About the possibility of using the field of the portable neutron generator for treatment of oncological diseases

The possibility of using a portable neutron generator (PNG) for the treatment of oncological diseases is being considered. It has been shown that when using PNG as a neutron source, it is possible to ensure sufficient therapeutic impact on sick cells, with minimal damage to healthy cells. It's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Stoyanov, A.Ph., Dovbnya, A.N., Tsymbal, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/136182
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:About the possibility of using the field of the portable neutron generator for treatment of oncological diseases / A.Ph. Stoyanov, А.N. Dovbnya, V.А. Tsymbal // Вопросы атомной науки и техники. — 2017. — № 6. — С. 172-174. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136182
record_format dspace
spelling irk-123456789-1361822020-02-27T12:08:53Z About the possibility of using the field of the portable neutron generator for treatment of oncological diseases Stoyanov, A.Ph. Dovbnya, A.N. Tsymbal, V.A. Применение ускорителей в радиационных технологиях The possibility of using a portable neutron generator (PNG) for the treatment of oncological diseases is being considered. It has been shown that when using PNG as a neutron source, it is possible to ensure sufficient therapeutic impact on sick cells, with minimal damage to healthy cells. It's about applying PNG in a brachytherapy tumor. It is important to note that the presence of a narrow ion- pipe- needle allows a neutron source to be placed close to the tumor, and thus to increase therapeutic influence. Numerical estimates of the density of neutrons and the consumed dose when using PNG for brachytherapy performed, it is shown that, for a short period of time (~ 1 minute), sufficient dose of radiation for therapy is absorbed. The calculations of the neutron field and absorbed dose are accom-plished through a computer program developed by the authors based on the Monte Carlo method, designed to simulate the generation, movement, braking and absorption of neutrons. Розглядається можливість застосування портативного нейтронного генератора (ПНГ) для лікування онкологічних хвороб. Показано, що за умови застосування ПНГ в якості джерела нейтронів можна забезпечити достатній терапевтичний вплив на хворі клітини, з мінімальним ураженням здорових клітин. Мова йде про застосування ПНГ при брахітерапії пухлини. Важливо зауважити, що наявність вузького іонопровода «голки» дає можливість розташувати джерело нейтронів у безпосередній близькості до пухлини, а отже - підсилити терапевтичну дію. Виконані чисельні оцінки щільності потоку нейтронів і поглиненої дози під час застосування ПНГ у брахітерапії, показано, що протягом невеликого проміжку часу (~1 хвилини) поглинається достатня для терапії доза опромінювання. Обчислення потоку нейтронів і поглиненої дози виконано за допомогою розробленої авторами комп’ютерної програми, заснованої на методі Монте-Карло і призначеної для моделювання процесів створення, руху, гальмування та поглинання нейтронів. Рассматривается возможность применения портативного нейтронного генератора (ПНГ) для лечения он-кологических заболеваний. Показано, что при применении ПНГ в качестве источника нейтронов можно обеспечить достаточное терапевтическое воздействие на больные клетки, с минимальным повреждением здоровых клеток. Речь идет о применении ПНГ при брахитерапии опухоли. Важно отметить, что наличие узкого ионопровода «иглы» позволяет разместить источник нейтронов близко к опухоли, а следовательно, усилить терапевтическое воздействие. Выполнены численные оценки плотности потока нейтронов и поглощенной дозы при использовании ПНГ для брахитерапии, показано, что в течение небольшого промежутка времени (~1 минуты) поглощается достаточная для терапии доза излучения. Расчеты потока нейтронов и поглощенной дозы выполнены с помощью разработанной авторами компьютерной программы, основанной на применении метода Монте-Карло и предназначенной для моделирования процессов образования, движения, торможения и поглощения нейтронов. 2017 Article About the possibility of using the field of the portable neutron generator for treatment of oncological diseases / A.Ph. Stoyanov, А.N. Dovbnya, V.А. Tsymbal // Вопросы атомной науки и техники. — 2017. — № 6. — С. 172-174. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 29.25.Dz http://dspace.nbuv.gov.ua/handle/123456789/136182 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Stoyanov, A.Ph.
Dovbnya, A.N.
Tsymbal, V.A.
About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
Вопросы атомной науки и техники
description The possibility of using a portable neutron generator (PNG) for the treatment of oncological diseases is being considered. It has been shown that when using PNG as a neutron source, it is possible to ensure sufficient therapeutic impact on sick cells, with minimal damage to healthy cells. It's about applying PNG in a brachytherapy tumor. It is important to note that the presence of a narrow ion- pipe- needle allows a neutron source to be placed close to the tumor, and thus to increase therapeutic influence. Numerical estimates of the density of neutrons and the consumed dose when using PNG for brachytherapy performed, it is shown that, for a short period of time (~ 1 minute), sufficient dose of radiation for therapy is absorbed. The calculations of the neutron field and absorbed dose are accom-plished through a computer program developed by the authors based on the Monte Carlo method, designed to simulate the generation, movement, braking and absorption of neutrons.
format Article
author Stoyanov, A.Ph.
Dovbnya, A.N.
Tsymbal, V.A.
author_facet Stoyanov, A.Ph.
Dovbnya, A.N.
Tsymbal, V.A.
author_sort Stoyanov, A.Ph.
title About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
title_short About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
title_full About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
title_fullStr About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
title_full_unstemmed About the possibility of using the field of the portable neutron generator for treatment of oncological diseases
title_sort about the possibility of using the field of the portable neutron generator for treatment of oncological diseases
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/136182
citation_txt About the possibility of using the field of the portable neutron generator for treatment of oncological diseases / A.Ph. Stoyanov, А.N. Dovbnya, V.А. Tsymbal // Вопросы атомной науки и техники. — 2017. — № 6. — С. 172-174. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT stoyanovaph aboutthepossibilityofusingthefieldoftheportableneutrongeneratorfortreatmentofoncologicaldiseases
AT dovbnyaan aboutthepossibilityofusingthefieldoftheportableneutrongeneratorfortreatmentofoncologicaldiseases
AT tsymbalva aboutthepossibilityofusingthefieldoftheportableneutrongeneratorfortreatmentofoncologicaldiseases
first_indexed 2025-07-10T00:48:45Z
last_indexed 2025-07-10T00:48:45Z
_version_ 1837218949778898944
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 172 ABOUT THE POSSIBILITY OF USING THE FIELD OF THE PORTABLE NEUTRON GENERATOR FOR TREATMENT OF ONCOLOGICAL DISEASES A.Ph. Stoyanov, А.N. Dovbnya, V.А. Tsymbal National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: wind@kipt.kharkov.ua The possibility of using a portable neutron generator (PNG) for the treatment of oncological diseases is being considered. It has been shown that when using PNG as a neutron source, it is possible to ensure sufficient therapeu- tic impact on sick cells, with minimal damage to healthy cells. It's about applying PNG in a brachytherapy tumor. It is important to note that the presence of a narrow ion- pipe- needle allows a neutron source to be placed close to the tumor, and thus to increase therapeutic influence. Numerical estimates of the density of neutrons and the consumed dose when using PNG for brachytherapy performed, it is shown that, for a short period of time (~ 1 minute), suffi- cient dose of radiation for therapy is absorbed. The calculations of the neutron field and absorbed dose are accom- plished through a computer program developed by the authors based on the Monte Carlo method, designed to simu- late the generation, movement, braking and absorption of neutrons. PACS: 29.25.Dz MAIN CHARACTERISTICS OF PNG The development of reliable and inexpensive neu- tron sources is an urgent task, the solution of which is necessary, first of all, for the use of such sources in ra- diation medicine. Work in this field has been carried out in the world for a long time [1 - 7]. The portable neutron generator (PNG) was devel- oped at the NSC KIPT within STSU R497 project, the yield of neutrons provided by PNG is ~ 10 9 neutrons/s. Detailed design of PNG and modeling of neutron for- mation, inhibition and absorption processes are present- ed in [8]. In this paper, we indicate only the main characteris- tics of PNG (Fig. 1). The main idea is that the deuterons dispersed in the electrostatic accelerators fall on the target from beryllium, as a result of which neutrons of energies of ~ 2…4 MeV are formed. It is important to point out that the deuteron beam hits the target through a narrow ion-conducting needle, which allows for some cases of cancer to provide a sufficient therapeutic dose of radiation by placing the source in close proximity to the tumor. We note that the requirement of a narrow ion conductor leads to limitations on the intensity of the deuteron beam and, consequently, the yield of neutrons. At the same time, the structure of the neutron field is such that the dose absorbed by the healthy tissue is small (Fig. 2). The absorbed dose of Fig. 2,b,c is calcu- lated for cases of a point target and a target of finite size placed in a water phantom. The ion conductor is cooled by water, so the temper- ature of the outer surface of the ion conductor (includ- ing the neighborhood of the beryllium target) can be controlled by changing the water temperature in the cooling circuit. Consequently, it is easy to create com- fortable conditions for the patient. Numerical realization of the simulation of the neu- tron field provides for the use of momentum and energy conservation laws for each event, i.e. we can say that the simulation is carried out "from the first principles". Details of the modeling algorithms and the features of the numerical implementation of the algorithm are presented in [8]. POSSIBILITY OF PNG APPLICATION IN ONCOLOGY Fig. 2 above shows the distribution of the absorbed dose of neutrons in the case of a point source of neu- trons and a source of finite dimensions. It is important that the absorbed dose is concentrated in a small neigh- borhood (~ 2…3 cm.) from the neutron source of the PNG target. At the same time, the absorbed dose de- creases rapidly with the distance from the center of the source, therefore, the natural distribution of the ab- sorbed dose field is exactly what is necessary for effec- tive therapy- it is mainly the diseased tissue of the or- ganism that is irradiated. The very organism of the pa- tient (and the tissue of the organism is, to a large extent, water) acts as a retarder-reflector of neutrons. In this case, there is a significant difference between the field of neutrons produced in the reactor (irradiation with a narrow neutron "ray" obtained with the help of collima- tors) and irradiation of PNG. In both cases, a sufficient absorbed dose can be obtained, but in the case of using the reactor it is impossible (or at least very difficult) to deliver the neutron source to the tumor in the body. In practice, the source of neutrons is delivered di- rectly to the tumor by injecting into the body of the pa- tient an ion-conductor needle-brachytherapy takes place. Brachytherapy in the general case involves the delivery of a source of neutrons to the site of the tumor. The pe- culiarities of the human body (and the presence of a narrow ion-conductor-PNG needle) make it possible in a number of cases (for example, in the treatment of uter- ine cancer in women or prostate cancer in men) to de- liver a neutron source to the tumor site without surgical intervention. Alternative use of PNG for tumor irradiation is to place the source of neutrons outside the patient's body, but close to the body surface (as should be done in the treatment, for example, of melanoma). Consider the problem of assessing the impact of neutrons on personnel. At the same time, we place the neutron generator in a bunker with thick concrete walls. ISSN 1562-6016. ВАНТ. 2017. №6(112) 173 a b c Fig. 1. a) General scheme of PNG; b) Absorbed dose (Gy / min) as a function of the distance from a point source of neutrons (cm); c) Dose distribution along the Y axis at a finite ion source, Neutron source, perpendicular to the Z-axis, of size ~ 11 cm In fact, similar estimates can easily be made for any set of rooms, but it should be noted that thin walls or large openings in walls (doors, windows) may cause harmful radiation exposure to personnel. Therefore, the methodology for assessing the danger (or lack of dan- ger) of the work of PNG for personnel should be con- sidered as a model for similar calculations in relation to the actual premises in which the facility will be located. PNG is installed in a bunker with concrete walls of thickness D = 1 m. The neutron yield is Wneutron ~ 10 9 N/s. Neutrons and γ-radiation can penetrate through the con- crete wall to the adjacent room L1L2L3 = 600800900 cm, dimensions of the bunker L1bL2bL3b = 300300400 cm. We assume (within the general principle of assessing the danger from above) that neutrons remain fast, with all the neutrons leaving the patient's body. The layout of the installation in the bunker and the adjacent room is shown in Fig. 2 Fig. 2. Location of PNG installation in the bunker and adjacent room Let us estimate the value of the flux density of gamma radiation at point A (see Fig. 2)  behind the wall separating the bunker from the adjacent room. Data on the irradiation weakening in concrete, as subsequent- ly data on the weakening of the neutron flux in concrete, is taken from the handbook [9]:   9 100 33 2.410 4 300 300 2 300 400 2 1.157 MeV e cm s           (1) it is easy to see that the radiation flux density is negligi- ble (we achieved this by placing the stand in a hopper with sufficiently thick walls). Let us perform a similar estimate for the neutron field (estimate for the neutron albedo, η = 0.8).    8 100 0 26 2.43 6 10 1 4 300 300 2 300 400N e             ,        09 100 6 300 40026 2.46 10 1 4 300 300 2 300 400 1 2 600 800 600 900 800 900 2 20N N N e cm c                             09 100 6 300 40026 2.46 10 1 4 300 300 2 300 400 1 2 600 800 600 900 800 900 2 20 .N N N e cm s                      (2) PNG Bunker Accelerator envelope Deutron source Deutron bunch «Needle» Vacuum pump Electrods Vacuum tube Gradient rings Elegas Water delivery Dosa cm cm ISSN 1562-6016. ВАНТ. 2017. №6(112) 174 The density of the neutron flux is close to the per- missible flux density of fast neutrons for personnel in Category A according to НРБ-99, which is acceptable. CONCLUSIONS The portable neutron generator developed at the NSC KIPT can be used to treat certain oncological dis- eases, without surgical intervention. Within a few minutes of the generator's work, a sufficient dose of neutron irradiation is absorbed by diseased tissues, at the same time, due to the obtained structure of the neu- tron field, the damage to healthy cells is minimal. Estimates of the effect of radiation on the environ- ment, in particular, evaluation of the characteristics of the neutron field in the bunker, where the neutron gen- erator is located, and the adjacent room are performed. It is shown that there is no danger to the personnel in this case. A similar calculation should be made each time the installation location is selected. REFERENCES 1. B. Bayanov et al. Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital // Nucl. Instr. and Meth. in Phys. Res. 1998, A 413, p. 397. 2. V. Kononov, M. Bokhovko, O. Kononov. Accelera- tor based neutron sources for medicine // Proceed- ings of International Symposium on Boron Neutron Capture Therapy / Ed., Sergey Yu. Taskaev, July 7- 9, 2004, Novosibirsk, Russia, p. 62-68. 3. А.В. Важенин, Г.Н. Рыкованов. Уральский центр нейтронной терапии: история, методология, ре- зультаты. M.: Издательство РАМН, 2008, 143 с. 4. T. Blue and J. Yanch. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors // Journal of Neuro-oncology. 2003, v. 62, p. 19-31. 5. Leon Forman and Keith T. Welsh // International Conference on Portable Neutron Generators and their Applications. Moscow, Russia, 2004, Oct. 18- 22, p. 153-168. 6. K.T. Welsh, L. Forman, L. Reinstein, A.J. Meek. Ion Beam and Neutron Output Performance of a Portable Accelerator Based Brachytherapy Neutron Source // 44st annual meeting of the American Association of Physicist in Medicine, Salt Lake City, Ut 2002. 7. L. Forman. Small generator using a high current electron bombardment ion source and methods of treating tumor therewith // United States patent 6, 925, 137 B1, Aug. 2, 2005. 8. А.N. Dovbnya, V.А. Tsymbal, A.F. Stoyanov. Nu- merical simulation of neutron flow exposure on the organic tissues // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2015, № 6, p. 165-168. 9. V. Mashkovich, T. Kudryavceva. Radiational shielding handbook. Moscow, 1996, 496 p. Article received 17.10.2017 О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПОЛЯ ПОРТАТИВНОГО НЕЙТРОННОГО ГЕНЕРАТОРА ДЛЯ ЛЕЧЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ А.Ф. Стоянов, А.Н. Довбня, В.А. Цымбал Рассматривается возможность применения портативного нейтронного генератора (ПНГ) для лечения он- кологических заболеваний. Показано, что при применении ПНГ в качестве источника нейтронов можно обеспечить достаточное терапевтическое воздействие на больные клетки, с минимальным повреждением здоровых клеток. Речь идет о применении ПНГ при брахитерапии опухоли. Важно отметить, что наличие узкого ионопровода «иглы» позволяет разместить источник нейтронов близко к опухоли, а следовательно, усилить терапевтическое воздействие. Выполнены численные оценки плотности потока нейтронов и погло- щенной дозы при использовании ПНГ для брахитерапии, показано, что в течение небольшого промежутка времени (~1 минуты) поглощается достаточная для терапии доза излучения. Расчеты потока нейтронов и поглощенной дозы выполнены с помощью разработанной авторами компьютерной программы, основанной на применении метода Монте-Карло и предназначенной для моделирования процессов образования, движе- ния, торможения и поглощения нейтронов. ЩОДО МОЖЛИВОСТІ ЗАСТОСУВАННЯ ПОЛЯ ПОРТАТИВНОГО НЕЙТРОННОГО ГЕНЕРАТОРА ДЛЯ ЛІКУВАННІ ОНКОЛОГІЧНИХ ЗАХВОРЮВАНЬ О.Ф. Стоянов, А.М. Довбня, В.О. Цимбал Розглядається можливість застосування портативного нейтронного генератора (ПНГ) для лікування он- кологічних хвороб. Показано, що за умови застосування ПНГ в якості джерела нейтронів можна забезпечити достатній терапевтичний вплив на хворі клітини, з мінімальним ураженням здорових клітин. Мова йде про застосування ПНГ при брахітерапії пухлини. Важливо зауважити, що наявність вузького іонопровода «гол- ки» дає можливість розташувати джерело нейтронів у безпосередній близькості до пухлини, а отже  підси- лити терапевтичну дію. Виконані чисельні оцінки щільності потоку нейтронів і поглиненої дози під час за- стосування ПНГ у брахітерапії, показано, що протягом невеликого проміжку часу (~1 хвилини) поглинаєть- ся достатня для терапії доза опромінювання. Обчислення потоку нейтронів і поглиненої дози виконано за допомогою розробленої авторами комп’ютерної програми, заснованої на методі Монте-Карло і призначеної для моделювання процесів створення, руху, гальмування та поглинання нейтронів.