Photonuclear production of Yb-175
The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticl...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/136188 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136188 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1361882018-06-17T03:06:53Z Photonuclear production of Yb-175 Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Применение ядерных методов The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an Eₘₐₓ=13.5 MeV was carried out. The prevalence of ¹⁷⁶Yb isotopes is 12.6%. The reaction cross section of ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (T½=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of ¹⁷⁵Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb₂O₃ nanoparticles of the 180 nm. Використання фотоядерних нанотехнологій дозволяє отримати ізотоп ¹⁷⁵Yb з кращими характеристиками без вмісту домішок інших ізотопів. Проведено опромінення наночастинок Yb₂O₃ з масою природного ізотопного складу 123,5 мг у суміші з наночастинками кліноптілоліта за допомогою гальмівного випромінювання з Eₘₐₓ=13,5 МеВ. Поширеність ізотопів ¹⁷⁶Yb становить 12,6%. Перетин реакції ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (Т½=100,8 год.) має два максимуми при 12,5 і 16 МеВ близько 350 мбн. Після відділення частинок кліноптілоліта активність ¹⁷⁶Yb у них становила 3,2% від загальної активності зразка для розмірів наночастинок Yb₂O₃ 180 нм. Использование фотоядерных нанотехнологий позволяет получить изотоп ¹⁷⁵Yb с лучшими характеристиками без содержания примесей других изотопов. Проведено облучение наночастиц Yb₂O₃ с массой естественного изотопного состава 123,5 мг в смеси с наночастицами клиноптилолита с помощью тормозного излучения с Eₘₐₓ=13,5 МэВ. Распространенность изотопов ¹⁷⁶Yb составляет 12,6%. Сечение реакции ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (Т½=100,8 ч) имеет два максимума при 12,5 и 16 МэВ около 350 мбн. После отделения частиц клиноптилолита активность ¹⁷⁵Yb в них составляла 3,2% от общей активности образца для размеров наночастиц Yb₂O₃ 180 нм. 2017 Article Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 28.60.+s; 87.53.Jw http://dspace.nbuv.gov.ua/handle/123456789/136188 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ядерных методов Применение ядерных методов |
spellingShingle |
Применение ядерных методов Применение ядерных методов Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Photonuclear production of Yb-175 Вопросы атомной науки и техники |
description |
The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an Eₘₐₓ=13.5 MeV was carried out. The prevalence of ¹⁷⁶Yb isotopes is 12.6%. The reaction cross section of ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (T½=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of ¹⁷⁵Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb₂O₃ nanoparticles of the 180 nm. |
format |
Article |
author |
Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. |
author_facet |
Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. |
author_sort |
Dikiy, N.P. |
title |
Photonuclear production of Yb-175 |
title_short |
Photonuclear production of Yb-175 |
title_full |
Photonuclear production of Yb-175 |
title_fullStr |
Photonuclear production of Yb-175 |
title_full_unstemmed |
Photonuclear production of Yb-175 |
title_sort |
photonuclear production of yb-175 |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Применение ядерных методов |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136188 |
citation_txt |
Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dikiynp photonuclearproductionofyb175 AT dovbnyaan photonuclearproductionofyb175 AT krasnoselskynv photonuclearproductionofyb175 AT lyashkoyuv photonuclearproductionofyb175 AT medvedevaep photonuclearproductionofyb175 AT medvedevdv photonuclearproductionofyb175 AT uvarovvl photonuclearproductionofyb175 AT fedoretsid photonuclearproductionofyb175 |
first_indexed |
2025-07-10T00:49:23Z |
last_indexed |
2025-07-10T00:49:23Z |
_version_ |
1837218992353181696 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №6(112) 130
PHOTONUCLEAR PRODUCTION OF Yb-175
N.P. Dikiy
1
, A.N. Dovbnya
1
, N.V. Krasnoselsky
2
, Yu.V. Lyashko
1
,
E.P. Medvedeva
1
, D.V. Medvedev
1
, V.L. Uvarov
1
, I.D. Fedorets
3
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
S.P. Grigorev Institute of Medical Radiology, Kharkov, Ukraine;
3
V.N. Karazin Kharkov National University, Kharkov, Ukraine
E-mail: ndikiy@kipt.kharkov.ua
The use of photonuclear nanotechnology makes it possible to obtain the
175
Yb isotope with acceptable character-
istics without the content of impurities of other isotopes. Irradiation of Yb2O3 nanoparticles of a natural isotope
composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an
Emax=13.5 MeV was carried out. The prevalence of
176
Yb isotopes is 12.6%. The reaction cross section of
176
Yb(,n)
175
Yb (T1/2=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the
clinoptilolite particles, the activity of
175
Yb in the theirs was 3.2% of the total activity of the sample for the size of
Yb2O3 nanoparticles of the 180 nm.
PACS: 28.60.+s; 87.53.Jw
INTRODUCTION
Metastatic bone damage is the most common mani-
festation of progression in many cancers. The frequency
of bone metastases in breast cancer varies from 47 to
85% according to different authors, from 33 to 85% in
prostate cancer, from 28 to 60% in the thyroid gland,
from 33 to 40% in the kidneys, from 30 to 55%. In
many cases, pain syndrome is the dominant factor that
worsens the patient's quality of life. Sometimes this is
the only complaint of the patient [1].
Isotopes
153
Sm and
177
Lu are successfully used for
carrying out of palliative therapy of patients with metas-
tasises in a bone and a painful syndrome. These isotopes
are produced in reactors upon irradiation of
152
Sm and
176
Lu isotopes. Despite the large thermal neutron cap-
ture cross sections (206 bn for
152
Sm and 2097 bn for
176
Lu), each isotope
153
Sm and
177
Lu account for a sig-
nificant number of impurity atoms that affect the kinet-
ics of their uptake by a tumor. Also in the production of
177
Lu, an impurity of
177m
Lu forms on the reactors. More
preferably, the
176
Yb(n,)
177
Yb
177
Lu reaction is, but
it has a low cross section (about 1 bn). At present, no
producer of high specific activity
177
Lu exists in Europe
and clinics are dependent on the supplies from the
U.S.A., Canada and Russia. Unfortunately, the quality
of
177
Lu preparations decreases with the time needed for
delivery and the price increases [1].
More acceptable nuclear characteristics of
175
Yb (Ta-
ble) allow reducing the influence of -particles on the
bone marrow. Therefore, intensive research is being con-
ducted on the production of this isotope [2 - 5]. The use
of photonuclear nanotechnology makes it possible to ob-
tain the
175
Yb isotope with better characteristics (Table)
without the content of impurities of other isotopes.
With used of reactors highly enriched
174
Yb targets
are needed for the production
175
Yb in order to obtain
high radio-nuclidic purity. If natural ytterbium is used
as target,
169
Yb and
177
Yb will also be produced. The
cross-section of
168
Yb(n,γ)
169
Yb is very large
(2300 barns) but the percent abundance is small
(0.13%); and being a long-lived isotope the amount
formed will be relatively low at short irradiation times.
169
Yb (T1/2 = 32.018 days) decays by electron capture
process (100% K electron capture) followed by the
emission of Auger electrons of low yield and the princi-
ple γ photons are of reasonably low energy (177 keV
(22.5%), 197 keV (35.9%)). Though considered as a ra-
dionuclidic impurity, the presence of small amounts of
169
Yb will not cause any serious problem in the in vivo
application of
175
Yb.
176
Yb present in the natural target
(natural abundance 12.62%) will get activated to
177
Yb
which decays with a T1/2 of 1.5 hours to
177
Lu. The specifi
c activity of
175
Yb produced by direct (n,γ) reaction is
adequate for therapeutic applications such as bone pain
palliation and small joint synovectomy, however, is not
adequate for radiolabeling peptides and antibodies [2].
Decay Data for the
153
Sm,
177
Lu and
175,169
Yb
Isotope
Decay
period,
hours
Energy -particles
(intensity), keV
(%)
Energy -
radiation, keV,
(intensity, %)
153
Sm 46.44 640 (32); 710 (49);
810 (19)
103.2 (29.2)
177
Lu 160.8 177 (11.6);
385.3 (9); 498.3
(79.4)
55.8 (2.77);
112.9 (6.17);
208.4 (10.36)
175
Yb 100.8 73.8 (20.4);
356.3 (6.7);
470.1 (72.9)
54.1 (3.74);
113.8 (3.87);
282.5 (6.13);
396.3 (13.2)
169
Yb
768.4 50.4 (34.3); 71.1
(6.2); 99.7 (5.5);
117.8 (10.9);
120.4 (5.2);
138.6 (12.9);
187.8 (2.1)
63.1 (43.6);
109.8 (17.4);
130.5 (11.4);
177.2 (22.3);
197.8 (35.9);
307.7 (10)
Depending on the production route, either no-
carrier-added (nca) or carrier-added (ca) radionuclides
are obtained. High specific activity is necessary for sys-
temic radionuclide therapy [6], especially when using
peptides with pharmacological side effects [7].
The essential issue at the palliative treatment of
disseminated bone metastases is action of radiation of
isotopes by a marrow. Therefore, for therapy of osteal
metastases the best properties possess of
169
Er isotopes.
However, absence of the gamma radiation impedes di-
agnostic of deposition of
169
Er in a tumor and in normal
tissue during treatment.
ISSN 1562-6016. ВАНТ. 2017. №6(112) 131
The aim of this paper is realize of technology of car-
rier free
175
Yb by means of photonuclear reaction. The
characteristics of
175
Yb is practically coincide with pa-
rameters of
153
Sm and
177
Lu (Table).
RESULTS AND DISCUSSION
Irradiation of Yb2O3 nanoparticles of a natural isotope
composition weight`s 123.5 mg in a mixture with clinop-
tilolite nanoparticles (265.4 mg) by bremsstrahlung with
an Emax=13.5 MeV was carried out. The prevalence of
176
Yb isotope is 12.6%. The reaction cross section of
176
Yb(,n)
175
Yb (T1/2=100.8 hours) have two maximums
at 12.5 and 16 MeV about 350 mbn (Fig. 1). Also, nucle-
ar reactions take place on the isotopes
170,168
Yb during the
irradiation by bremsstrahlung of ytterbium with natural
isotopic composition. The prevalence of
170,168
Yb isotopes
are 3.14% and 0.135%, respectively. The reaction cross
section of
170
Yb(,n)
169
Yb (T1/2=32.018 days) also has
two maximums at 12.5 and 16 MeV about 350 mbn (Fig.
2). Therefore, the
169
Yb impurity, when using ytterbium
with a natural isotopic composition, may amount to about
3% of the activity. And as mentioned above, the pres-
ence of small amounts of
169
Yb will not cause any seri-
ous problem in the “in vivo” application of
175
Yb. The
use of the enriched
176
Yb allows a significant reduction
in the
169
Yb impurity.
10 15 20
0
100
200
300
400
c
ro
s
s
s
e
c
ti
o
n
,
m
b
n
E
, MeV
176
Yb(n)
175
Yb
Fig. 1. Cross section of reaction
176
Yb(,n)
175
Yb [8]
Also, nuclear reactions take place on the isotopes
170,168
Yb during of the irradiation by bremsstrahlung of
ytterbium of a natural isotopic composition. The preva-
lence of
170,168
Yb isotopes are 3.14% and 0.135%, re-
spectively. The reaction cross section of
170
Yb(,n)
169
Yb
(T1/2=32.018 days) also has two maximums at 12.5 and
16 MeV about 350 mbn (Fig. 2). Therefore, the
169
Yb
impurity, when using ytterbium with a natural isotopic
composition, may amount to about 3% of the activity.
Using enriched
176
Yb allows to significantly reduce the
impurity of
169
Yb.
Procedure of deriving Yb2O3 in nanosize state was
the following: the grinding of ytterbium oxide in an
agate mortar for a long time, the precipitation of powder
in the distilled water. The velocity of subsidence of of
ytterbium oxide particles was being determined out of
the equation:
9
)(2 2rg
V o ,
where , o density of ytterbium oxide particles and
water, accordingly; g acceleration of free falling; r
particle radius; dynamic viscosity of water. The
powder of yttrium oxide was placed in a cylinder with
distilled water 12 cm high. A solution of ytterbium ox-
ide particles was then precipitated for 735 hours. The
supernatant of a solution of ytterbium oxide was then
evaporated. This allowed obtaining nanoparticles of
ytterbium oxide with an average size of 180 nm.
10 15 20
0
100
200
300
400
c
ro
s
s
s
e
c
ti
o
n
,
m
b
n
E
, MeV
170
Yb(n)
169
Yb
Fig. 2. Cross section of reaction
170
Yb(,n)
169
Yb [8]
1000 2000 3000 4000 5000 6000
10
1
10
2
10
3
10
4
169
Yb 198 keV
169
Yb 177,2 keV
175
Yb 113,8 keV
43
K 617,5 keV
175
Yb 282,5 keV
175
Yb 396,3 keV
24
Na 1369 keV
c
o
u
n
ts
number channel
Yb
2
O
3
+clinoptilolite
511 keV
56
Mn 846,8 keV
Fig. 3. The spectrum of Yb2O3+clinoptilolite after
irradiated bremsstrahlung with Emax = 13.5 MeV
The particles of clinoptilolite were obtained by the
following method: grinding in an agate mortar, deposi-
tion in a cylinder with distilled water 10 cm high for
1 hour, reprecipitation of the supernatant in the cylinder
(H = 10 cm) for 4.5 hours. After decantation, the precip-
itate was evaporated on a water bath. This made it pos-
sible to obtain clinoptilolite particles 2.5 μm in size.
After activation of samples and standards the activi-
ty of radioisotopes obtained in reactions
176
Yb(,n)
175
Yb
has been measured by Ge(Li)-detector with volume
50 cm
3
and with energy resolution 3.2 keV in the area of
1332 keV. In Fig. 3 shows the spectrum of a mixture of
ytterbium nanoparticles of natural isotopic composition
(180 nm) and of clinoptilolite particles (2.5 μm) (see
Fig. 3) after irradiation with bremsstrahlung.
The estimate of the average energy of neutrons for a
gamma radiation with the energy of 13.5 MeV of reac-
tion
176
Yb(,n)
175
Yb is equal 980 keV [9, 10]. Therefore,
the average energy of recoil nuclei of
175
Yb is equal
5.6 keV. For this energy recoil nuclei,
175
Yb can leave
nanoparticles of Yb2O3 from a depth of 3.8 nm (Fig. 4).
The procedure for the isolation of the particles cli-
noptilolite was the following: a mixture of ytterbium
nanoparticles and clinoptilolite particles was mixed in
of magnetic stirrer; the precipitation of powder in a cyl-
inder with the distilled water 12 cm high for 4.5 hours;
drying the sediment in a water bath. This procedure was
carried out twice. The spectrum of the precipitate of
clinoptilolite particles with implanted atoms
169,175
Yb is
ISSN 1562-6016. ВАНТ. 2017. №6(112) 132
shown in Fig. 5. The yield of
175
Yb was 1.7% of the
total activity of the mixture of ytterbium nanoparticles
and clinoptilolite particles. The given value of an yield
practically coincides with settlement value of 1.53%.
2 4 6 8 10
2
3
4
5
ra
n
g
e
o
f
1
7
5
Y
b
i
n
y
tt
e
rb
iu
m
o
x
id
e
,
n
m
ion energy, keV
Fig. 4.
175
Yb ranges in ytterbium oxide
1000 2000 3000 4000 5000 6000
10
100
169
Yb 198 keV
511 keV
175
Yb 396,3 keV
24
Na 1369 keV
175
Yb 282,5 keV
175
Yb 113,8 keV
number channel
c
o
u
n
ts
extract
Fig. 5. The spectrum of separated clinoptilolite particles
after irradiated bremsstrahlung with Emax=13.5 MeV
On the linear accelerator of electrons of NSC KIPT
with an energy of 36 MeV and a current 260 А it is
possible to produce 1.2 Ci
175
Yb during the day with
using of ytterbium (30 g) with a natural isotopic compo-
sition [4]. In the targets of similar masses, but enriched
in
176
Yb, the daily yield can attain 8 Ci for
175
Yb.
CONCLUSIONS
The possibility of photonuclear production of
175
Yb
medical radioisotopes produced by reaction
176
Yb(,n)
175
Yb
(T1/2=100.8 hours) was investigated. As a result there is
preparation with high specific activity of
175
Yb which is
necessary for systemic radionuclide therapy, especially
when using peptides with pharmacological side effects.
In NSC KIPT on the linear accelerator of electrons
with E=36 MeV and a current 260 А it is possible to
produce 1.2 Ci
175
Yb during the day by using of ytterbi-
um (30 g) of natural isotope composition.
REFERENCES
1. A.F. Tsyb, B.Y. Drozdovskyi, V.V. Krylov, et al.
Palliative therapy with samarimoxabibor
153
Sm with
metastatic bone lesions // Med. Radiol. Radiat. Safe-
ty. 2002, v. 49, p. 61-69.
2. L. Nassan, B. Achkar, T. Yassine. Post-recoil ther-
mal annealing study of
177
Lu,
169
Yb,
175
Yb,
166
Ho
and
153
Sm in different organometallic compounds //
Nukleonika. 2011, v. 56(2), p. 185-190 (in Russian).
3. S. Chakraborty, P.R. Unni, M. Venkatesh,
M.R.A. Pillai. Feasibility study for production of
175
Yb: a promising therapeutic radionuclide // Appl.
Radiat. Isot. 2002, v. 57, p. 295-301.
4. M.U. Khandaker, H. Haba, N. Otuka, A.R. Usman.
Investigation of (d,x) nuclear reactions on natural yt-
terbium up to 24 MeV // Nucl. Instr. Meth. Phys.
Res. 2014, v. B335, p. 8-18.
5. N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselskiy, et
al. Photonuclear method of production of free
153
Sm
by use of nanoparticles of samarium oxide and cli-
notilolite / / Problems of Atomic Science and Tech-
nology. Series “NPI”. 2016, № 3(66), p. 162-165.
6. M.R.A. Pillai. Metallic radionuclides and therapeu-
tic radiopharmaceuticals. Warszawa: “Institute of
nuclear chemistry and technology”, 2010, 252 p.
7. F. Rosch F.E. Forssell-Aronsson. Radio-lanthanides
in nuclear medicine // Metal Ions and Their Com-
plexes in Medication. New York, NY: Marcel Dek-
ker, Inc. 2004, p. 77-108.
8. A.M. Goryachev, G.N. Zalesnyy. Photoneutron
cross sections for Yb-170, 171, 172, 173, 174 and
176 in the region of giant resonance // Vopr. Teor.
Yad. Fiz. 1976, v. 5, p. 42-48 (in Russian).
9. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov.
Photonuclear reactions. Modern status experi-
menttal data. Moskow: “University book”, 2008,
304 p.
10. B.S. Ishkhanov, I.M. Kapitonov. The interaction of
electromagnetic radiation with atomic nuclei. Mos-
kow: “MGU”, 1979, 216 p.
Article received 04.10.2017
ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА Yb-175
Н.П. Дикий, A.Н. Довбня, Н.В. Красносельский, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец
Использование фотоядерных нанотехнологий позволяет получить изотоп 175Yb с лучшими характеристиками без со-
держания примесей других изотопов. Проведено облучение наночастиц Yb2О3 с массой естественного изотопного соста-
ва 123,5 мг в смеси с наночастицами клиноптилолита с помощью тормозного излучения с Emax=13,5 МэВ. Распростра-
ненность изотопов 176Yb составляет 12,6%. Сечение реакции 176Yb(,n)175Yb (Т1/2=100,8 ч) имеет два максимума при 12,5
и 16 МэВ около 350 мбн. После отделения частиц клиноптилолита активность 175Yb в них составляла 3,2% от общей
активности образца для размеров наночастиц Yb2О3 180 нм.
ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА Yb-175
М.П. Дикий, A.М. Довбня, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров, І.Д. Федорець
Використання фотоядерних нанотехнологій дозволяє отримати ізотоп 175Yb з кращими характеристиками без вмісту
домішок інших ізотопів. Проведено опромінення наночастинок Yb2О3 з масою природного ізотопного складу 123,5 мг у
суміші з наночастинками кліноптілоліта за допомогою гальмівного випромінювання з Emax=13,5 МеВ. Поширеність ізо-
топів 176Yb становить 12,6%. Перетин реакції 176Yb(,n)175Yb (Т1/2=100,8 год.) має два максимуми при 12,5 і 16 МеВ
близько 350 мбн. Після відділення частинок кліноптілоліта активність 176Yb у них становила 3,2% від загальної актив-
ності зразка для розмірів наночастинок Yb2О3 180 нм.
https://scholar.google.com.ua/citations?user=KSed3q8AAAAJ&hl=en&oi=sra
https://inis.iaea.org/search/search.aspx?orig_q=RN:46129059
https://inis.iaea.org/search/search.aspx?orig_q=RN:46129059
|