kachan, A.S.
Kurguz, I.V.
Mischenko, V.M.
Utenkov, S.N.
author_facet Kachan, A.S.
Kurguz, I.V.
Mischenko, V.M.
Utenkov, S.N.
author_sort Kachan, A.S.
title Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
title_short Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
title_full Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
title_fullStr Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
title_full_unstemmed Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction
title_sort resonance-like structure observed in ²⁵mg(p; γ)²⁶al reaction
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/136074
citation_txt Resonance-like structure observed in ²⁵Mg(p; γ)²⁶Al reaction / A.S. Kachan, I.V. Kurguz, V.M. Mischenko, S.N. Utenkov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 16-20. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kachanas resonancelikestructureobservedin25mgpg26alreaction
AT kurguziv resonancelikestructureobservedin25mgpg26alreaction
AT mischenkovm resonancelikestructureobservedin25mgpg26alreaction
AT utenkovsn resonancelikestructureobservedin25mgpg26alreaction
first_indexed 2025-07-09T21:23:10Z
last_indexed 2025-07-09T21:23:10Z
_version_ 1837206016539754496
fulltext RESONANCE-LIKE STRUCTURE OBSERVED IN 25Mg(p, γ)26Al REACTION A.S.Kachan∗, I.V.Kurguz, V.M.Mischenko, S.N.Utenkov National Science Center ”Kharkiv Institute of Physics and Technology”, 61108, Kharkiv, Ukraine (Received April 27, 2017) The γ decay of the resonance-like structure (RLS), observed in the 25Mg(p, γ)26Al in the region of excitation energies of 7...9MeV was studied. The excitation function of the 25Mg(p, γ)26Al reaction was measured. The resonance strengths in the accelerated proton energy range of Ep = 1.4...2.0MeV were determined. The obtained distributions of the strength of M1 transitions between the resonance states and the low-lying bound states in 26Al have resonance character. The position of the center of gravity of the magnetic dipole resonance (MDR) on the ground state is equal to 7.92MeV . Total strength MDR in 26Al is equal to 5.7MeV µ2 N . PACS: 25.85.Ig, 27.90.+b, 25.30.Fj, 27.10.+h 1. INTRODUCTION In recent years, reactions of inelastic scattering and radiative capture of protons have been actively used to study the giant multipole (M1, E2, octupole) resonances in the region of low excitation energies and, therefore, falling in the range of discrete nuclear states [1, 2]. Among the low-lying giant resonances, M1 is one of the most interesting because M1 tran- sitions carry the most complete information about the spin and isospin dependences of nuclear forces [2]. In real nuclei, the M1 strength is distributed over neighboring states; this circumstance makes it possible to study the relationship between the single- particle and collective motion. For sd shell nuclei, the role of collective motion is insignificant; there- fore, the M1 resonance clearly manifests itself in these nuclei. To date, the position and fine structure of the magnetic dipole resonance (MDR) in even- even (4N and 4N + 2n) sd shell nuclei have been sufficiently well studied [3, 4]. It has also been es- tablished that the main mechanism responsible for the MDR excitation is the transitions between spin- orbit partners [2]. To explain the reduction in the total strength and MDR fragmentation in these nu- clei, the Nilsson model [4], the configuration- mixing shell model [3], and the Hartree-Fock method [5] were successfully used. Consideration of the effect of pairing correlations on the position and energy- weighted strength of giant multipole resonances leads to more complete agreement between the predictions of different theoretical models and experimental data [6, 7]. Behavior of the MDR total strength in odd sd shell nuclei corresponds to that of the total strength, which follows from the Kurath sum rule [8]. Analysis of the MDR total strength in even-even (4N and 4N +2n) sd shell nuclei indicates that the valence nn and pp pairs play a key role in the MDR formation in this nuclei [9]. Analysis of the MDR total strength in odd-odd (4N + np) sd shell nuclei can also give information about the effect of pairing influence. on the MDR properties. 2. EXPERIMENTAL RESULTS AND DISCUSSION For experimental determination the center of gravity (Ecog = ∑ k EkBk(M1)/ ∑ k Bk(M1) and the total strength (SM1 EW = ∑ k EkBk(M1) ↑) of the MDR ob- served in the radiative proton capture reaction, it is necessary to know resonance strengths for the current reaction (S = (2I + 1)ΓpΓγ/Γ), since B(M1)fi ↑= 86.6 2If + 1 bifSi[eV ] (1 + δ2if )E 3 γif µ2 N , (1) here i is the initial (resonance) state; f is the ter- minal state; bif is the branching ratio for transition between the initial and the terminal states; Si rep- resents resonance state strengths; δ is the ratio of mixing by multipolarities for γ transitions between the initial and the terminal states; I is the state spin; is the energy of γ transition between the ini- tial and the terminal states; Eif is the energy of γ transition between the initial and the terminal states; B(M1)fi is the reduced probability of the M1 transition from the final to the initial state: (B(M1)fi = ((2Ii + 1)/(2If + 1))B(M1)if ). K is of the MDR states. Expression (1) below the binding energy for proton as follows: B(M1)fi ↑= 14.2 bif (2If + 1) (1 + δ2if )τmi [fs]E 3 γif [MeV ] µ2 N , (2) ∗Corresponding author E-mail address: kachan@kipt.kharkov.ua 16 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2017, N3(109). Series: Nuclear Physics Investigations (68), p.16-20. where mi is the average lifetime of the excited state. The resonance strengths within the accelerated proton energy range with Ep < 1MeV are generally well known, and it is therefore convenient to deter- mine the resonance strengths being investigated for the first time on the basis of relative measurements. If we compare the yield of γ lines within the spectrum of the resonance investigated to the ones within a spec- trum of known resonance (with well - known strength and decay patterns), we can obtain the strength value for the investigated resonance. The method for determining resonance strength for thin targets is described in detail in [10, 11]. We measured the excitation function for the 25Mg(p, γ)26Al reaction in the range of proton energies Ep = 1.4...2.0MeV (Fig.1). The measurements were performed on the ESU-5 accelerator at the National Scientific Cen- ter Kharkov Institute of Physics and Technology. A Ge(Li) detector with volume of 60 cm3 and resolution of 3.2 keV for Eγ = 1332 keV was used to measure the γ spectra. The detector was placed at a distance of 2 cm from the target at an angle of 55◦. The target was prepared by knocking ions directly into a tan- talum substrate in the electromagnetic separator. A target prepared in this manner is convenient for long- lasting experiments, since it is capable of sustaining high current densities for many hours of operation. 1700 1800 1900 2000 5000 10000 15000 20000 N Ep, keV 25Mg(p, )26Al Fig.1. Excitation function of the 25Mg(p, γ)26Al reaction. γ photons with Eγ > 2.6MeV was detected The resonance strengths in the (p, γ) reactions are determined as in [10]: S = (2I + 1)εNγ 4π3λ2ξNpbηW (θ) , (3) where ε is the target’s deceleration capability mea- sured in energy units and multiplied by cm2/atom; Nγ is the γ quantum yield for the current energy; ξ is the target thickness measured in energy units; Np is the number of protons that fell on the target; b is the branching ratio; η is the detector’s absolute ef- ficiency; and W (θ) is a coefficient used to consider the angular distribution effect. The target thickness ξ may be expressed through deceleration capability of the target substance ξ = ntMε , (4) where n is the number of atoms per 1 g of the target substance and tM is the target thickness measured in gcm−2. Measurements over the energy range were performed under the same experimental conditions, making it possible to exclude the dependence on the number of protons that fall on the target and target thickness: S1 S2 = Nγ1Er1b2η2 Nγ2Er2b1η1 , (5) where and are Nγ1 , Nγ2 quantum yields (the area un- der the γ line) for the first and the second resonances respectively; and are the resonance energies of pro- tons in the laboratory system; b1 and b2 are branch- ing ratios of the γ transitions under study; η1 and η2 represent the detector’s absolute efficiency with respect to γ quanta detected in the first and in the second resonances, respectively. The results of these measurements are listed in the Table 1. In this study, the strengths of the resonances forming the resonance-like structure observed in the reaction of proton radiative capture 25Mg(p, γ)26Al were determined from comparison of the intensities of the γ lines formed during decay of the resonance levels under study with the intensity of the γ line at Eγ = 5153 keV , corresponding to the transition from the resonance level with Ep = 953 keV (whose strength and decay scheme are well known) to the state at 2069 keV . We also measured the spectra and angu- lar distributions of γ rays formed at the de- cay of the most intensive resonances with Ep = 953, 1375, 1587, 1649, 1699, 1714 keV . The Ge(Li) detector was located at a distance of 7 cm from the target. The target was situated in the ro- tation center at an angle of 45◦ to the proton beam direction. Measurements were performed at angles of 0◦, 30◦, 45◦, 60◦ and 90◦. Corrections taking into account the finite dimensions of the detector were chosen from the tables. A scintillation detector with a NaI(T l) crystal served as a monitor. The same detector was used to measure the excitation function of the 25Mg(p, γ)26Al reaction. The measurement results as the expansion coefficients (ak) in Legendre polynomials are given in Table 2. The coefficients ak were determined by least- squares fitting of the experimental data and using the expression: W (θ) = A0[1+a2P2(cos θ)+a4P4(cos θ)+a6P6(cos θ)] . 17 Table 1. Resonance strengths in the 25Mg(p, γ)26Al reaction Ep, keV Ex keV S, eV S, eV [12] S, eV [13] < S >, eV 1375 7628 21±7 14.6±1.2 9±2 1587 7832 6.3±1.5 8.2±1.0 6.6±1.0 7.2±0.5 1649 7891 30±9 35.±3 32.±6 34±0.5 1699 7939 18±5 11±2 20±4 13.4±1.5 1714 1953 42±9 38±5 57± 43.1±2.6 1744 7982 2.7±1 14.8±1.5 - 6.4±3.1 1748 7987 1.7±0.7 - - - 1763 8001 1.5±0.6 1.1±0.2 - 1.14±0.11 1771 8008 - 2.3±0.4 - - 1774 8011 3.6±1.2 2.4±0.8 - 2.77±0.46 1776 8013 0.8±0.3 - - - 1800 8036 - 0.18±0.03 - - 1811 8047 0.3±0.2 0.9±0.2 - 0.6±0.2 1829 8064 0.6±0.3 7.6±0.5 - 2.45±1.59 1833 8067 1.8±0.7 2.7±0.7 - 20.5±0.7 1899 8131 2.2±0.9 - - - 1998 8227 3.8±1.5 - - - Table 2. Results of the measurements of γ ray angular distributions in the 25Mg(p, γ)26Al reaction Ep, keV E∗ i → E∗ f keV a2 a4 a6 χ2 min δ 953 722→2069 -0.21±0.03 -0.11±0.03 0.03±0.04 0.7 0.24±0.02 1375 7628→4205 -0.03±0.03 -0.08±0.04 0.03±0.05 0.5 0.22±0.05 1587 7832→0 0.28±0.08 -0.24±0.09 0.07±0.09 0.6 -0.39±0.07 1649 7891→0 -0.13±0.03 -0.05±0.04 0.01±0.04 1.2 0.38±0.08 1699 7939→2069 0.28±0.05 -0.16±0.05 -0.01±0.05 0.4 -0.40±0.07 1714 7953→0 -0.11±0.01 -0.04±0.01 0.02±0.02 0.6 0.21±0.05 Further analysis of the angular distributions was to find the spins of resonant states and γ ray multi- polarity mixing ratios δ by minimizing the quantity χ2: χ2 = ∑ n [ A0W theor(θn)−W exp(θn) ∆W exp(θn) ]2 , (6) where W theor(θ) = ∑ k Qkρk0Fk(J1 , J2 , L , δ)Pk is the theoretical angular distribution of γ rays for the transition between the initial and final states with spins J1 and J2, W exp(θ) and ∆W exp(θ) are experi- mental data with the corresponding statistical errors, A0 is a normalization constant, Qk is the coefficient taking into account the finite size of the detector were chosen from the tables, ρk0 is the element of the sta- tistical tensor, and n is the number of experimental points (angles). The measurement results are illustrated in Fig.2,a. Fig.2. Decay of the resonance-like structure from the 25Mg(p, γ)26Al reaction: a – resonance strengths, b – reduced probabilities of γ transitions to the ground state of 26Al, c – reduced probabilities of γ transitions to the 2069 keV state, d – sum of reduced transition probabilities to the states of energies 3963...5726 keV 18 The obtained distribution of resonance strengths made it easier to identify a resonance-like structure (RLS) similar to those investigated earlier for the nuclei of the sd shell [8, 9]. This the resonance-like structures is of a complex structure; i.e, they con- sisted of states belonging both to theM1 resonance of the ground state and to the M1 resonance of excited states [8, 9]. The obtained probability distributions of magnetic dipole γ transitions have a resonance char- acter and allow us to conclude that the resonances that form the RLS belong to states of the M1 reso- nance on the ground and excited states of the 26Al nucleus (Figs.2,b, c, d). The position of the center of gravity of the MDR on the ground state in 26Al is equal to 7.92MeV . Total strength MDR in 26Al is equal to 5.7MeV µ2 N . The center of gravity of the MDR in 4N + np nu- clei lies on the average 3MeV lower in the excitation energy than that in 4N nuclei. This difference can be explained by assuming the existence of the neutron-proton pairing between the odd neutron and proton being in the same orbit [9]. The analysis of the experimental data [9-17] al- lowed us to obtain distributions of the M1-transition probabilities for the ground state in the 22Na, 30P , 34Cl nuclei (Fig.3). 5 6 7 8 9 10 0 2 4 5 6 7 8 9 100 2 4 5 6 7 8 9 10 0 2 5 6 7 8 9 10 0 2 4 22Na 26Al B(M1), 10- 1 N 2 Q p Q p 30P Q p 34Cl E*, MeV Q p Fig.3. Magnetic dipole resonance in odd-odd (4N + np) sd-shell nuclei The behavior of the MDR total strength in odd- odd (4N + np) sd shell nuclei (Fig.4) differs from that of the following from the Kurath sum rule. To elucidate the reasons for this behavior of the total strength of MDR in odd-odd nuclei of the sd shell, further investigations are required. 3. CONCLUSIONS In this paper, we studied the decay of the resonance- like structure observed in the 25Mg(p, γ)26Al re- action in the accelerated proton energy range Ep = 1.4...2.0MeV . We also measured the exci- tation function, spectra and angular distributions of γ rays formed at the decay of the most intensive res- onances with Ep = 953, 1375, 1587, 1649, 1699 and 1714 keV . From the analysis of the excitation func- tion of this reaction and the angular distributions of γ quanta, the resonance forces and the mixing coefficients for the multipolarities of the γ radiation are determined. The obtained probability distribu- tions of magnetic dipole transitions on the ground and excited states of the 26Al nucleus, which have a resonance character. The MDR was identified on the ground state in 26Al. The position of the center of gravity of the MDR was found to be 7.92MeV . The total strength of the MDR is found to be 5.7MeV µ2 N . 15 20 25 30 35 40 1 10 100 34Cl SM1 EW , MeV 30P 26Al 22Na 32S 22Ne 18O 24Mg 30Si 40Ca 36Ar20Ne 34S 28Si 26Mg 16O A Fig.4. Dependence of the total MDR strength of A for sd shell nuclei. The solid line is the Kurath sum rule [6, 16]. Blacksquare – 4N nuclei (16O, 22Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca) [3, 4, 14, 15]; � – 4N + 2n nuclei (18O, 22Ne, 26Mg, 30Si, 34S) [3, 4, 15]; × – 4N + np nuclei (22Na, 26Al, 30P , 34Cl) – our results References 1. A.Richter. Magnetic dipole excitations in nuclei: elementary modes of nucleonic motion // Rev. Mod. Phys. 2010, p.1. 2. S. Raman, L.W.Fagg, R.S.Hicks. Giant magnetic resonance In: Speth. J. Electric and magnetic gi- ant resonances in nuclei // International review of nuclear physics. 1991, v.7, p.355-533. 3. U.E.P.Berg, K.A.Acksermann, K.Banert, et al. Bound state M1 transitions in sd-shell nuclei // Phys. Lett. 1984, v.140, p.297-322. 4. L.W.Fagg. Electroextraction of nuclear magnetic dipole transition // Rev. Mod. Phys. 1975, v.47, p.683-694. 19 5. B.Castel, B.P. Singh, I.P. Johnstone. Occupancy of spherical shells in the ground state of even 2s1d-shell nuclei // Nucl. Phys. 1970, v.157A, p.137. 6. L. Zamick, A.Abbs, T.R.Halemann. Energy- weighted sum rules for spin operators and ground state correletion // Phys. Lett. 1981, v.103, p.87- 89. 7. M.Kohno, D.W.L. Sprung. Quenching of the electromagnetic M1 strength due to first order mesonic and ground state correlation effects // Phys. Rev. 1982, v.26, p.297-322. 8. A.S.Kachan, I.V.Kurguz, I.S.Kovtunenko, et al. Structure and total strength of magnetic dipole resonance in 35Cl nuclei // Bull. Russ. Acad. Sci. 2011, v.75, p.217-221. 9. A.S.Kachan, B.A.Nemashkalo, V.E. Storigko. M1 resonances in sd-shell nucleus // Yad. Fiz. 1989, v.49, p.367-371 (in Russian). 10. B.M.Paine, D.G.V. Sargood. (p, γ) resonance strength in sd-shell // Nucl. Phys. 1979, v.331A, p.389-397. 11. J.Keinonen, M.Riihonen and A.Anttila. Absolute resonance strength in the 20,21,22Ne(p, γ)21,22,23Na and 21Ne(p, pγ)21Ne reaction // Phys. Rev. 1977, v.15C, p.579. 12. P.M.Endt, P. de Wit, C.Alderliesten. The 25Mg(p, γ)26Al and 25Mg(p, p′γ) Resonances for Ep = 0.31...1.84 ,MeV // Nucl. Phys. 1986, v.459A, p.61-76. 13. M.R.Anderson, et al. Resonance strength mea- surements and thermonuclear reaction rates for 22Ne(p, γ)23Na // Nucl. Phys. 1982, v.373A, p.326-340. 14. G.Kuchler, et al. High resolution (e, e′) study of isovector M1 and M2 transition in the oxygen isotopes 16O // Nucl. Phys. 1983, v.406A, p.473- 492. 15. D.M.Pringle, E.F.Garman, S.H.Chew, et al. De- cay of the Lowest T = 2 State in 40Ca // Phys. Lett. 1982, v.115B, p.291. 16. D.Kurath. Strong M1 transition in light nuclei // Phys. Rev. 1963, v.130, p.1525-1543. 17. A.S.Kachan, et al. Search M1 resonance in 34Cl nuclei with radiation capture proton reaction // Physics report. 1993, p.204. ÐÅÇÎÍÀÍÑÍÎÏÎÄÎÁÍÀß ÑÒÐÓÊÒÓÐÀ, ÍÀÁËÞÄÀÅÌÀß Â ÐÅÀÊÖÈÈ 25Mg(p, γ)26Al À.Ñ.Êà÷àí, È.Â.Êóðãóç, Â.Ì.Ìèùåíêî, Ñ.Í.Óòåíêîâ Èçó÷åí γ-ðàñïàä ðåçîíàíñíîïîäîáíîé ñòðóêòóðû (ÐÏÑ), íàáëþäàåìîé â ðåàêöèè 25Mg(p, γ)26Al â ðàé- îíå ýíåðãèé âîçáóæäåíèÿ 7...9ÌýÂ. Ïðîâåäåíû èçìåðåíèÿ ôóíêöèè âîçáóæäåíèÿ äàííîé ðåàêöèè. Ñè- ëû ðåçîíàíñíûõ ñîñòîÿíèé îïðåäåëåíû â èíòåðâàëå ýíåðãèé óñêîðåííûõ ïðîòîíîâ Ep = 1, 4...2, 0ÌýÂ. Ïîëó÷åííûå ðàñïðåäåëåíèÿ ñèëû M1 ïåðåõîäîâ ìåæäó ðåçîíàíñíûìè ñîñòîÿíèÿìè è íèçêîëåæàùèìè ñâÿçàííûìè â 26Al èìåþò ðåçîíàíñíûé õàðàêòåð. Ïîëîæåíèå öåíòðà òÿæåñòè ìàãíèòíîãî äèïîëüíîãî ðåçîíàíñà (ÌÄÐ) íà îñíîâíîì ñîñòîÿíèè ðàâíî 7, 92ÌýÂ. Ïîëíàÿ ñèëà ÌÄÐ ðàâíà 5, 7Ìý µ2 N . ÐÅÇÎÍÀÍÑÍÎÏÎÄIÁÍÀ ÑÒÐÓÊÒÓÐÀ, ÙÎ ÑÏÎÑÒÅÐIÃÀ�ÒÜÑß Â ÐÅÀÊÖI� 25Mg(p, γ)26Al Î.Ñ.Êà÷àí, I.Â.Êóðãóç, Â.Ì.Ìiùåíêî, Ñ.Ì.Óò¹íêîâ Âèâ÷åíî γ-ðîçïàä ðåçîíàíñíîïîäiáíî¨ ñòðóêòóðè (ÐÏÑ), ùî ñïîñòåðiãà¹òüñÿ â ðåàêöi¨ 25Mg(p, γ)26Al â ðàéîíi åíåðãié çáóäæåííÿ 7...9ÌåÂ. Ïðîâåäåíî âèìiðþâàííÿ ôóíêöi¨ çáóäæåííÿ äàíî¨ ðåàêöi¨. Ñèëè ðåçîíàíñíèõ ñòàíiâ âèçíà÷åíi â iíòåðâàëi åíåðãié ïðèñêîðåíèõ ïðîòîíiâ Ep = 1, 4...2, 0ÌåÂ. Îòðèìàíi ðîçïîäiëè ñèëè M1 ïåðåõîäiâ ìiæ ðåçîíàíñíèìè ñòàíàìè i íèçüêîëåæà÷èìè ïîâ'ÿçàíèìè â 26Al ìàþòü ðåçîíàíñíèé õàðàêòåð. Ïîëîæåííÿ öåíòðà âàãè ìàãíiòíîãî äèïîëüíîãî ðåçîíàíñó (ÌÄÐ) íà îñíîâíîìó ñòàíi äîðiâíþ¹ 7, 92ÌåÂ. Ïîâíà ñèëà ÌÄÐ äîðiâíþ¹ 5, 7Ìå µ2 N . 20