Cesium immobilization into potassium magnesium phosphate matrix
The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO₄ ∙ 6H₂O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (11...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/136135 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Cesium immobilization into potassium magnesium phosphate matrix / S.Y. Sayenko, Arun S. Wagh, V.A. Shkuropatenko, O.P. Bereznyak, Y.S. Hodyreva, R.V. Tarasov, V.D. Virych, Е.А. Ulybkina, O.V. Pylypenko, G.O. Kholomeev, A.V. Zykova // Вопросы атомной науки и техники. — 2017. — № 4. — С. 65-73. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136135 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1361352018-06-17T03:03:04Z Cesium immobilization into potassium magnesium phosphate matrix Sayenko, S.Y. Wagh, Arun S. Shkuropatenko, V.A. Bereznyak, O.P. Hodyreva, Y.S. Tarasov, R.V. Virych, V.D. Ulybkina, Е.А. Pylypenko, O.V. Kholomeev, G.O. Zykova, A.V. Материалы реакторов на тепловых и быстрых нейтронах The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO₄ ∙ 6H₂O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 ºС, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm⁻¹, which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K₀̦₉₆Cs₀̦₀₄MgPO₄ · 6H₂O. Показана можливість ізоморфного заміщення іонів калію в структурі калій-магнієвого фосфату KMgPO₄ ∙ 6H₂O (КМФ) на іони цезію. Встановлено, що включений в КМФ-матрицю Cs не виходить у навколишнє середовище при нагріванні до високих температур (1176 °С, 3 год). Аналіз ІЧ-спектра поглинання КМФ-зразка показав, що зі збільшенням кількості добавки хлориду цезію основні смуги в спектрі відчувають зрушення в низькочастотну область, величина якої в середньому становить ~ 10 см⁻¹, що свідчить про посилення зв'язків у кристалічній решітці речовини. Розрахована ступінь заміщення калію на цезій при енерговиділенні в КМФ-матриці на рівні осклованих високоактивних відходів складає ~ 4%, тобто КМФ-матриця повинна відповідати формулі K₀̦₉₆Cs₀̦₀₄MgPO₄ · 6H₂O. Показана возможность изоморфного замещения ионов калия в структуре калий-магниевого фосфата KMgPO₄ ∙ 6H₂O (КМФ) на ионы цезия. Установлено, что включенный в КМФ-матрицу Cs не выходит в окружающую среду при нагревании до высоких температур (1176 ºС, 3 ч). Анализ ИК-спектра поглощения КМФ-образца показал, что с увеличением количества добавки хлорида цезия основные полосы в спектре испытывают сдвиг в низкочастотную область, величина которого в среднем составляет ~ 10 см⁻¹, что свидетельствует об усилении связей в кристаллической решетке вещества. Рассчитанная степень замещения калия на цезий при энерговыделении в КМФ-матрице на уровне остеклованных высокоактивных отходов составляет ~ 4%, т. е. КМФ-матрица должна соответствовать формуле K₀̦₉₆Cs₀̦₀₄MgPO₄ · 6H₂O. 2017 Article Cesium immobilization into potassium magnesium phosphate matrix / S.Y. Sayenko, Arun S. Wagh, V.A. Shkuropatenko, O.P. Bereznyak, Y.S. Hodyreva, R.V. Tarasov, V.D. Virych, Е.А. Ulybkina, O.V. Pylypenko, G.O. Kholomeev, A.V. Zykova // Вопросы атомной науки и техники. — 2017. — № 4. — С. 65-73. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 28.41.Kw http://dspace.nbuv.gov.ua/handle/123456789/136135 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Материалы реакторов на тепловых и быстрых нейтронах Материалы реакторов на тепловых и быстрых нейтронах |
spellingShingle |
Материалы реакторов на тепловых и быстрых нейтронах Материалы реакторов на тепловых и быстрых нейтронах Sayenko, S.Y. Wagh, Arun S. Shkuropatenko, V.A. Bereznyak, O.P. Hodyreva, Y.S. Tarasov, R.V. Virych, V.D. Ulybkina, Е.А. Pylypenko, O.V. Kholomeev, G.O. Zykova, A.V. Cesium immobilization into potassium magnesium phosphate matrix Вопросы атомной науки и техники |
description |
The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO₄ ∙ 6H₂O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 ºС, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm⁻¹, which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K₀̦₉₆Cs₀̦₀₄MgPO₄ · 6H₂O. |
format |
Article |
author |
Sayenko, S.Y. Wagh, Arun S. Shkuropatenko, V.A. Bereznyak, O.P. Hodyreva, Y.S. Tarasov, R.V. Virych, V.D. Ulybkina, Е.А. Pylypenko, O.V. Kholomeev, G.O. Zykova, A.V. |
author_facet |
Sayenko, S.Y. Wagh, Arun S. Shkuropatenko, V.A. Bereznyak, O.P. Hodyreva, Y.S. Tarasov, R.V. Virych, V.D. Ulybkina, Е.А. Pylypenko, O.V. Kholomeev, G.O. Zykova, A.V. |
author_sort |
Sayenko, S.Y. |
title |
Cesium immobilization into potassium magnesium phosphate matrix |
title_short |
Cesium immobilization into potassium magnesium phosphate matrix |
title_full |
Cesium immobilization into potassium magnesium phosphate matrix |
title_fullStr |
Cesium immobilization into potassium magnesium phosphate matrix |
title_full_unstemmed |
Cesium immobilization into potassium magnesium phosphate matrix |
title_sort |
cesium immobilization into potassium magnesium phosphate matrix |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Материалы реакторов на тепловых и быстрых нейтронах |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136135 |
citation_txt |
Cesium immobilization into potassium magnesium phosphate matrix / S.Y. Sayenko, Arun S. Wagh, V.A. Shkuropatenko, O.P. Bereznyak, Y.S. Hodyreva, R.V. Tarasov, V.D. Virych, Е.А. Ulybkina, O.V. Pylypenko, G.O. Kholomeev, A.V. Zykova // Вопросы атомной науки и техники. — 2017. — № 4. — С. 65-73. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT sayenkosy cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT wagharuns cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT shkuropatenkova cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT bereznyakop cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT hodyrevays cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT tarasovrv cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT virychvd cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT ulybkinaea cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT pylypenkoov cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT kholomeevgo cesiumimmobilizationintopotassiummagnesiumphosphatematrix AT zykovaav cesiumimmobilizationintopotassiummagnesiumphosphatematrix |
first_indexed |
2025-07-10T00:42:14Z |
last_indexed |
2025-07-10T00:42:14Z |
_version_ |
1837218543027879936 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №4(110) 65
CESIUM IMMOBILIZATION INTO POTASSIUM MAGNESIUM
PHOSPHATE MATRIX
S.Y. Sayenko
1
, Arun S. Wagh
2
, V.A. Shkuropatenko
1
, O.P. Bereznyak
1
, Y.S. Hodyreva
1
,
R.V. Tarasov
1
, V.D. Virych
1
, Е.А. Ulybkina
1
, O.V. Pylypenko
1
,
G.O. Kholomeev
1
, A.V. Zykova
1
1
NSC “Kharkov Institute Physics and Technology”, Kharkov, Ukraine
E-mail: shkuropatenko@kipt.kharkov.ua, tel./fax +38(057)335-39-05;
2
Argonne National Laboratory, Argonne, USA
The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium
magnesium phosphate KMgPO4 ∙ 6H2O (PMP) was shown. It was established, that the Cs included into the PMP
matrix does not transfer to the environment during high temperatures heating process (1176 ºС, 3 hours). Analysis
of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the
cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average
shift value 10 cm
-1
, which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree
of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high
level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K0.96Cs0.04MgPO4 · 6H2O.
PACS: 28.41.Kw
INTRODUCTION
In the process of water cooled nuclear power
reactors operations, a large number of liquid radioactive
waste are formed, and their activity, despite of low
concentration, is determined by
134,137
Cs and
60
Co
radionuclides [1].
High-temperature methods of radioactive waste
(RAW) treatment, including vitrification, can provide
the formation of environmentally stable solid products.
However, in the process of high-temperature
manufacturing of such products, volatile cesium can
partially transfer into the gas phase. It is known that
such process has began from heating temperature about
575 °C and almost completely cesium passes into the
gas phase at 900 °C [2].
Therefore, the search and development of solid
materials formed at low temperatures and provided a
high safety barrier for cesium fixing are
environmentally justified.
Furthermore, it should be taken into account that the
main parameter characterizing the quality of
solidificated wastes is thermal stability. According to
the requirements of standard GOST, solidificated wastes
should possess specific properties provided no changes
in structure and chemical composition at temperatures
up to 550 °C [3].
In addition, there is a risk of a fire in the
underground radioactive waste storage and the
temperature can increase to higher values. For example,
two fire incidents took place in 2014 at a pilot plant for
the isolation of waste (USA), which resulted in
contamination of an underground ventilation system by
plutonium [4]. According to such risks, it is necessary to
carry out research on the heat resistance of materials of
RAW matrices over a wide range of temperatures.
The aim of this study was investigation of synthesis
of cesium-containing potassium magnesium phosphates
and their thermal stability under high temperatures
heating conditions.
MATERIAL AND METHODS
The heat treatment of samples of potassium
magnesium phosphate (PMP) was carried out in a high
temperature furnace Nabertherm P310 (Germany) in air.
The phase composition of the material before and
after heat treatment was investigated by X-ray
diffraction methods (DRON-1.5, Cu Kα with nickel
filter for reduction of Kβ component of the characteristic
radiation) and infrared (IR) spectroscopy (IR
spectrophotometer IKS-29 (LOMO). Samples for the IR
spectra recording were prepared in the form of
transparent compressed tablets of mixture of KBr as the
matrix and the tested substance (in the amount of 1%,
weighed 100 mg). Spectra were recorded in the spectral
range 4000…400 cm
-1
(middle infrared area).
To determine the processes that occur during heating
of the powders, differential-thermal analysis (DTA) by
means of thermal analyzer SDT Q600 V20.9 Build 20 in
the temperature range 20…1300 °C at a heating rate of
10 °C/min was made.
Elemental analysis of the PMP samples with the
addition of 10 wt.% CsCl was carried out on a laser
mass-spectrometer EMAL-2 with a high-resolution and
two-focus by Mattaukh-Herzog. The random error of
the analysis results is characterized by the value of the
relative standard deviation of 0.1–0.3.
RESULTS AND DISCUSSION
SYNTHESIS OF POTASSIUM MAGNESIUM
PHOSPHATE
For the synthesis of potassium magnesium
phosphate KMgPO4 ∙ 6H2O, the following reagents were
used:
– magnesium oxide MgO;
– potassium dihydrogen phosphate KH2PO4;
– distilled water (pH = 5.5).
mailto:shkuropatenko@kipt.kharkov.ua
66 ISSN 1562-6016. ВАНТ. 2017. №4(110)
a
b
Fig. 1. X-ray diffraction patterns of initial
components of PMP samples: a – MgO, heat
treated at 1300 °С during 1 hour; b – KH2PO4
PMP samples were obtained under normal
conditions (atmospheric pressure, room temperature) as
a result of the acid-base reaction between MgO and
KH2PO4 in water:
MgO + KH2PO4 + 5H2O = KMgPO4 ∙ 6H2O. (1)
To reduce the rate of reaction of magnesium oxide
with potassium dihydrogen phosphate, the MgO powder
was heat treated at 1300 °C for 1 hour in air. The
magnesium oxide obtained after heat treatment is
characterized by a strongly pronounced periclase
structure (Fig. 1,a). The diffractogram of the second
component, potassium dihydrogenphosphate, is shown
in Fig. 1,b. It can be seen that along with the main phase
of KH2PO4 (pH = 4.46), a certain amount of the
concomitant less reactive phase of K2HPO4 is also
presented and characterized by higher pH values
In the case of synthesis of cesium-containing PMP
samples, cesium chloride CsCl was used as a starting
reagent.
X-ray phase analysis (XRD) of the obtained PMP
samples revealed that the x-ray lines are corresponded
to the crystalline hexahydrate of potassium and
magnesium double orthophosphate KMgPO4 ∙ 6H2O
(ASTM 35-0812) (Fig. 2,a). The density of the obtained
PMP samples is 1.7…1.8 g/cm
3
.
The behavior of the PMP samples under heating
process was determined using DTA/TG analysis (Fig.
4,a). It was found that the endothermic peak at a
temperature of 120 °C corresponds to the dehydration of
potassium-magnesium phosphate according to the
following reaction [5]:
KMgPO4 ∙ 6H2O → KMgPO4 + 6H2O. (2)
a
b
Fig. 2. X-ray diffraction patterns of PMP
samples: a – without heat treatment;
b – heat treated at Т = 1300 °С, τ = 45 min
This process is confirmed by a weight loss (~ 40%)
on the TG curve, which corresponds to a decrease in the
stoichiometric amount of bound water. A small
exothermic peak near 400 °C seems to correspond to the
reversible α-KMgPO4 → β-KMgPO4 phase transition
detected by the authors [6] during heat treatment of
K-struvite single crystals of MgKPO4
∙ 6H2O at a
temperature of 362 °C.
After heat treatment of the PMP samples at a
temperature of 1300 °C for 45 min, the lines of
dehydrated potassium-magnesium phosphate phase
α-KMgPO4 are observed (see Fig. 2,b). These data are
in good agreement with the data of XRD analysis of
synthesized anhydrous phosphate KMgPO4 with the
addition of Eu [7].
CESIUM-CONTAINING POTASSIUM
MAGNESIUM PHOSPHATE MATRIX
To carry out experiments on the incorporation of cesium
into the PMP matrix, weighed samples of the initial
reagents were used for the following reactions:
– 10 wt.% CsCl + 90 wt.% (MgO + KH2PO4);
– 15 wt.% CsCl + 85 wt.% (MgO + KH2PO4).
From the data of XRD analysis of PMP samples
with cesium, it can be seen that the obtained material is
identified as potassium-magnesium orthophosphate,
which in general form can be represented as
K1-xCsxMgPO4 ∙ 6H2O (Fig. 3). In addition, lines of
magnesium chloride phosphate Mg2PO4Cl were
observed on the diffractograms. It can be seen that with
an increase in cesium content (from 0 to 10% by weight
α-KH2PO4
β-KH2PO4
ISSN 1562-6016. ВАНТ. 2017. №4(110) 67
CsCl and up to 15% by weight CsCl), a small shift of
the main X-ray lines KMgPO4 ∙ 6H2O toward smaller
angles occurs (see Figs. 2,a; 3,a,b). This is typical for
the case of substitution of atoms of material by other
atoms with large ionic radii. In our case, the potassium
atoms are replaced by cesium atoms. As can be seen
from Tabl. 1, the replacement of alkali ions is
accompanied by insignificant changes in lattice
parameters, while the crystal structure remains
unchanged.
Table 1
Lattice parameters of PMP and PMP +10 wt.% CsCl
samples
а
b
Fig. 3. X-ray diffraction patterns of samples:
a – PMP+10 wt.% CsCl; b – PMP+15 wt.% CsCl
Composition
Lattice parameters
а b c
KMgPO4 ∙ 6H2O [8] 6.903 6.174 11.146
KMgPO4 ∙ 6H2O 7.6178 6.8512 12.2876
K1-xCsxMgPO4 ∙ 6H2O 7.646 6.8748 12.2575
a b
c d
Fig. 4. DTA/TG analysis of samples: a – PMP; b – MP + 10 wt.% CsCl;
c – PMP + 15 wt.% CsCl; d – CsCl
68 ISSN 1562-6016. ВАНТ. 2017. №4(110)
To determine the behavior of cesium-containing
potassium-magnesium phosphates during heating
process DTA/TG analysis of PMP + 10 wt.% CsCl and
PMP + 15 wt.% CsCl. was made. The DTA/TG analysis
data (see Fig. 4,b,c) show no weight loss of PMP
samples with cesium during heating process up to 1200
°C. The exception is the weight loss associated with the
removal of water in the temperature range 0…700 °C.
Above 700 °C the weight of the samples remains
practically unchanged; while CsCl completely
evaporates in the temperature range 648…863 °C (see
Fig. 4,d). This process indicates that the potassium
magnesium phosphate matrix can reliably retain cesium
during the temperature increase up to 1200 °C.
Endothermic peaks at temperatures of 1106 ºС (see Fig.
4,b) and 1080 ºС (see Fig. 4,c) are probably caused by
the melting of the sample material without loss of their
weight.
Analysis of the diffractogram of the PMP
sample + 10 wt.% CsCl after treatment at a temperature
of 1050 °C showed that the lines of anhydrous
phosphate K1-xCsxMgPO4 (Fig. 5) are expanded under
the action of high temperature.
Heat treatment of PMP samples with cesium of
2…3 g weight were made in air at temperatures of 700,
1050, and 1176 °C with different holding times: 1, 2.5,
and 3 hours, respectively. Samples were placed in boats
made from Al2O3. The carried out experiments have
shown that weight loss was about 27…28% after heat
treatment at 700 °C. The results are well corresponded
to the removal of crystallization water. With a further
increase in temperature up to 1150 °C, weight loss of
the samples was about 1%. Near this temperature, the
process of samples material melting took place.
Appearance of the sample PMP + 10 wt.% CsCl in the
boat after heat treatment at 1176 ºС and holding time
3 hours is shown in Fig. 6.
Elemental analysis of PMP samples with the
addition of 10 wt.% CsCl was performed using an
EMAL-2 laser mass spectrometer. The results of
elemental analysis of PMP + 10 wt.% CsCl are
presented in Tabl. 2. From the table data, it can be
concluded that with increasing of the processing
temperature the amount of cesium in the PMP samples
remains practically unchanged. It should be noted that
the cesium content in the PMP sample also remains
almost the same after heat treatment at 1176 °C and the
holding time 3 hours. These conditions are
corresponded to the sample melting process.
The paper presents the results of research on cesium
immobilization in a chemically stable matrix based on
potassium-magnesium phosphate. In other words, Cs
can be included in the crystal structure of struvite-K
using acid-base reaction-synthesis of PMP at room
temperature. The addition of cesium chloride during the
reaction leads to changes in the unit cell size of the
resulting phosphates, and confirms the partial
replacement of potassium by cesium. The PMP samples
have kept the rhombic crystalline structure during this
process. The resulted PMP matrix is heat-resistant and
Cs doesn’t transfer to environment even after high
temperatures heating.
Table 2
Elemental analysis of PMP +10 wt.% CsCl samples after heat treatment process
Temperature ant
time of heat
treatment process
Content of elements, wt.%
K Mg P O Cs Cl Na Al Si Ca S
700 °C, 1 hour 9.9 24.1 14.6 30.8 10.27 5.9 3.5 0.02 0.17 0.07 0.67
1050 °C,
2.5 hours
7.15 25.5 21.1 32.3 10.3 0.03 2.43 0.36 0.12 0.12 0.59
1176 °C, 3 hours 17.04 22.5 14.7 30.4 10.75 0.03 3.33 0.83 0.18 0.09 0.15
Fig. 5. X-ray diffraction patterns of PMP+10 wt.%
CsCl sample after heat treatment at Т = 1050 °С,
τ = 2.5 hours
Fig. 6. Molten sample of PMP + 10 wt.% CsCl after
heat treatment 1176 ºС and holding time 3 hours
ISSN 1562-6016. ВАНТ. 2017. №4(110) 69
Fig. 9. IR absorption spectrum of sample with PMP +15 wt.% CsCl composition
IR SPECTROSCOPY OF THE POTASSIUM
MAGNESIUM PHOSPHATE MATRIX
Analysis of the IR absorption spectrum of the PMP
sample showed that the main bands of the IR spectrum
correspond to potassium magnesium phosphate
KMgPO4 ∙ 6H2O: 570, 630, 760, and 1050 cm
-1
[9]
(Fig. 7) in a good agreement with XRD data (see Fig.
2,a). However, bands of other compounds are also
present in the spectrum:
1. The doublet of 1430 and 1470 and the strong band
of 3400 cm
-1
are probably caused by the formation of
magnesite (MgCO3), since this frequency range is
characteristic for vibrations of the complex anion of
CO3 and OH groups in the structure of this mineral [10].
The formation of carbonate phases containing
CO3
2-
ions can be caused by the absorption of
atmospheric carbon dioxide during the synthesis and
storage of PMP samples.
2. The band 860 and the band 950, 980, 1100 cm
-1
are caused by the vibrations of P(OH)2 and the complex
PO2 ion in the phosphate structure, which may be
products of incomplete synthesis.
According to the IR spectrum the phase composition
of the PMP sample + 10 wt.% CsCl, is the same as for
the PMP sample without the addition of CsCl, since all
the bands in the spectrum are coincided (Fig. 8). The
difference lies in the fact that the intensity of all the
bands corresponding to phosphate phases has increased
substantially, and the maxima have become narrower
and more precise. Such changes in the spectrum are
associated with a higher degree of crystallinity of this
sample. The data on XRD analysis of PMP samples
without additives and with the addition of CsCl also
demonstrate the increase in crystallinity (see Figs. 2,a;
3). The bands corresponding to the carbonate phase
(magnesite) retained the same shape and intensity.
Fig. 7. IR absorption spectrum of PMP sample
Fig .8. IR absorption spectrum of sample with PMP +10 wt.% CsCl composition
70 ISSN 1562-6016. ВАНТ. 2017. №4(110)
The overall view of the IR spectrum of the
PMP + 15 wt.% CsCl sample (Fig. 9) is, in general,
similar to the spectrum of the sample with the addition
of 10 wt.% CsCl (see Fig. 8). However, it is necessary
to note the following differences:
1. The main bands corresponding to the
KMgPO4 ∙ 6H2O phase (565, 620, 760, and 1040 cm
-1
)
are shifted to the low-frequency region of the spectrum
by 5…10 cm
-1
, and the intensity is slightly reduced.
Such a shift of the absorption bands to the low-
frequency region can be caused by an increase in the
mass of atoms in the process of the isomorphous
substitution of a part of the K atoms by the Cs atoms
[12].
2. There are significant changes in bands associated
with the carbonate phase (magnesite), in the region of
1400…1500 cm
-1
and 3400 cm
-1
(see Figs. 8, 9). Instead
of a band with a triple maximum (1410, 1430, and
1470 cm
-1
), a doublet of bands of the same intensity,
1440 and 1410 cm
-1
, is formed, which is shifted to the
low-frequency region by 10…30 cm
-1
. In addition, the
3400 cm
-1
band corresponding to the stretching
vibrations of H-O-H in the magnesite structure of
MgCO3 disappears. These changes may be associated
with an increase in the symmetry of the crystal lattice of
the carbonate phase, which is caused by a decrease in
the water content. In general, it can be noted that with
an increase in the amount of the addition of cesium
chloride, all the main bands in the spectrum undergo a
shift to the low-frequency region by average value about
10 cm
-1
(Tabl. 3). This fact indicates the strengthening
of bonds in the crystal lattice of material. An exception
is the 1630 cm
-1
band corresponding to the deformation
vibrations of H-O-H, which remains unchanged. The
intensity of the band 1090 cm
-1
associated with the
products of incomplete synthesis is apparently reduced
due to a decrease of the products amount. This process
is confirmed by the shift of the band 985 cm
-1
associated
with this phase to the high-frequency region.
ENERGY RELEASE OF THE POTASSIUM
MAGNESIUM PHOSPHATE MATRIX
CONTAINED
137
Cs
To determine the degree of substitution of K for Cs
from the point of view of the permissible heating limit
of the PMP matrix for the immobilization of cesium, the
following calculations were made. During the process of
the radioactive cesium inclusion into the potassium
magnesium phosphate matrix, problems will be arisen
due to the heating of the obtained material and
associated with the radioactive decay of cesium. There
will be necessary to organize the heat removal from
canisters with HLW during their storage. To estimate
the degree of heating of the PMP matrix during the
immobilization of cesium, calculations were made of
the specific energy release at the maximum degree of
substitution of potassium with cesium. For such
calculations, material of composition corresponded to
the formula CsMgPO4 · 6H2O was used.
For this purpose, the specific energy release in the
PMP matrix was calculated on the basis of the data [13]
of the energy parameters of the decay of
137
Cs (half-life
30.17 years) and its
137m
Ba daughter product (2.55 min),
which are given in Tabl. 4. Based on the conception that
all potassium is replaced by cesium, and all cesium is
represented by the
137
Cs isotope, this value was
150 W/kg. In the calculations it was assumed that the
total energy released by β- and -radiation during the
decay of one
137
Cs nucleus is about 0.75 MeV [13], and
all this energy is absorbed by the PMP matrix.
However, since the chemical properties of all the
isotopes of the same chemical element are the same,
during the process of cesium separation from the stillage
bottoms by chemical methods, cesium will be obtained
as a mixture of isotopes. To estimate the isotope
composition of cesium in the stillage bottoms of nuclear
power plants, it was assumed that the accumulation of
long-lived cesium isotopes during fission of uranium by
thermal neutrons is from 6.23 to 6.7% [14]. According
to some assumption that the release of cesium from
bottoms will be carried out, for example, after 30 years
of soaking (during this time, exactly half of the
137
Cs
decays and the shorter-lived isotopes decay almost
completely), this mixture will have an isotopic
composition close to that given in Tabl. 5.
The energy release of
135
Cs was not taken into
account for the further calculations, since it is four
orders of magnitude lower than
137
Cs energy release.
After 30 years removal from the reactor the
137
Cs
isotope (see Tabl. 4) will represent only 19% of the total
cesium. Based on this fact, the energy release in the
PMP matrix with such an isotopic composition will be
approximately five times less than in the matrix, in
which all the cesium is represented by the radioisotope
137
Cs, and will be ~ 28 W/kg. This energy release is
several times higher than the energy release in glass
containing radioactive waste obtained after chemical
processing of spent nuclear fuel (SNF) of power
reactors. According to our estimates, which are based on
the initial data [15, 16], 30 years after fuel unloading
from the reactor, the energy release of vitrified HLW
obtained after SNF processing is about 1.5 W/kg. To
reduce the energy release in the PMP matrix to the level
of vitrified HLW, according to our calculations, it is
necessary to reduce the degree of substitution of
potassium by cesium to ~ 4%, i. e. the PMP matrix
should correspond to the formula
K0.96Cs0.04MgPO4·6H2O.
In the case of 10 wt.% substitution of potassium by
cesium, the energy release of the PMP matrix is
~ 3.6 W/kg, which is almost 2.5 times higher than in
vitrified HLW. This fact should be taken into account in
the process of the storage organizing and final disposal
of PMP matrix with cesium.
ISSN 1562-6016. ВАНТ. 2017. №4(110) 71
Table 3
Bands description in the IR spectra of potassium-magnesium phosphates
Table 4
The main energy parameters of radionuclide
137
Cs decay and its daughter product
137m
Ва [13]
Type of
radiation
Decay scheme Frequency, %
Average energy
release, MeV
Integral of energy
release, MeV
-particles
137
Cs
137
Ва 5.64 0.41626 0.023477
137
Cs
137m
Ва 94.36 0.17432 0.164488
-quantums
137m
Ba
137
Ва 84.99 0.661659 0.562344
Sum of 1 decay: 0.750309
Table 5
The parameters of the cesium isotopes mixture with atomic masses 133, 135, and 137, generated by thermal fission
of
235
U, at various time intervals after unloading from the reactor
Isotopes Т1/2
Fission yield
235
U, %
[14]
Mixture content, %
one month after 30 years after
133
Cs Stable 6.70 34.4 ~ 41
135
Cs 2.3 · 10
6
years 6.55 33.6 ~ 40
137
Cs 30.05 years 6.23 32.0 ~ 19
CONCLUSIONS
1. Potassium magnesium phosphate KMgPO4·6H2O
was synthesized as a result of acid-base reaction
between MgO and KH2PO4 in water under normal
conditions (atmospheric pressure, room temperature).
The evolution of the phase composition of potassium
magnesium phosphate under heating to a temperature of
1300 °C has been studied.
2. The results of research on cesium immobilization
in a chemically stable matrix based on potassium
IR spectra, cm
-1
Description of the bands 9–11
KMgPO4·6H2O
KMgPO4·6H2O +
10 wt.% CsCl
KMgPO4·6H2O +
15 wt.% CsCl
570
555
570
445, 550
565
deformation vibrations in the phosphate
structure M-O (М-metal)
630 630 620
760 765 760
deformation vibrations of POH
(out of plane)
860 860 850 stretching vibrations of Р(ОН)2
950
980
1050
1100
950
980
1050
1090
940
985
1040
1090
deformation vibrations of Р(ОН)2,
stretching asymmetric vibrations of РО4
1430
1470
1410
1430
1470
1410
1440
vibrations of С-О in the magnesite
structure MgCO3
1620 1630 1630 deformation modes of Н-О-Н
2360 2360 2310
stretching vibrations of Н-О-Н
in KMgPO4·6H2O structure
2910, 3210 2930 2920
3400 3400 3360…3150
stretching vibrations of Н-О-Н in the
magnesite structure MgCO3
72 ISSN 1562-6016. ВАНТ. 2017. №4(110)
magnesium phosphate are presented. The addition of
cesium chloride during the reaction leads to changes in
the size of the unit cell of the resulting phosphates, and
confirms the partial replacement of potassium by
cesium. The included into the PMP matrix Cs does not
transfer to the environment during high temperature
heating process.
3. Analysis of the IR absorption spectrum of the
PMP sample showed that the main bands in the IR
spectrum are corresponded to potassium magnesium
phosphate KMgPO4 ∙ 6H2O. With an increase in the
amount of the cesium chloride addition, the main bands
in the spectrum demonstrate a shift to the low-frequency
region with average value about 10 cm
-1
. This fact
indicates the strengthening of bonds in the crystal lattice
of obtained material and the isomorphous substitution of
a part of the K atoms by the Cs atoms.
4. The calculations of the energy release of
137
Cs in
the PMP matrix have shown that to reduce the energy
release in the PMP matrix to the level of vitrified HLW,
the degree of potassium replacement for cesium should
be about 4%, i. e. the PMP matrix should correspond to
the formula K0.96Cs0.04MgPO4 · 6H2O
REFERENCES
1. С.А. Кулюхин, Н.А. Коновалова, М.П. Горба-
чева и др. Извлечение
60
Co
и
137
Cs из модельного
раствора трапных вод АЭС // Радиохимия. 2013,
т. 55, №3, с. 242-248.
2. А.И. Орлова, Е.Е. Логинова, А.А. Логачева и
др. Кристаллохимический подход при разработке
фосфатных материалов для формирования
экологически безопасных химических форм
утилизации Cs-содержащих отработанных
ферроцианидных сорбентов // Радиохимия. 2010,
т. 52, №5, с. 391-396.
3. ГОСТ Р 50926-96. Отходы высокоактивные
отвержденные. Общие технические требования.
М.: Изд-во стандартов, 1996, с. 7.
4. US Department of Energy, Waste isolation pilot
plant recovery plan. Washington, DC, DOE, 2014.
5. Siyu Zhang, Hui-Sheng, Shao-Wen Huang, Ping
Zhang. Dehydration characteristics of struvite-K
pertaining to magnesium potassium phosphate cement
system in non-isothermal condition // J. Therm. Anal.
Calorim. 2013, v. 111, p. 35-40.
6. G. Wallez, C. Colbeau-Justin, T. Le Mercier,
M. Quarton, and F. Robert. Crystal Chemistry and
Polymorphism of Potassium-Magnesium Monophospate
// Journal of Solid State Chemistry. 1998, v. 136,
p. 175-180.
7. Suyin Zhang, Yanlin Huang, Hyo Jin Seo.
Luminescence properties and structure of Eu
2+
doped
KMgPO4 phosphor // Optical Materials. 2010, v. 32,
p. 1545-1548.
8. A.S. Wagh. Chemical bonded phosphate
ceramics. Elsevier, Argonne National Laboratory, USA,
2004, 283 p.
9. Frost, Ray L., Xi, Yunfei, Palmer, Sara J., Tan,
Keqin, & Millar, Graeme J. Vibrational spectroscopy of
synthetic archerite (K, NH4)H2PO4: and in comparison
with the natural cave mineral // Journal of Molecular
Structure. 2012, v. 1011, p. 128-133.
10. Van der Marel, H. Beutelspacher. Atlas of
infrared spectroscopy of clay minerals and their
admixtures. Amsterdam: Elsevier scientific publishing
company, 1976, p. 396.
11. Vilas Bhagawat Suryawanshi, Ravindranath
Teniram Chaudhari. Synthesis and Characterization of
Struvite-k Crystals by Agar Gel // Journal of
Crystallization Process and Technology, 2014, v. 4,
p. 212-224.
12. А.С. Поваренных. Связь ИК-спектров
минералов с кристаллохимическими факторами //
Минерал. сборник Львовского государств.
университета. 1970, в. 1, №24, c. 12-29.
13. Интернет-ресурс:
http://www.nucleide.org/DDEP_WG/Nuclides/Cs-
137_tables.pdf .
14. В.М. Колобашкин, П.М. Рубцов, П.А. Ру-
жанский и др. Радиационные характеристики
облученного ядерного топлива: Справочник. М.:
«Энергоатомиздат», 1983, с. 384.
15. В.М. Ажажа, В.А. Белоус, С.В. Габелков и
др. Ядерная энергетика: обращение с
отработанным ядерным топливом и
радиоактивными отходами / Под ред. акад.
И.М. Неклюдова. Киев: «Наукова думка», 2006,
с. 253.
16. Ж.С. Ажажа, Л.Н. Ледовская, А.В. Пили-
пенко, С.Ю. Саенко, Г.А. Холомеев. Теплофизи-
ческие аспекты выбора параметров глубинного
хранилища высокоактивных отходов и
отработанного ядерного топлива // Ядерна та
радіаційна безпека. 2012, в. 1 (53).
Статья поступила в редакцию 21.06.2017 г.
ИММОБИЛИЗАЦИЯ ЦЕЗИЯ В КАЛИЙ-МАГНИЙ-ФОСФАТНУЮ МАТРИЦУ
С.Ю. Саенко, А.С. Ваг, В.А. Шкуропатенко, Е.П. Березняк, Ю.С. Ходырева,
Р.В. Тарасов, В.Д. Вирич, Е.А. Улыбкина, А.В. Пилипенко, Г.А. Холомеев, А.В. Зыкова
Показана возможность изоморфного замещения ионов калия в структуре калий-магниевого фосфата
KMgPO4 ∙ 6H2O (КМФ) на ионы цезия. Установлено, что включенный в КМФ-матрицу Cs не выходит в
окружающую среду при нагревании до высоких температур (1176 ºС, 3 ч). Анализ ИК-спектра поглощения
КМФ-образца показал, что с увеличением количества добавки хлорида цезия основные полосы в спектре
испытывают сдвиг в низкочастотную область, величина которого в среднем составляет 10 см
-1
, что
свидетельствует об усилении связей в кристаллической решетке вещества. Рассчитанная степень замещения
ISSN 1562-6016. ВАНТ. 2017. №4(110) 73
калия на цезий при энерговыделении в КМФ-матрице на уровне остеклованных высокоактивных отходов
составляет ~ 4%, т. е. КМФ-матрица должна соответствовать формуле К0,96Cs0,04MgPO4·6H2O.
ІММОБІЛІЗАЦІЯ ЦЕЗІЮ У КАЛІЙ-МАГНІЙ-ФОСФАТНУ МАТРИЦЮ
С.Ю. Саєнко, А.С. Ваг, В.А. Шкуропатенко, О.П. Березняк, Ю.С. Ходирєва,
Р.В. Тарасов, В.Д. Вірич, К.А. Улибкіна, О.В. Пилипенко, Г.О. Холомєєв, Г.В. Зикова
Показана можливість ізоморфного заміщення іонів калію в структурі калій-магнієвого фосфату
KMgPO4 ∙ 6H2O (КМФ) на іони цезію. Встановлено, що включений в КМФ-матрицю Cs не виходить у
навколишнє середовище при нагріванні до високих температур (1176 °С, 3 год). Аналіз ІЧ-спектра
поглинання КМФ-зразка показав, що зі збільшенням кількості добавки хлориду цезію основні смуги в
спектрі відчувають зрушення в низькочастотну область, величина якої в середньому становить 10 см
-1
, що
свідчить про посилення зв'язків у кристалічній решітці речовини. Розрахована ступінь заміщення калію на
цезій при енерговиділенні в КМФ-матриці на рівні осклованих високоактивних відходів складає ~ 4%, тобто
КМФ-матриця повинна відповідати формулі К0,96Cs0,04MgPO4·6H2O.
|