The effect of gamma radiation on structure of struvite-К
The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that aft...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/136187 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136187 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1361872018-06-17T03:04:53Z The effect of gamma radiation on structure of struvite-К Bereznyak, E.P. Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Sayenko, S.Y. Uvarov, V.L. Fedorets, I.D. Hodyreva, Y.S. Применение ядерных методов The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that after gamma irradiation the phase composition of the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or-dering of struvite-K and magnesite occurs. Аналізується вплив гамма-випромінювання на функціональні характеристики наноструктурного струвіту-K. Були виміряні спектри поглинання струвиту-K в інфрачервоній області. Описано результати мікроструктури зразків після гамма-опромінення до дози 1.35·10⁵Град. Було показано, що після гамма-опромінення фазовий склад зразка істотно не змінюється, а відбувається кристалізація аморфного фосфату і структурне впорядкування струвіту-К і магнезиту. Анализируется влияние гамма-излучения на функциональные характеристики наноструктурного струвита-K. Были измерены спектры поглощения струвита-K в инфракрасной области. Описаны результаты микроструктуры образцов после гамма облучения до дозы 1.35·10⁵Град. Было показано, что после гамма-облучения фазовый состав образца существенно не меняется, а происходит кристаллизация аморфного фосфата и структурное упорядочение струвита-К и магнезита. 2017 Article The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 78.30.Ly; 61.82.Rx; 78.30.-j http://dspace.nbuv.gov.ua/handle/123456789/136187 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ядерных методов Применение ядерных методов |
spellingShingle |
Применение ядерных методов Применение ядерных методов Bereznyak, E.P. Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Sayenko, S.Y. Uvarov, V.L. Fedorets, I.D. Hodyreva, Y.S. The effect of gamma radiation on structure of struvite-К Вопросы атомной науки и техники |
description |
The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma irradiation to a dose 1.35·10⁵Gy are described. It has shown that after gamma irradiation the phase composition of the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or-dering of struvite-K and magnesite occurs. |
format |
Article |
author |
Bereznyak, E.P. Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Sayenko, S.Y. Uvarov, V.L. Fedorets, I.D. Hodyreva, Y.S. |
author_facet |
Bereznyak, E.P. Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Sayenko, S.Y. Uvarov, V.L. Fedorets, I.D. Hodyreva, Y.S. |
author_sort |
Bereznyak, E.P. |
title |
The effect of gamma radiation on structure of struvite-К |
title_short |
The effect of gamma radiation on structure of struvite-К |
title_full |
The effect of gamma radiation on structure of struvite-К |
title_fullStr |
The effect of gamma radiation on structure of struvite-К |
title_full_unstemmed |
The effect of gamma radiation on structure of struvite-К |
title_sort |
effect of gamma radiation on structure of struvite-к |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Применение ядерных методов |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136187 |
citation_txt |
The effect of gamma radiation on structure of struvite-К / E.P. Bereznyak, N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, S.Y. Sayenko, V.L. Uvarov, I.D. Fedorets, Y.S. Hodyreva // Вопросы атомной науки и техники. — 2017. — № 6. — С. 122-125. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bereznyakep theeffectofgammaradiationonstructureofstruvitek AT dikiynp theeffectofgammaradiationonstructureofstruvitek AT lyashkoyuv theeffectofgammaradiationonstructureofstruvitek AT medvedevaep theeffectofgammaradiationonstructureofstruvitek AT medvedevdv theeffectofgammaradiationonstructureofstruvitek AT sayenkosy theeffectofgammaradiationonstructureofstruvitek AT uvarovvl theeffectofgammaradiationonstructureofstruvitek AT fedoretsid theeffectofgammaradiationonstructureofstruvitek AT hodyrevays theeffectofgammaradiationonstructureofstruvitek AT bereznyakep effectofgammaradiationonstructureofstruvitek AT dikiynp effectofgammaradiationonstructureofstruvitek AT lyashkoyuv effectofgammaradiationonstructureofstruvitek AT medvedevaep effectofgammaradiationonstructureofstruvitek AT medvedevdv effectofgammaradiationonstructureofstruvitek AT sayenkosy effectofgammaradiationonstructureofstruvitek AT uvarovvl effectofgammaradiationonstructureofstruvitek AT fedoretsid effectofgammaradiationonstructureofstruvitek AT hodyrevays effectofgammaradiationonstructureofstruvitek |
first_indexed |
2025-07-10T00:49:17Z |
last_indexed |
2025-07-10T00:49:17Z |
_version_ |
1837218983681458176 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №6(112) 122
APPLICATION OF NUCLEAR METHODS
THE EFFECT OF GAMMA RADIATION
ON STRUCTURE OF STRUVITE-K
E.P. Bereznyak
1
, N.P. Dikiy
1
, Yu.V. Lyashko
1
, E.P. Medvedeva
1
, D.V. Medvedev
1
,
S.Y. Sayenko
1
, V.L. Uvarov
1
, I.D. Fedorets
2
, Y.S. Hodyreva
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: ndikiy@kipt.kharkov.ua
The effect of gamma radiation upon functional characteristics of nanostructural struvite-K is analyzed. Spectra of
absorption struvite-K have been measured in infra-red area. Results of a microstructure of samples after of a gamma
irradiation to a dose 1.3510
5
Gy are described. It has shown that after gamma irradiation the phase composition of
the sample essentially does not change, and there is a crystallization of amorphous phosphate and the structural or-
dering of struvite-K and magnesite occurs.
PACS: 78.30.Ly; 61.82.Rx; 78.30.-j
INTRODUCTION
Struvite-K [KMgPO4·6H2O], is the natural potassi-
um equivalent to struvite [NH4MgPO4·6H2O], in which
monovalent cation K
+
replaces the NH4
+
ammonium
cations [1]. These two compounds are isostructural,
with the existence of a complete isomorphous series
from 100% K
+
to 100% NH4
+
struvite. This ion re-
placement is possible, as the ionic radii of K
+
and NH4
+
are almost identical (1.52 vs 1.51 Å) [2].
Production of struvite-K is based on a chemical re-
action between phosphate anions and metal cations to
form a strong, dense, durable, low porosity matrix that
immobilizes hazardous and radioactive contaminants as
insoluble phosphates and microencapsulates insoluble
radioactive components and other constituents. Stru-
viteK [KMgPO4·6H2O] is formed through an acid-base
reaction between calcined magnesium oxide (MgO; a
base) and potassium hydrogen phosphate (KH2PO4; an
acid) in aqueous solution. The reaction product sets at
room temperature to form a highly crystalline material.
New opportunities in the formation of such struc-
tures are opened by radiation methods of influence,
which demonstrate their effectiveness in the synthesis
and modification of the properties of nanostructured
compounds. High-energy radiation of nanocrystalline
objects of various nature can cause changes in such
structures that have not been observed in other types of
effect [3]. The processes that accompany the passage of
radiation through such structures are multiform and un-
equal inherently of complexity.
The processes that accompany the passage of radia-
tion through such structures are manifold and unequal in
complexity. Several variants of the behavior of defects
in nano objects are analyzed: the presence of a signifi-
cant number of boundary surfaces; the annihilation of
the nanostructure and its transformation into an amor-
phous state; recrystallization, etc.
According to [4, 5], the dissipation of the energy of
fast particles in multi-component compositions is mainly
realized on the sublattice of light atoms, such as hydrogen
and oxygen, by ionization of atoms due to the emission of
Auger electrons. Moreover, the higher mobility of these
atoms in the lattice of the crystal is realized. In the pro-
cess of relaxation, the positive ion charge interacts with
the macroscopic field of the crystal. In covalent crystals,
the process due to the Auger electron relaxation, explains
the rupture of bonds between atoms accompanied by
atomic displacements. In this case, the establishment of
equilibrium will be different in directions and intensity.
The perturbed region usually extends to 1 nm with a
binding energy of several electronvolt and a macroscopic
electric field of about 10
6
V/cm. One of the consequences
of such a process is the enrichment of the surface of metal
atoms in halide crystals. Another consequence of this
mechanism of action is the improvement of the crystallin-
ity of the substance [7]. It should also be noted the for-
mation of highly reactive oxygen species, which in turn,
as a result of Coulomb interactions, increase the degree of
radiation damage in KMgPO4·6H2O [6]. The presence of
highly reactive oxygen leads to the dissolution of the
amorphous phase and, accordingly, improves the crystal-
linity of KMgPO4·6H2O [7].
In recent years, various versions of the radiation ef-
fect on the functional characteristics of nanostructural
compounds have been intensively studied. In our previ-
ous article [8], it was also shown that the diffusion rate
depends not only on the energy state and not only from
the chemical nature of cations and anions which are the
nearest neighbors of a molecule of water. There is an-
other parameter, for example, physical, or enterprise
which is connected with the disorder in a locating of
atoms. Character of atomic packaging of K, Mg and
РО4 in magnesium potassium phosphate hexahydrate
possesses specificity which is bound to the extreme di-
mensions of these ions. From the laws of dense atomic
packing, it is known that atoms with large various sizes
can be packaged in an unambiguous way with great
difficulties. Ambiguity in the arrangement of atoms cre-
ates internodes that can participate in the formation of
migration paths penetrating the whole crystal in a solid.
In other words, we can say that enhanced diffusion in
crystalline hydrates can be determined by not only by a
suitable energy but also with a suitable space. Such
space is in KMgPO4·6H2O [8]. Magnesium potassium
phosphate hexahydrate has a low specific gravity of
1.7 g/cm
3
.
The purpose of the present article is to study the ef-
fect of bremsstrahlung on the structure of KMg-
PO4·6H2O.
ISSN 1562-6016. ВАНТ. 2017. №6(112) 123
RESULTS AND DISCUSSION
The sample of struvite-K [KMgPO4·6H2O] (by size
1…10 m) was irradiated by bremsstrahlung with a
maximum energy of 13.5 MeV.
After activation of KMgPO4·6H2O the -spectrum of
the sample has been measured by Ge(Li)-detector (vol-
ume 50 cm
3
, energy resolution 3.2 keV in the area of
1332 keV). Isomorphic impurities of arsenic, strontium,
rare-earth elements and also impurities of a titan, iron,
uranium are contained in phosphates. Therefore, in the
radiation spectra, we can see these elements (Fig. 1). So-
dium is an isomorphic impurity of potassium. Therefore
sodium detected in spectra of struvite-K samples also.
500 1000 1500
10
100
1000
co
u
n
ts
energy, keV
22
Na 24
Na
24
Na
89
Zr
74
As
511 keV
47
Sc
Fig. 1. Energy spectrum of the sample of struvite-K
after an irradiation on the electronic accelerator
The phase analysis shows that initial and irradiated
samples of struvite-K contain the phase of KMg-
PO4·6H2O. Thus the initial sample has the widened lines
that are probably connected with a considerable quantity
of an isotropic amorphous phase [9, 10]. In the irradiat-
ed sample, the intensity increase of diffraction lines and
reduction of their semi-width in connection with an or-
dering of the crystal structure and quantity reduction of
the cryptocrystalline constituent is observed.
For measuring of the absorption spectra in the infra-
red range, the IR spectrophotometer IKS-29 (LOMO),
acting in the NSC "KIPT" of the NAS of Ukraine, was
used. The spectra were recorded in the spectral range
4000…400 cm
-1
(mean infrared region).
Powdered samples were examined after grinding
them in agate mortars to particle size ~1…10 μm. Sam-
ples were prepared in the form of transparently com-
pressed tablets from the mixture KBr-matrix, and the
test sample (in an amount of 1%, a sample of 100 mg).
Tablets had a squared shape and dimensions of
255 mm. The pressing pressure was 9200 kg/cm
2
. A
tablet of pure potassium bromide, pre-dried at 180°C for
10 hours, was placed in the instrument comparison
channel to eliminate the absorption bands of the matrix.
Powders were pounded and placed in a special closed
box. Pressing was carried out immediately before re-
cording the spectra. The grading was carried out from
the spectrum of polystyrene with known frequencies of
absorption maxima. The error was about 10
−5
cm
1
.
The microscopic sample was a cryptocrystalline ag-
gregate mass, which contained numerous inclusions of
several phases (crystalline and amorphous) (Fig. 2). The
anisotropic grains of the carbonate phase of magnesite
(MgCO3), which had a yellowish brown color and pos-
sessed strong pleochroism, can be identified. The size of
grains of magnesite from ~5 to 30 μm. The content of
magnesite carbonate phase was ~20 vol.%. Very small
transparent grains of the crystalline phase (possibly
magnesium oxide MgO) were also visible. The main
aggregate mass mainly is composed of KMgPO4∙6H2O
and partially from of the products of incomplete synthe-
sis, which are amorphous or cryptocrystalline phosphate
compounds.
Fig. 2. A microphotograph of the immersion prepara-
tion of the initial K-Mg phosphate sample in transmitted
light, without an analyzer
The infrared spectrum of the initial sample contains
a large number of intense bands with narrow maxima
and a number of fine peaks (Figs. 3 and 4, curve 1).
Identification of the bands is given in Table. The most
intense main bands in the spectrum refer to KMg-
PO4·6H2O: 570, 630, 765, 1050, 2350, 2910 and 3210
cm
-1
[11]. The bands 475, 880, the doublet from the
strong, sharp bands 1430 and 1470, 2350 and 3420 are
associated with the presence of the carbonate phase-
magnesite (MgCO3) [12]. The small peaks of 405 and
425 cm
-1
are most likely related to the MgO impurity.
A group of bands 950, 980 and 1095 cm
-1
, which
are associated with the vibrations of the P(OH)2 and PO4
groups, are located around the 1050 cm
-1
main band that
is attached to K-Mg phosphate (KMgPO46H2O) in the
structure of amorphous or cryptocrystalline phosphate
phases, which may be intermediate products of incom-
plete synthesis.
An additional confirmation of the fact that the sam-
ple consists of several phases is that the wide strong
band, which is associated with stretching vibrations of
H-O-H in the region of 3500…2800 cm
-1
, consists of
four peaks (2790, 2910, 3210 and 3420 cm
-1
). Each of
these peaks belongs to a certain type of water, which is
contained in various phases.
An additional confirmation of the fact that the sam-
ple consists of several phases is that the wide strong
band, which is associated with stretching vibrations of
H-O-H in the region of 3500…2800 cm
-1
, consists of
four peaks (2790, 2910, 3210 and 3420 cm
-1
). Each of
these peaks belongs to a certain type of water, which is
contained in various phases.
ISSN 1562-6016. ВАНТ. 2017. №6(112) 124
KMgPO4·
6H2O
KMgPO4·6H2O
irradiated
(D=1.35∙10
5
Gy)
Assignment of band
9-11
405 405
MgO
425 425
475 c 470 MgCO3
560 560 Bending vibrations M-O
(М-metal) in phosphate
structure
570 570
630 630
765 760 Bending vibrations
POH (out-of-plane)
880 c 870 MgCO3, out-of-plane
bending vibrations
of ion СО3
-
950 950 Bending vibrations
Р (ОН)2, stretching non-
central vibrations РО4
980 980
1050 1050
1095 1095
1430 c 1430 Vibrations С-О in
magnesite structure
MgCO3
1470 c 1470
1645 1650 Bending modes Н-О-Н
in magnesite structure
MgCO3
2350 2340 Stretching vibrations
Н-О-Н in structure
KMgPO4·6H2O
and semiamorphous
phosphate phase
2790 2790
2910 2910 Deformation modes Н-
О-Н in semiamorphous
phosphate phase
3210 3210 Stretching vibrations
Н-О-Н in structure
KMgPO4·6H2O
3420 c 3420 Stretching vibrations
Н-О-Н in magnesite
structure MgCO3
KMgPO4·6H2O;
c Carbonate phase (MgCO3).
Fig. 3. IR absorption spectra of K-Mg phosphate
in the frequency range 400…1300 cm
-1
.
Curve 1 initial sample; curve 2 sample
after irradiation to a dose of 1.3510
5
Gy
The sample microstructure changes significantly af-
ter irradiation to a dose of 1.3510
5
Gy. The sample con-
tains a smaller amount of isotropic amorphous phase
and is more crystalline. The boundaries between the
grains of individual phases become more distinct
(Fig. 5).
The form of the IR spectrum of the irradiated sample
reveals that irradiation does not lead to a change in the
basic phase composition of the substance since the
quantity and the positions of all bands in the spectrum
remains invariable (see Figs. 3 and 4, curve 2). Changes
in the spectrum are related only to the intensity of the
bands, which directly depends on the degree of crystal-
linity and orderliness of the structure of the substance,
as well depends on the quantity of individual phases of
which the sample consists.
Fig. 4. IR absorption spectra of K-Mg phosphate in the
frequency range 1200…4000 cm
-1
. Curve 1 initial
sample; curve 2 sample after irradiation to a dose
of 1.3510
5
Gy
Fig. 5. A microphotograph of the immersion prepara-
tion of the irradiated sample KMgPO46H2O
(D=1.3510
5
Gy) in transmitted light. Without analyzer
We can note the following changes in the shape and
intensity of the bands:
1. The intensity of all bands associated with the
bending oscillations of M-O (M-metal) in the phosphate
structure: 570, 630 and 760 cm
-1
is increasing. Strength-
ening of these bonds is caused by a structural ordering
of KMgPO4∙6H2O.
2. The shape of the main band in the region
1100…950 cm
-1
varies: the maxima are smoothed out and
the intensity of the bands of amorphous phosphate com-
ponents (950 and 980 cm
-1
) is decreased. The general
form of the given band becomes closer to that kind which
is characteristic of crystal phase KMgPO4∙6H2O [13].
ISSN 1562-6016. ВАНТ. 2017. №6(112) 125
3. The intensity of the bands which were associated
with the vibrations of C-O in the structure of magnesite
(MgCO3) (870, 1430, 1470 and 1650 cm
-1
) markedly
increases. We can conclude that the strengthening of
bonds in this structure occurs.
4. The intensity of the doublet 405 and 425 cm
-1
(MgO) increases. Perhaps, irradiation leads to an in-
crease in the size of MgO crystals or their quantity.
5. The shift of a whole series of bands in a spectrum,
which concern different phases, into the low frequen-
cy area of a spectrum (475→470, 765→760, 880→870,
2350→2340) is observed. This also confirms the fact
that the structure of all the phases which belong to com-
position of the sample becomes more perfect. Such a
shift indicates a strengthening of the bonds in the crystal
lattice [14].
6. It should be noted that the shape of the wide band
of H-O-H vibrations in the ~3500…2800 cm
-1
region
and the quantity of peaks remain practically unchanged.
Obviously, the radiation effect did not have a significant
effect on the structured or adsorbed water, which is con-
tained in the various phases that make up this sample.
CONCLUSIONS
1. The initial sample of K-Mg phosphate consists of
four main phases: Struvite-K (KMgPO4∙6H2O), semi-
amorphous phosphate phase, magnesite and single grains
of magnesium oxide (MgO) (no more than 5 vol. %).
2. The phase composition of the sample does not
change significantly after irradiation by bremsstrahlung
to a dose of 1.35∙10
5
Gy. Crystallization of amorphous
phosphate and the structural ordering of struvite-K and
magnesite occurs.
REFERENCES
1. V. Stefova, B. Soptrajanova, F. Spirovskia, et al.
Infrared and Raman spectra of magnesium ammoni-
um phosphate hexahydrate (struvite) and its isomor-
phous analogues // J. Mol. Struc. 2004, v. 689, p. 1-
10.
2. J.E. Huheey, E.A. Keiter, R.L. Keiter. Inorganic
Chemistry. New York: “Harper Collins”. 1993, 450 p.
3. R.A. Andrievski. Behavior of radiation defects in
nanomaterials // Rev. Adv. Mater. Sci. 2011, v. 29,
p. 54-67.
4. G. Schiwietz, K. Czerski, M. Roth, et al. Femto-
second Dynamics Snapshots of the Early Ion-
Track Evolution // Nucl. Instr. Meth. in Phys. Res. B.
2004, v. 225, p. 4-26:
5. J. Cazaux. The Role of the Auger Mechanizm in the
Radiation Damage of insulators // Microsc. Micro-
anal. Microstruct. 1995, v. 6, p. 345-362.
6. S. Moll, Y. Zhang, A. Debelle, et al. Damage pro-
cesses in MgO irradiated with medium-energy heavy
ions // Acta Mater. 2015, v. 88, p. 314-322.
7. P. Carrez, K. Demyk, H. Leroux, et al. Low-
temperature crystallization of MgSi03 glasses under
electron irradiation: Possible implications for silicate
dust evolution in circumstellar environments // Me-
teoritics and Planetary Science. 2002, v. 37,
p. 1615-1622.
8. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al.
Ion exchange in photoactivated inorganic matters / /
PAST. Ser. “NPI”. 2017, № 3(68), p. 40-44.
9. A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, et
al. Experimental study on cesium immobilization in
struvite structures // J. Hazard. Mater. 2016, v. 302,
p. 241-249.
10. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al.
Ion exchange in photoactivated inorganic matters / /
PAST. Ser. “NPI”. 2017, № 3(68), p. 40-44.
11. R.L. Frost, Y. Xi, S.J. Palmer, et al. Vibrational
spectroscopy of synthetic archerite (K, NH4)H2PO4:
and in comparison with the natural cave mineral // J.
Mol. Struc. 2012, v.1011, p. 128-133.
12. Van der Marel, H. Beutelspacher. Atlas of infrared
spectroscopy of clay minerals and their admixtures.
Amsterdam: “Elsevier”. 1976, 396 p.
13. V.B. Suryawanshi, R.T. Chaudhari. Synthesis and
Characterization of Struvite-K Crystals by Agar Gel
// J. Cryst. Proc. Tech. 2014, v. 4, p. 212-224.
14. A.S. Povarennyh. Bond of IR-spectra of minerals
with a crystal chemical factors // The Mineral. col-
lection of Lvov State University. 1970, iss. 1, № 24,
p. 12-29.
Article received 04.10.2017
ВЛИЯНИЕ ГАММА-ИЗЛУЧЕНИЯ НА СТРУКТУРУ СТРУВИТА-K
Е.П. Березняк, Н.П. Дикий, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, С.Ю. Саенко, В.Л. Уваров,
И.Д. Федорец, Ю.С. Ходырева
Анализируется влияние гамма-излучения на функциональные характеристики наноструктурного струви-
та-K. Были измерены спектры поглощения струвита-K в инфракрасной области. Описаны результаты мик-
роструктуры образцов после гамма облучения до дозы 1.3510
5
Град. Было показано, что после гамма-
облучения фазовый состав образца существенно не меняется, а происходит кристаллизация аморфного фос-
фата и структурное упорядочение струвита-К и магнезита.
ВПЛИВ ГАММА-ВИПРОМІНЮВАННЯ НА СТРУКТУРУ СТРУВІТУ-К
О.П. Березняк, М.П. Дикий, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, С.Ю. Саєнко, В.Л. Уваров,
І.Д. Федорець, Ю.С. Ходирєва
Аналізується вплив гамма-випромінювання на функціональні характеристики наноструктурного струві-
ту-K. Були виміряні спектри поглинання струвиту-K в інфрачервоній області. Описано результати
мікроструктури зразків після гамма-опромінення до дози 1.3510
5
Град. Було показано, що після гамма-
опромінення фазовий склад зразка істотно не змінюється, а відбувається кристалізація аморфного фосфату і
структурне впорядкування струвіту-К і магнезиту.
|