Impact analysis of beam-hardening CT-artefacts in radiotherapy planning

The methods of X-ray computed tomography being improved every year and we have a sufficient amount of methods and tools for high-quality visualization at that very moment. However, as practice shows, there are still low quality CTs (with the presence of strongly pronounced artifacts) in the developi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Starenkiy, V.P., Samofalov, I.O., Vasyliev, L.L., Trofymov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/136079
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Impact analysis of beam-hardening CT-artefacts in radiotherapy planning / V.P. Starenkiy, I.O. Samofalov, L.L. Vasyliev, A.V. Trofymov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 50-54. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136079
record_format dspace
spelling irk-123456789-1360792018-06-16T03:03:09Z Impact analysis of beam-hardening CT-artefacts in radiotherapy planning Starenkiy, V.P. Samofalov, I.O. Vasyliev, L.L. Trofymov, A.V. Ядерно-физические методы и обработка данных The methods of X-ray computed tomography being improved every year and we have a sufficient amount of methods and tools for high-quality visualization at that very moment. However, as practice shows, there are still low quality CTs (with the presence of strongly pronounced artifacts) in the developing countries. The quality of the scans is of great importance in radiotherapy planning. An incorrect mapping of the density distribution will distort isodoses calculation. In the present article, we will consider the impact magnitudes of the beam hardening artifacts on the radiotherapy planning. Незважаючи на те, що методи рентгенівської комп'ютерної томографії вдосконалюються із року в рік, а також з'являється багато методів і засобів для високоякісної візуалізації, продовжують зустрічатися комп'ютерні томограми низької якості (з наявністю яскраво виражених артефактів). Найбільш часто ця тенденція спостерігається в країнах з нестійким економічним розвитком, де поряд з сучасним обладнанням для комп'ютерної томографії є застаріле покоління томографів. Якість візуалізації має велике значення для планування променевої терапії - некоректне відображення розподілу густини спотворить розрахунок ізодоз. В даній статті ми розглянемо величину впливу артефактів збільшення жорсткості пучка на планування променевої терапії. Несмотря на то, что методы рентгеновской компьютерной томографии совершенствуются из года в год, а также появляется значительное количество методов и средств для высококачественной визуализации, продолжают встречаться компьютерные томограммы низкого качества (с наличием ярко выраженных артефактов). Наиболее часто эта тенденция наблюдается в странах с неустойчивым экономическим развитием, где наряду с современным оборудованием для компьютерной томографии соседствует устаревшее поколение томографов. Качество визуализации имеет большое значение для планирования лучевой терапии - некорректное отображение распределения плотности исказит расчет изодоз. В данной статье мы рассмотрим величину влияния артефактов ужесточения пучка на планирование лучевой терапии. 2017 Article Impact analysis of beam-hardening CT-artefacts in radiotherapy planning / V.P. Starenkiy, I.O. Samofalov, L.L. Vasyliev, A.V. Trofymov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 50-54. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk http://dspace.nbuv.gov.ua/handle/123456789/136079 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
spellingShingle Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
Starenkiy, V.P.
Samofalov, I.O.
Vasyliev, L.L.
Trofymov, A.V.
Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
Вопросы атомной науки и техники
description The methods of X-ray computed tomography being improved every year and we have a sufficient amount of methods and tools for high-quality visualization at that very moment. However, as practice shows, there are still low quality CTs (with the presence of strongly pronounced artifacts) in the developing countries. The quality of the scans is of great importance in radiotherapy planning. An incorrect mapping of the density distribution will distort isodoses calculation. In the present article, we will consider the impact magnitudes of the beam hardening artifacts on the radiotherapy planning.
format Article
author Starenkiy, V.P.
Samofalov, I.O.
Vasyliev, L.L.
Trofymov, A.V.
author_facet Starenkiy, V.P.
Samofalov, I.O.
Vasyliev, L.L.
Trofymov, A.V.
author_sort Starenkiy, V.P.
title Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
title_short Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
title_full Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
title_fullStr Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
title_full_unstemmed Impact analysis of beam-hardening CT-artefacts in radiotherapy planning
title_sort impact analysis of beam-hardening ct-artefacts in radiotherapy planning
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Ядерно-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/136079
citation_txt Impact analysis of beam-hardening CT-artefacts in radiotherapy planning / V.P. Starenkiy, I.O. Samofalov, L.L. Vasyliev, A.V. Trofymov // Вопросы атомной науки и техники. — 2017. — № 3. — С. 50-54. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT starenkiyvp impactanalysisofbeamhardeningctartefactsinradiotherapyplanning
AT samofalovio impactanalysisofbeamhardeningctartefactsinradiotherapyplanning
AT vasylievll impactanalysisofbeamhardeningctartefactsinradiotherapyplanning
AT trofymovav impactanalysisofbeamhardeningctartefactsinradiotherapyplanning
first_indexed 2025-07-09T21:23:22Z
last_indexed 2025-07-09T21:23:22Z
_version_ 1837206029071286272
fulltext IMPACT ANALYSIS OF BEAM-HARDENING CT-ARTEFACTS IN RADIOTHERAPY PLANNING V.P. Starenkiy,∗, I.O. Samofalov, L.L.Vasyliev, A.V. Trofymov State Institution ”Grigoriev Institute for medical Radiology NAMS of Ukraine”, Kharkiv, Ukraine (Received April 25, 2017) The methods of X-ray computed tomography being improved every year and we have a sufficient amount of methods and tools for high-quality visualization at that very moment. However, as practice shows, there are still low quality CTs (with the presence of strongly pronounced artifacts) in the developing countries. The quality of the scans is of great importance in radiotherapy planning. An incorrect mapping of the density distribution will distort isodoses calculation. In the present article, we will consider the impact magnitudes of the beam hardening artifacts on the radiotherapy planning. PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk 1. INTRODUCTION With the development of computerized means of in- formation processing, more and more voluminous and complex tasks are assigned to automated software in many areas of human activity. A striking exam- ple of such an area is radiation therapy, where au- tomation of planning and technical implementation of treatment has allowed achieving significant results: three-dimensional planning replaced two-dimensional one, the emergence and development of IGRT, IMRT, RapidArc, VMAT and SRS techniques. Progressiv- ity of automation is undeniable, but along with im- proving the methods of processing information, we have to rely increasingly on the accuracy and relia- bility of the results of such methods and tools. Thus, earlier (with manual RT planning) a medical physi- cist (or radiologist) when receiving a low-quality im- age or tomogram, could visually discard the obvious image artifacts (any systematic discrepancy between the CT numbers in the reconstructed image and the true attenuation coefficients of the object [1]) dur- ing planning and they did not significantly influence dose calculation in the target volume; nowadays, vi- sualization data of the internal body structures being analyzed by software, usually not having the artifacts auto-correction function. As a result the calculation of isodoses can be made with gross dosimetric and geometric errors. Such artifacts can be classified by source of occurrence: on a hardware level, anatomical (arising from the peculiarities of the internal struc- tures of the studied object) and conditioned by the human factor (incorrect research, whether it is a pa- tient movement or a methodological error) [2]. Hard- ware faults and the human factor are problems elim- inated by sufficient qualification of maintenance per- sonnel and by organization of a QA system. Thus, features of the internal structures of the facility re- quire the application of techniques for eliminating (or weakening) such artifacts [3]. One of the most com- mon artifacts is the consequence of the beam hard- ening effect – an inhomogeneous weakening of the beam over the photon energy spectrum. It means that photons with lower energy in projections with a significant density will be absorbed in a much larger amount, which distorts the reconstructed image. A particular (and most problematic) case of such an ef- fect are metal artifacts (Fig.1). Over the past few years, many methods of suppressing such artifacts have been proposed [4-7], but they can be useful in the primary tomogram processing only, i.e. at the stage of designing and creating software for CT scan- ners. A number of CT scanners (obsolete from this point of view, most of which are in developing coun- tries) still have weak opportunities for suppressing such artifacts. The authors of the article assume that correct planning can be performed only with a satisfac- tory quality tomogram (without contrast for diag- nostic studies, without significant artifacts). How- ever, in some cases the impossibility of performing re- visualization during planning is still performed with the available image. The purpose of this article is to consider the mechanism of influence on the process and the result of RT planning of increasing / lowering the density in the zone of interest on the reconstructed image due to the beam-hardening effect and metallic artifacts and to evaluate such influence. ∗Corresponding author E-mail address: imr@ukr.net, Tel.+38 0577255072, +38 0577255013 50 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, N3(109). Series: Nuclear Physics Investigations (68), p.50-54. a b c Fig.1. Variations of the beam hardening effect in computed tomography: a – in phantom study; b and c – in head CT with teeth implants 2. MATERIALS AND METHODS As the purpose of this study is determination and evaluation the artifact’s impact on planning, we need to compare the estimate of the treatment plan per- formed with a scans without artifacts, with an es- timate of the plan with artifact ones. Phantoms being often used for such purposes [8,9], but to bet- ter approximate the real artefacts impact in this study, we use tomographic images of real patients. Even between two different visualizations of the same internal structures of the same patient made in dif- ferent period of time, differences appear not only in the density distribution but also in the geometry of these structures. In order to correctly estimate the magnitude of the effect, the following research method is applied: we duplicate the scans without artifacts, add (with help of the planning system) the changes in the density values of some regions typi- cal for the manifestation of beam-hardening artifacts in each localization considered. Then 3D conformal radiotherapy (CRT) plans were made (photon radi- ation 1.25MeV (Co-60)) and 6MeV (Varian Clinac 600C) using scans with added artifacts. After that we imported scans without artifacts into the plan and performed recalculation of isodoses with the same fields parameters. Also, one should pay at- tention to the localization choice for the studying of the artifacts influence, as comparing the estimates of treatment plans for different organs will not be cor- rect. The question about the statistics of the areas of such artifacts greatest propagation remains open, but according to the preliminary collected data, the most frequently pronounced artifacts of this type occur during head and neck scanning (e.g., dental implants) [10]; such artifacts, with the same localiza- tion, presumably, will most heavily affect the result of planning with irradiating volume located in the oral cavity. To determine the value of the added den- sity, statistical analysis of the average and maximum density values (in HU) in visually conspicuous areas of manifestation of artifacts are performed. It’s made without taking into account the initial object of in- creased density. To avoid the registration of random calculated maxima, the maximum density values of the artifacts were taken in order to be the maximum of average density values of at least 9 nearby pixels with a spread of values not more than 20%. Results of analysis are shown in Table 1. Table 1. Analysis of average and maximum density values Effective (average) initial Average artifact density Maximum artifact density Number of analyzed object density, HU value, HU value, HU tomograms 1000...1500 297 677 19 1500...3000 504 1119 16 3000...6000 987 2168 15 6000...9000 1659 3874 13 Given the weakening of the artifact appearance at a distance from the initial object, adding of the arti- fact is performed in two regions, one of which has the average density (according to the average density of the initial object for each tomogram) and the second with an increased density from average. Quality as- sessment method of the treatment plan is to select the dose-volume histogram (DVH). We compare DVH by average (effective), maximum and minimum doses for controlled volumes. Within the study, we will com- 51 pare DVHs for treatment plans for tomograms with manifestations of the most common average values of the initial objects density (1000...1500HU) for dif- ferent energies, as well as DVH comparison for treat- ment plans compiled from tomograms with close to extreme initial density objects (6000...9000HU). 3. RESULTS Treatment plans comparisons results for 16 patients with oral cavity tumors and delineated CTV are an- alyzed. 8 patients have got scans most commonly with a displayed average density of the initial object in the range 1000...1500HU , then increased density areas of 500HU were added before the treatment plan calculation and 300HU also (Fig.2,a). Calcu- lated plans and performed isodoses recalculation with fields parameters saving for 1.25MeV and 6MeV en- ergies were transferred to the reference CT without added artifacts. A DVH comparison was made for plans with an artifact and without an artifact for of 6MeV and 1.25MeV energies (Figs.3,a and 3,b, re- spectively), in Tables 2.1, 2.2 the mean values of such comparisons are shown. In 4 cases, plans were made using scans with a high effective density of the initial object (6000...9000HU), but without significant man- ifestations of the artifact. The study method was the same – adding objects with increased density (1500 and 1800HU), making treatment plans for 1.25MeV and 6MeV photons, importing field parameters to the plan according to set of scans without an ar- tifact, etc. DVHs comparison results are shown in Tables 2.3, 2.4. In 4 more cases, plans were made us- ing low-quality tomograms with a high effective den- sity of the initial object (6000...9000HU) and with a pronounced artefact (Fig.2,b). The plans calculated using such tomograms for 1.25MeV and 6MeV were transferred to tomograms with corrected densities to 0 in the soft tissue zone, with the following saving field parameters. DVHs comparison results are shown in Tables 2.5, 2.6. a b Fig.2. Internal structures in planning: a – added density distribution example; b – CT with high-density artefact example a b Fig.3. DVH comparisons: a – for plans 6MeV photons; b – for plans 1.25MeV photons 52 Table 2.1. DVH compares 6 MeV Tomogram CTV mean CTV max CTV min brainstern brainstern brainstern dose, % dose, % dose, % mean dose max dose min dose with artefact 100 105.3 93.7 9.6 74.5 2.3 without artefact 99.6 105.6 93.6 9.6 74.6 2.3 with artefact 100 105.3 93.7 11.0 40.9 3.9 without artefact 100.2 105.6 93.6 10.9 40.4 3.9 with artefact 100 107.2 92.7 3.5 12.6 0.9 without artefact 102.8 106.6 93.3 3.9 14.5 0.9 with artefact 100 109.2 90.8 4.1 15.5 1.1 without artefact 105.8 111.7 93.5 6.2 21.3 1.1 with artefact 100 107.1 93.3 5.2 11.2 1.2 without artefact 102.7 106.8 93.9 5.8 12.1 1.2 with artefact 100 109.4 91.2 6.2 16.2 1.8 without artefact 105.1 112.1 92.9 6.7 18.8 1.8 Tab. 2.2 DVH compares 1.25 MeV Tab. 2.3 DVH compares 6 MeV extreme density Tab. 2.4 DVH compares 1.25 MeV extreme den- sity Tab. 2.5 DVH compares 6 MeV extreme density Tab. 2.6 DVH compares 1.25 MeV extreme den- sity 4. CONCLUSIONS According to DVH comparison results, for tomo- grams with the most common manifestations of metallic artifacts in aforementioned location, they in- troduce insignificant error (up to 0.4% for CTV mean dose) even with 1.25MeV photons. However, ex- treme values of artifact density can lead to an error in the CTV mean dose of up to 3% for 6MeV and up to 5...6% for 1.25MeV , which exceeds the accuracy of the dose release set by the IAEA. In the subse- quent article authors are up to studying the statistics of the manifestations of metallic artifacts frequency in detail, and also to consider and compare possible methods for their suppression. References 1. F. Julia. Barrett and Nicholas Keat: Artifacts in CT: Recognition and Avoidance. RadioGraphics. 2004, v.24, p.1679-1691. 2. F. Edward Boas, Dominik Fleischmann. CT arti- facts: causes and reduction techniques // Imag- ing in Medicine. 2012, v.4, Issue 2, p.229-240. 3. Vincentas Veikutis. Artifacts in computer tomog- raphy imaging: how it can really affect diagnostic image quality and confuse clinical diagnosis? // Journal of Vibroengineering. 2015, v.17 Issue 2, p.995-1003. 4. R. E.Alvarez, A.Macovski. Energy-selective re- constructions in X-ray computerised tomography // Phys. Med. Biol.. 1976, v.21, p.733. 5. M.Bal, L. Spies. Metal artifact reduction in CT using tissue-class modeling and adaptive pre- filtering // Med. Phys. 2006, v.33, p.2852-2859. 6. M.Abdoli, M.R.Ay, A.Ahmadian, R.A.Dierckx, H. Zaidi. Reduction of dental filling metallic artifacts in CT-based attenuation 53 correction of PET data using weighted virtual sinograms optimized by a genetic algorithm // Med. Phys.. 2010, v.37, p.6166-6177. 7. E.Van de Casteele, D.Van Dyck, J. Sijbers, and E.Raman. A model-based correction method for beam hardening artefacts in X-ray microtomog- raphy // Journal of X-ray Science and Technol- ogy. May 2004, N12(1), p.43-57. 8. Kakuya Kitagawa. Characterization and Correc- tion of Beam-hardening Artifacts during Dy- namic Volume CT Assessment of Myocardial Per- fusion // Radiology. July 2010, v.256, N1. 9. Junjun Deng. Beam hardening correction using a conical water-equivalent phantom for preclinical micro-CT. Nuclear Science Symposium and Med- ical Imaging Conference (NSS/MIC), 2011 IEEE. 10. C. P. Law: Imaging the oral cavity: key concepts for the radiologist // Br. J. Radiol. 2011, Oct, N84(1006), p.944-957. ÀÍÀËÈÇ ÂËÈßÍÈß ÊÒ-ÀÐÒÅÔÀÊÒÎÂ ÓÆÅÑÒÎ×ÅÍÈß ÏÓ×ÊÀ ÍÀ ÏËÀÍÈÐÎÂÀÍÈÅ ËÓ×ÅÂÎÉ ÒÅÐÀÏÈÈ Â.Ï.Ñòàðåíüêèé, È.À.Ñàìîôàëîâ, Ë.Ë.Âàñèëüåâ, À.Â.Òðîôèìîâ Íåñìîòðÿ íà òî, ÷òî ìåòîäû ðåíòãåíîâñêîé êîìïüþòåðíîé òîìîãðàôèè ñîâåðøåíñòâóþòñÿ èç ãîäà â ãîä, à òàêæå ïîÿâëÿåòñÿ çíà÷èòåëüíîå êîëè÷åñòâî ìåòîäîâ è ñðåäñòâ äëÿ âûñîêîêà÷åñòâåííîé âèçóàëèçàöèè, ïðîäîëæàþò âñòðå÷àòüñÿ êîìïüþòåðíûå òîìîãðàììû íèçêîãî êà÷åñòâà (ñ íàëè÷èåì ÿðêî âûðàæåííûõ àðòåôàêòîâ). Íàèáîëåå ÷àñòî ýòà òåíäåíöèÿ íàáëþäàåòñÿ â ñòðàíàõ ñ íåóñòîé÷èâûì ýêîíîìè÷åñêèì ðàçâèòèåì, ãäå íàðÿäó ñ ñîâðåìåííûì îáîðóäîâàíèåì äëÿ êîìïüþòåðíîé òîìîãðàôèè ñîñåäñòâóåò óñòà- ðåâøåå ïîêîëåíèå òîìîãðàôîâ. Êà÷åñòâî âèçóàëèçàöèè èìååò áîëüøîå çíà÷åíèå äëÿ ïëàíèðîâàíèÿ ëó- ÷åâîé òåðàïèè � íåêîððåêòíîå îòîáðàæåíèå ðàñïðåäåëåíèÿ ïëîòíîñòè èñêàçèò ðàñ÷åò èçîäîç.  äàííîé ñòàòüå ìû ðàññìîòðèì âåëè÷èíó âëèÿíèÿ àðòåôàêòîâ óæåñòî÷åíèÿ ïó÷êà íà ïëàíèðîâàíèå ëó÷åâîé òåðàïèè. ÀÍÀËIÇ ÂÏËÈÂÓ ÊÒ-ÀÐÒÅÔÀÊÒI ÇÁIËÜØÅÍÍß ÆÎÐÑÒÊÎÑÒI ÏÓ×ÊÀ ÍÀ ÏËÀÍÓÂÀÍÍß ÏÐÎÌÅÍÅÂÎ� ÒÅÐÀÏI� Â.Ï.Ñòàðåíüêèé, I.Î.Ñàìîôàëîâ, Ë.Ë.Âàñèëü¹â, À.Â.Òðîôiìîâ Íåçâàæàþ÷è íà òå, ùî ìåòîäè ðåíòãåíiâñüêî¨ êîìï'þòåðíî¨ òîìîãðàôi¨ âäîñêîíàëþþòüñÿ iç ðîêó â ðiê, à òàêîæ ç'ÿâëÿ¹òüñÿ áàãàòî ìåòîäiâ i çàñîáiâ äëÿ âèñîêîÿêiñíî¨ âiçóàëiçàöi¨, ïðîäîâæóþòü çóñòði÷àòèñÿ êîìï'þòåðíi òîìîãðàìè íèçüêî¨ ÿêîñòi (ç íàÿâíiñòþ ÿñêðàâî âèðàæåíèõ àðòåôàêòiâ). Íàéáiëüø ÷àñòî öÿ òåíäåíöiÿ ñïîñòåðiãà¹òüñÿ â êðà¨íàõ ç íåñòiéêèì åêîíîìi÷íèì ðîçâèòêîì, äå ïîðÿä ç ñó÷àñíèì îáëàä- íàííÿì äëÿ êîìï'þòåðíî¨ òîìîãðàôi¨ ¹ çàñòàðiëå ïîêîëiííÿ òîìîãðàôiâ. ßêiñòü âiçóàëiçàöi¨ ì๠âåëèêå çíà÷åííÿ äëÿ ïëàíóâàííÿ ïðîìåíåâî¨ òåðàïi¨ � íåêîðåêòíå âiäîáðàæåííÿ ðîçïîäiëó ãóñòèíè ñïîòâîðèòü ðîçðàõóíîê içîäîç.  äàíié ñòàòòi ìè ðîçãëÿíåìî âåëè÷èíó âïëèâó àðòåôàêòiâ çáiëüøåííÿ æîðñòêîñòi ïó÷êà íà ïëàíóâàííÿ ïðîìåíåâî¨ òåðàïi¨. 54