The effect of gamma radiation on structure of struvite-К

The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that aft...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Bereznyak, E.P., Dikiy, N.P., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Sayenko, S.Y., Uvarov, V.L., Fedorets, I.D., Hodyreva, Y.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136187
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136187
record_format dspace
spelling irk-123456789-1361872018-06-17T03:04:53Z The effect of gamma radiation on structure of struvite-К Bereznyak, E.P. Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Sayenko, S.Y. Uvarov, V.L. Fedorets, I.D. Hodyreva, Y.S. Применение ядерных методов The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that after gamma irradiation the phase composition of the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or-dering of struvite-K and magnesite occurs. Аналізується вплив гамма-випромінювання на функціональні характеристики наноструктурного струвіту-K. Були виміряні спектри поглинання струвиту-K в інфрачервоній області. Описано результати мікроструктури зразків після гамма-опромінення до дози 1.35·10⁵Град. Було показано, що після гамма-опромінення фазовий склад зразка істотно не змінюється, а відбувається кристалізація аморфного фосфату і структурне впорядкування струвіту-К і магнезиту. Анализируется влияние гамма-излучения на функциональные характеристики наноструктурного струвита-K. Были измерены спектры поглощения струвита-K в инфракрасной области. Описаны результаты микроструктуры образцов после гамма облучения до дозы 1.35·10⁵Град. Было показано, что после гамма-облучения фазовый состав образца существенно не меняется, а происходит кристаллизация аморфного фосфата и структурное упорядочение струвита-К и магнезита. 2017 Article The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 78.30.Ly; 61.82.Rx; 78.30.-j http://dspace.nbuv.gov.ua/handle/123456789/136187 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Bereznyak, E.P.
Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Sayenko, S.Y.
Uvarov, V.L.
Fedorets, I.D.
Hodyreva, Y.S.
The effect of gamma radiation on structure of struvite-К
Вопросы атомной науки и техники
description The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that after gamma irradiation the phase composition of the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or-dering of struvite-K and magnesite occurs.
format Article
author Bereznyak, E.P.
Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Sayenko, S.Y.
Uvarov, V.L.
Fedorets, I.D.
Hodyreva, Y.S.
author_facet Bereznyak, E.P.
Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Sayenko, S.Y.
Uvarov, V.L.
Fedorets, I.D.
Hodyreva, Y.S.
author_sort Bereznyak, E.P.
title The effect of gamma radiation on structure of struvite-К
title_short The effect of gamma radiation on structure of struvite-К
title_full The effect of gamma radiation on structure of struvite-К
title_fullStr The effect of gamma radiation on structure of struvite-К
title_full_unstemmed The effect of gamma radiation on structure of struvite-К
title_sort effect of gamma radiation on structure of struvite-к
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Применение ядерных методов
url http://dspace.nbuv.gov.ua/handle/123456789/136187
citation_txt The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bereznyakep theeffectofgammaradiationonstructureofstruvitek
AT dikiynp theeffectofgammaradiationonstructureofstruvitek
AT lyashkoyuv theeffectofgammaradiationonstructureofstruvitek
AT medvedevaep theeffectofgammaradiationonstructureofstruvitek
AT medvedevdv theeffectofgammaradiationonstructureofstruvitek
AT sayenkosy theeffectofgammaradiationonstructureofstruvitek
AT uvarovvl theeffectofgammaradiationonstructureofstruvitek
AT fedoretsid theeffectofgammaradiationonstructureofstruvitek
AT hodyrevays theeffectofgammaradiationonstructureofstruvitek
AT bereznyakep effectofgammaradiationonstructureofstruvitek
AT dikiynp effectofgammaradiationonstructureofstruvitek
AT lyashkoyuv effectofgammaradiationonstructureofstruvitek
AT medvedevaep effectofgammaradiationonstructureofstruvitek
AT medvedevdv effectofgammaradiationonstructureofstruvitek
AT sayenkosy effectofgammaradiationonstructureofstruvitek
AT uvarovvl effectofgammaradiationonstructureofstruvitek
AT fedoretsid effectofgammaradiationonstructureofstruvitek
AT hodyrevays effectofgammaradiationonstructureofstruvitek
first_indexed 2025-07-10T00:49:17Z
last_indexed 2025-07-10T00:49:17Z
_version_ 1837218983681458176
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 122 APPLICATION OF NUCLEAR METHODS THE EFFECT OF GAMMA RADIATION ON STRUCTURE OF STRUVITE-K E.P. Bereznyak 1 , N.P. Dikiy 1 , Yu.V. Lyashko 1 , E.P. Medvedeva 1 , D.V. Medvedev 1 , S.Y. Sayenko 1 , V.L. Uvarov 1 , I.D. Fedorets 2 , Y.S. Hodyreva 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.3510 5 Gy are described. It has shown that after gamma irradiation the phase composition of the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or- dering of struvite-K and magnesite occurs. PACS: 78.30.Ly; 61.82.Rx; 78.30.-j INTRODUCTION Struvite-K [KMgPO4·6H2O], is the natural potassi- um equivalent to struvite [NH4MgPO4·6H2O], in which monovalent cation K + replaces the NH4 + ammonium cations [1]. These two compounds are isostructural, with the existence of a complete isomorphous series from 100% K + to 100% NH4 + struvite. This ion re- placement is possible, as the ionic radii of K + and NH4 + are almost identical (1.52 vs 1.51 Å) [2]. Production of struvite-K is based on a chemical re- action between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents. Stru- viteK [KMgPO4·6H2O] is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH2PO4; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. New opportunities in the formation of such struc- tures are opened by radiation methods of influence, which demonstrate their effectiveness in the synthesis and modification of the properties of nanostructured compounds. High-energy radiation of nanocrystalline objects of various nature can cause changes in such structures that have not been observed in other types of effect [3]. The processes that accompany the passage of radiation through such structures are multiform and un- equal inherently of complexity. The processes that accompany the passage of radia- tion through such structures are manifold and unequal in complexity. Several variants of the behavior of defects in nano objects are analyzed: the presence of a signifi- cant number of boundary surfaces; the annihilation of the nanostructure and its transformation into an amor- phous state; recrystallization, etc. According to [4, 5], the dissipation of the energy of fast particles in multi-component compositions is mainly realized on the sublattice of light atoms, such as hydrogen and oxygen, by ionization of atoms due to the emission of Auger electrons. Moreover, the higher mobility of these atoms in the lattice of the crystal is realized. In the pro- cess of relaxation, the positive ion charge interacts with the macroscopic field of the crystal. In covalent crystals, the process due to the Auger electron relaxation, explains the rupture of bonds between atoms accompanied by atomic displacements. In this case, the establishment of equilibrium will be different in directions and intensity. The perturbed region usually extends to 1 nm with a binding energy of several electronvolt and a macroscopic electric field of about 10 6 V/cm. One of the consequences of such a process is the enrichment of the surface of metal atoms in halide crystals. Another consequence of this mechanism of action is the improvement of the crystallin- ity of the substance [7]. It should also be noted the for- mation of highly reactive oxygen species, which in turn, as a result of Coulomb interactions, increase the degree of radiation damage in KMgPO4·6H2O [6]. The presence of highly reactive oxygen leads to the dissolution of the amorphous phase and, accordingly, improves the crystal- linity of KMgPO4·6H2O [7]. In recent years, various versions of the radiation ef- fect on the functional characteristics of nanostructural compounds have been intensively studied. In our previ- ous article [8], it was also shown that the diffusion rate depends not only on the energy state and not only from the chemical nature of cations and anions which are the nearest neighbors of a molecule of water. There is an- other parameter, for example, physical, or enterprise which is connected with the disorder in a locating of atoms. Character of atomic packaging of K, Mg and РО4 in magnesium potassium phosphate hexahydrate possesses specificity which is bound to the extreme di- mensions of these ions. From the laws of dense atomic packing, it is known that atoms with large various sizes can be packaged in an unambiguous way with great difficulties. Ambiguity in the arrangement of atoms cre- ates internodes that can participate in the formation of migration paths penetrating the whole crystal in a solid. In other words, we can say that enhanced diffusion in crystalline hydrates can be determined by not only by a suitable energy but also with a suitable space. Such space is in KMgPO4·6H2O [8]. Magnesium potassium phosphate hexahydrate has a low specific gravity of 1.7 g/cm 3 . The purpose of the present article is to study the ef- fect of bremsstrahlung on the structure of KMg- PO4·6H2O. ISSN 1562-6016. ВАНТ. 2017. №6(112) 123 RESULTS AND DISCUSSION The sample of struvite-K [KMgPO4·6H2O] (by size 1…10 m) was irradiated by bremsstrahlung with a maximum energy of 13.5 MeV. After activation of KMgPO4·6H2O the -spectrum of the sample has been measured by Ge(Li)-detector (vol- ume 50 cm 3 , energy resolution 3.2 keV in the area of 1332 keV). Isomorphic impurities of arsenic, strontium, rare-earth elements and also impurities of a titan, iron, uranium are contained in phosphates. Therefore, in the radiation spectra, we can see these elements (Fig. 1). So- dium is an isomorphic impurity of potassium. Therefore sodium detected in spectra of struvite-K samples also. 500 1000 1500 10 100 1000 co u n ts energy, keV 22 Na 24 Na 24 Na 89 Zr 74 As 511 keV 47 Sc Fig. 1. Energy spectrum of the sample of struvite-K after an irradiation on the electronic accelerator The phase analysis shows that initial and irradiated samples of struvite-K contain the phase of KMg- PO4·6H2O. Thus the initial sample has the widened lines that are probably connected with a considerable quantity of an isotropic amorphous phase [9, 10]. In the irradiat- ed sample, the intensity increase of diffraction lines and reduction of their semi-width in connection with an or- dering of the crystal structure and quantity reduction of the cryptocrystalline constituent is observed. For measuring of the absorption spectra in the infra- red range, the IR spectrophotometer IKS-29 (LOMO), acting in the NSC "KIPT" of the NAS of Ukraine, was used. The spectra were recorded in the spectral range 4000…400 cm -1 (mean infrared region). Powdered samples were examined after grinding them in agate mortars to particle size ~1…10 μm. Sam- ples were prepared in the form of transparently com- pressed tablets from the mixture KBr-matrix, and the test sample (in an amount of 1%, a sample of 100 mg). Tablets had a squared shape and dimensions of 255 mm. The pressing pressure was 9200 kg/cm 2 . A tablet of pure potassium bromide, pre-dried at 180°C for 10 hours, was placed in the instrument comparison channel to eliminate the absorption bands of the matrix. Powders were pounded and placed in a special closed box. Pressing was carried out immediately before re- cording the spectra. The grading was carried out from the spectrum of polystyrene with known frequencies of absorption maxima. The error was about 10 −5 cm 1 . The microscopic sample was a cryptocrystalline ag- gregate mass, which contained numerous inclusions of several phases (crystalline and amorphous) (Fig. 2). The anisotropic grains of the carbonate phase of magnesite (MgCO3), which had a yellowish brown color and pos- sessed strong pleochroism, can be identified. The size of grains of magnesite from ~5 to 30 μm. The content of magnesite carbonate phase was ~20 vol.%. Very small transparent grains of the crystalline phase (possibly magnesium oxide MgO) were also visible. The main aggregate mass mainly is composed of KMgPO4∙6H2O and partially from of the products of incomplete synthe- sis, which are amorphous or cryptocrystalline phosphate compounds. Fig. 2. A microphotograph of the immersion prepara- tion of the initial K-Mg phosphate sample in transmitted light, without an analyzer The infrared spectrum of the initial sample contains a large number of intense bands with narrow maxima and a number of fine peaks (Figs. 3 and 4, curve 1). Identification of the bands is given in Table. The most intense main bands in the spectrum refer to KMg- PO4·6H2O: 570, 630, 765, 1050, 2350, 2910 and 3210 cm -1 [11]. The bands 475, 880, the doublet from the strong, sharp bands 1430 and 1470, 2350 and 3420 are associated with the presence of the carbonate phase- magnesite (MgCO3) [12]. The small peaks of 405 and 425 cm -1 are most likely related to the MgO impurity. A group of bands  950, 980 and 1095 cm -1 , which are associated with the vibrations of the P(OH)2 and PO4 groups, are located around the 1050 cm -1 main band that is attached to K-Mg phosphate (KMgPO46H2O) in the structure of amorphous or cryptocrystalline phosphate phases, which may be intermediate products of incom- plete synthesis. An additional confirmation of the fact that the sam- ple consists of several phases is that the wide strong band, which is associated with stretching vibrations of H-O-H in the region of 3500…2800 cm -1 , consists of four peaks (2790, 2910, 3210 and 3420 cm -1 ). Each of these peaks belongs to a certain type of water, which is contained in various phases. An additional confirmation of the fact that the sam- ple consists of several phases is that the wide strong band, which is associated with stretching vibrations of H-O-H in the region of 3500…2800 cm -1 , consists of four peaks (2790, 2910, 3210 and 3420 cm -1 ). Each of these peaks belongs to a certain type of water, which is contained in various phases. ISSN 1562-6016. ВАНТ. 2017. №6(112) 124 KMgPO4· 6H2O KMgPO4·6H2O irradiated (D=1.35∙10 5 Gy) Assignment of band 9-11 405 405 MgO 425 425 475 c 470 MgCO3 560 560 Bending vibrations M-O (М-metal) in phosphate structure 570 570 630 630 765 760 Bending vibrations POH (out-of-plane) 880 c 870 MgCO3, out-of-plane bending vibrations of ion СО3 - 950 950 Bending vibrations Р (ОН)2, stretching non- central vibrations РО4 980 980 1050 1050 1095 1095 1430 c 1430 Vibrations С-О in magnesite structure MgCO3 1470 c 1470 1645 1650 Bending modes Н-О-Н in magnesite structure MgCO3 2350 2340 Stretching vibrations Н-О-Н in structure KMgPO4·6H2O and semiamorphous phosphate phase 2790 2790 2910 2910 Deformation modes Н- О-Н in semiamorphous phosphate phase 3210 3210 Stretching vibrations Н-О-Н in structure KMgPO4·6H2O 3420 c 3420 Stretching vibrations Н-О-Н in magnesite structure MgCO3   KMgPO4·6H2O; c  Carbonate phase (MgCO3). Fig. 3. IR absorption spectra of K-Mg phosphate in the frequency range 400…1300 cm -1 . Curve 1  initial sample; curve 2  sample after irradiation to a dose of 1.3510 5 Gy The sample microstructure changes significantly af- ter irradiation to a dose of 1.3510 5 Gy. The sample con- tains a smaller amount of isotropic amorphous phase and is more crystalline. The boundaries between the grains of individual phases become more distinct (Fig. 5). The form of the IR spectrum of the irradiated sample reveals that irradiation does not lead to a change in the basic phase composition of the substance since the quantity and the positions of all bands in the spectrum remains invariable (see Figs. 3 and 4, curve 2). Changes in the spectrum are related only to the intensity of the bands, which directly depends on the degree of crystal- linity and orderliness of the structure of the substance, as well depends on the quantity of individual phases of which the sample consists. Fig. 4. IR absorption spectra of K-Mg phosphate in the frequency range 1200…4000 cm -1 . Curve 1  initial sample; curve 2  sample after irradiation to a dose of 1.3510 5 Gy Fig. 5. A microphotograph of the immersion prepara- tion of the irradiated sample KMgPO46H2O (D=1.3510 5 Gy) in transmitted light. Without analyzer We can note the following changes in the shape and intensity of the bands: 1. The intensity of all bands associated with the bending oscillations of M-O (M-metal) in the phosphate structure: 570, 630 and 760 cm -1 is increasing. Strength- ening of these bonds is caused by a structural ordering of KMgPO4∙6H2O. 2. The shape of the main band in the region 1100…950 cm -1 varies: the maxima are smoothed out and the intensity of the bands of amorphous phosphate com- ponents (950 and 980 cm -1 ) is decreased. The general form of the given band becomes closer to that kind which is characteristic of crystal phase KMgPO4∙6H2O [13]. ISSN 1562-6016. ВАНТ. 2017. №6(112) 125 3. The intensity of the bands which were associated with the vibrations of C-O in the structure of magnesite (MgCO3) (870, 1430, 1470 and 1650 cm -1 ) markedly increases. We can conclude that the strengthening of bonds in this structure occurs. 4. The intensity of the doublet 405 and 425 cm -1 (MgO) increases. Perhaps, irradiation leads to an in- crease in the size of MgO crystals or their quantity. 5. The shift of a whole series of bands in a spectrum, which concern different phases, into the low  frequen- cy area of a spectrum (475→470, 765→760, 880→870, 2350→2340) is observed. This also confirms the fact that the structure of all the phases which belong to com- position of the sample becomes more perfect. Such a shift indicates a strengthening of the bonds in the crystal lattice [14]. 6. It should be noted that the shape of the wide band of H-O-H vibrations in the ~3500…2800 cm -1 region and the quantity of peaks remain practically unchanged. Obviously, the radiation effect did not have a significant effect on the structured or adsorbed water, which is con- tained in the various phases that make up this sample. CONCLUSIONS 1. The initial sample of K-Mg phosphate consists of four main phases: Struvite-K (KMgPO4∙6H2O), semi- amorphous phosphate phase, magnesite and single grains of magnesium oxide (MgO) (no more than 5 vol. %). 2. The phase composition of the sample does not change significantly after irradiation by bremsstrahlung to a dose of 1.35∙10 5 Gy. Crystallization of amorphous phosphate and the structural ordering of struvite-K and magnesite occurs. REFERENCES 1. V. Stefova, B. Soptrajanova, F. Spirovskia, et al. Infrared and Raman spectra of magnesium ammoni- um phosphate hexahydrate (struvite) and its isomor- phous analogues // J. Mol. Struc. 2004, v. 689, p. 1- 10. 2. J.E. Huheey, E.A. Keiter, R.L. Keiter. Inorganic Chemistry. New York: “Harper Collins”. 1993, 450 p. 3. R.A. Andrievski. Behavior of radiation defects in nanomaterials // Rev. Adv. Mater. Sci. 2011, v. 29, p. 54-67. 4. G. Schiwietz, K. Czerski, M. Roth, et al. Femto- second Dynamics  Snapshots of the Early Ion- Track Evolution // Nucl. Instr. Meth. in Phys. Res. B. 2004, v. 225, p. 4-26: 5. J. Cazaux. The Role of the Auger Mechanizm in the Radiation Damage of insulators // Microsc. Micro- anal. Microstruct. 1995, v. 6, p. 345-362. 6. S. Moll, Y. Zhang, A. Debelle, et al. Damage pro- cesses in MgO irradiated with medium-energy heavy ions // Acta Mater. 2015, v. 88, p. 314-322. 7. P. Carrez, K. Demyk, H. Leroux, et al. Low- temperature crystallization of MgSi03 glasses under electron irradiation: Possible implications for silicate dust evolution in circumstellar environments // Me- teoritics and Planetary Science. 2002, v. 37, p. 1615-1622. 8. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al. Ion exchange in photoactivated inorganic matters / / PAST. Ser. “NPI”. 2017, № 3(68), p. 40-44. 9. A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, et al. Experimental study on cesium immobilization in struvite structures // J. Hazard. Mater. 2016, v. 302, p. 241-249. 10. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al. Ion exchange in photoactivated inorganic matters / / PAST. Ser. “NPI”. 2017, № 3(68), p. 40-44. 11. R.L. Frost, Y. Xi, S.J. Palmer, et al. Vibrational spectroscopy of synthetic archerite (K, NH4)H2PO4: and in comparison with the natural cave mineral // J. Mol. Struc. 2012, v.1011, p. 128-133. 12. Van der Marel, H. Beutelspacher. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam: “Elsevier”. 1976, 396 p. 13. V.B. Suryawanshi, R.T. Chaudhari. Synthesis and Characterization of Struvite-K Crystals by Agar Gel // J. Cryst. Proc. Tech. 2014, v. 4, p. 212-224. 14. A.S. Povarennyh. Bond of IR-spectra of minerals with a crystal chemical factors // The Mineral. col- lection of Lvov State University. 1970, iss. 1, № 24, p. 12-29. Article received 04.10.2017 ВЛИЯНИЕ ГАММА-ИЗЛУЧЕНИЯ НА СТРУКТУРУ СТРУВИТА-K Е.П. Березняк, Н.П. Дикий, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, С.Ю. Саенко, В.Л. Уваров, И.Д. Федорец, Ю.С. Ходырева Анализируется влияние гамма-излучения на функциональные характеристики наноструктурного струви- та-K. Были измерены спектры поглощения струвита-K в инфракрасной области. Описаны результаты мик- роструктуры образцов после гамма облучения до дозы 1.3510 5 Град. Было показано, что после гамма- облучения фазовый состав образца существенно не меняется, а происходит кристаллизация аморфного фос- фата и структурное упорядочение струвита-К и магнезита. ВПЛИВ ГАММА-ВИПРОМІНЮВАННЯ НА СТРУКТУРУ СТРУВІТУ-К О.П. Березняк, М.П. Дикий, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, С.Ю. Саєнко, В.Л. Уваров, І.Д. Федорець, Ю.С. Ходирєва Аналізується вплив гамма-випромінювання на функціональні характеристики наноструктурного струві- ту-K. Були виміряні спектри поглинання струвиту-K в інфрачервоній області. Описано результати мікроструктури зразків після гамма-опромінення до дози 1.3510 5 Град. Було показано, що після гамма- опромінення фазовий склад зразка істотно не змінюється, а відбувається кристалізація аморфного фосфату і структурне впорядкування струвіту-К і магнезиту.