Photonuclear production of Yb-175

The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Dikiy, N.P., Dovbnya, A.N., Krasnoselsky, N.V., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Uvarov, V.L., Fedorets, I.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136188
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136188
record_format dspace
spelling irk-123456789-1361882018-06-17T03:06:53Z Photonuclear production of Yb-175 Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Применение ядерных методов The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an Eₘₐₓ=13.5 MeV was carried out. The prevalence of ¹⁷⁶Yb isotopes is 12.6%. The reaction cross section of ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (T½=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of ¹⁷⁵Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb₂O₃ nanoparticles of the 180 nm. Використання фотоядерних нанотехнологій дозволяє отримати ізотоп ¹⁷⁵Yb з кращими характеристиками без вмісту домішок інших ізотопів. Проведено опромінення наночастинок Yb₂O₃ з масою природного ізотопного складу 123,5 мг у суміші з наночастинками кліноптілоліта за допомогою гальмівного випромінювання з Eₘₐₓ=13,5 МеВ. Поширеність ізотопів ¹⁷⁶Yb становить 12,6%. Перетин реакції ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (Т½=100,8 год.) має два максимуми при 12,5 і 16 МеВ близько 350 мбн. Після відділення частинок кліноптілоліта активність ¹⁷⁶Yb у них становила 3,2% від загальної активності зразка для розмірів наночастинок Yb₂O₃ 180 нм. Использование фотоядерных нанотехнологий позволяет получить изотоп ¹⁷⁵Yb с лучшими характеристиками без содержания примесей других изотопов. Проведено облучение наночастиц Yb₂O₃ с массой естественного изотопного состава 123,5 мг в смеси с наночастицами клиноптилолита с помощью тормозного излучения с Eₘₐₓ=13,5 МэВ. Распространенность изотопов ¹⁷⁶Yb составляет 12,6%. Сечение реакции ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (Т½=100,8 ч) имеет два максимума при 12,5 и 16 МэВ около 350 мбн. После отделения частиц клиноптилолита активность ¹⁷⁵Yb в них составляла 3,2% от общей активности образца для размеров наночастиц Yb₂O₃ 180 нм. 2017 Article Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 28.60.+s; 87.53.Jw http://dspace.nbuv.gov.ua/handle/123456789/136188 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
Photonuclear production of Yb-175
Вопросы атомной науки и техники
description The use of photonuclear nanotechnology makes it possible to obtain the ¹⁷⁵Yb isotope with acceptable characteristics without the content of impurities of other isotopes. Irradiation of Yb₂O₃ nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an Eₘₐₓ=13.5 MeV was carried out. The prevalence of ¹⁷⁶Yb isotopes is 12.6%. The reaction cross section of ¹⁷⁶Yb(γ,n)¹⁷⁵Yb (T½=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of ¹⁷⁵Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb₂O₃ nanoparticles of the 180 nm.
format Article
author Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_facet Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_sort Dikiy, N.P.
title Photonuclear production of Yb-175
title_short Photonuclear production of Yb-175
title_full Photonuclear production of Yb-175
title_fullStr Photonuclear production of Yb-175
title_full_unstemmed Photonuclear production of Yb-175
title_sort photonuclear production of yb-175
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Применение ядерных методов
url http://dspace.nbuv.gov.ua/handle/123456789/136188
citation_txt Photonuclear production of Yb-175 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 6. — С. 130-132. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp photonuclearproductionofyb175
AT dovbnyaan photonuclearproductionofyb175
AT krasnoselskynv photonuclearproductionofyb175
AT lyashkoyuv photonuclearproductionofyb175
AT medvedevaep photonuclearproductionofyb175
AT medvedevdv photonuclearproductionofyb175
AT uvarovvl photonuclearproductionofyb175
AT fedoretsid photonuclearproductionofyb175
first_indexed 2025-07-10T00:49:23Z
last_indexed 2025-07-10T00:49:23Z
_version_ 1837218992353181696
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 130 PHOTONUCLEAR PRODUCTION OF Yb-175 N.P. Dikiy 1 , A.N. Dovbnya 1 , N.V. Krasnoselsky 2 , Yu.V. Lyashko 1 , E.P. Medvedeva 1 , D.V. Medvedev 1 , V.L. Uvarov 1 , I.D. Fedorets 3 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2 S.P. Grigorev Institute of Medical Radiology, Kharkov, Ukraine; 3 V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua The use of photonuclear nanotechnology makes it possible to obtain the 175 Yb isotope with acceptable character- istics without the content of impurities of other isotopes. Irradiation of Yb2O3 nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinoptilolite nanoparticles by bremsstrahlung with an Emax=13.5 MeV was carried out. The prevalence of 176 Yb isotopes is 12.6%. The reaction cross section of 176 Yb(,n) 175 Yb (T1/2=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn. After separation of the clinoptilolite particles, the activity of 175 Yb in the theirs was 3.2% of the total activity of the sample for the size of Yb2O3 nanoparticles of the 180 nm. PACS: 28.60.+s; 87.53.Jw INTRODUCTION Metastatic bone damage is the most common mani- festation of progression in many cancers. The frequency of bone metastases in breast cancer varies from 47 to 85% according to different authors, from 33 to 85% in prostate cancer, from 28 to 60% in the thyroid gland, from 33 to 40% in the kidneys, from 30 to 55%. In many cases, pain syndrome is the dominant factor that worsens the patient's quality of life. Sometimes this is the only complaint of the patient [1]. Isotopes 153 Sm and 177 Lu are successfully used for carrying out of palliative therapy of patients with metas- tasises in a bone and a painful syndrome. These isotopes are produced in reactors upon irradiation of 152 Sm and 176 Lu isotopes. Despite the large thermal neutron cap- ture cross sections (206 bn for 152 Sm and 2097 bn for 176 Lu), each isotope 153 Sm and 177 Lu account for a sig- nificant number of impurity atoms that affect the kinet- ics of their uptake by a tumor. Also in the production of 177 Lu, an impurity of 177m Lu forms on the reactors. More preferably, the 176 Yb(n,) 177 Yb  177 Lu reaction is, but it has a low cross section (about 1 bn). At present, no producer of high specific activity 177 Lu exists in Europe and clinics are dependent on the supplies from the U.S.A., Canada and Russia. Unfortunately, the quality of 177 Lu preparations decreases with the time needed for delivery and the price increases [1]. More acceptable nuclear characteristics of 175 Yb (Ta- ble) allow reducing the influence of -particles on the bone marrow. Therefore, intensive research is being con- ducted on the production of this isotope [2 - 5]. The use of photonuclear nanotechnology makes it possible to ob- tain the 175 Yb isotope with better characteristics (Table) without the content of impurities of other isotopes. With used of reactors highly enriched 174 Yb targets are needed for the production 175 Yb in order to obtain high radio-nuclidic purity. If natural ytterbium is used as target, 169 Yb and 177 Yb will also be produced. The cross-section of 168 Yb(n,γ) 169 Yb is very large (2300 barns) but the percent abundance is small (0.13%); and being a long-lived isotope the amount formed will be relatively low at short irradiation times. 169 Yb (T1/2 = 32.018 days) decays by electron capture process (100% K electron capture) followed by the emission of Auger electrons of low yield and the princi- ple γ photons are of reasonably low energy (177 keV (22.5%), 197 keV (35.9%)). Though considered as a ra- dionuclidic impurity, the presence of small amounts of 169 Yb will not cause any serious problem in the in vivo application of 175 Yb. 176 Yb present in the natural target (natural abundance 12.62%) will get activated to 177 Yb which decays with a T1/2 of 1.5 hours to 177 Lu. The specifi c activity of 175 Yb produced by direct (n,γ) reaction is adequate for therapeutic applications such as bone pain palliation and small joint synovectomy, however, is not adequate for radiolabeling peptides and antibodies [2]. Decay Data for the 153 Sm, 177 Lu and 175,169 Yb Isotope Decay period, hours Energy -particles (intensity), keV (%) Energy - radiation, keV, (intensity, %) 153 Sm 46.44 640 (32); 710 (49); 810 (19) 103.2 (29.2) 177 Lu 160.8 177 (11.6); 385.3 (9); 498.3 (79.4) 55.8 (2.77); 112.9 (6.17); 208.4 (10.36) 175 Yb 100.8 73.8 (20.4); 356.3 (6.7); 470.1 (72.9) 54.1 (3.74); 113.8 (3.87); 282.5 (6.13); 396.3 (13.2) 169 Yb 768.4 50.4 (34.3); 71.1 (6.2); 99.7 (5.5); 117.8 (10.9); 120.4 (5.2); 138.6 (12.9); 187.8 (2.1) 63.1 (43.6); 109.8 (17.4); 130.5 (11.4); 177.2 (22.3); 197.8 (35.9); 307.7 (10) Depending on the production route, either no- carrier-added (nca) or carrier-added (ca) radionuclides are obtained. High specific activity is necessary for sys- temic radionuclide therapy [6], especially when using peptides with pharmacological side effects [7]. The essential issue at the palliative treatment of disseminated bone metastases is action of radiation of isotopes by a marrow. Therefore, for therapy of osteal metastases the best properties possess of 169 Er isotopes. However, absence of the gamma radiation impedes di- agnostic of deposition of 169 Er in a tumor and in normal tissue during treatment. ISSN 1562-6016. ВАНТ. 2017. №6(112) 131 The aim of this paper is realize of technology of car- rier free 175 Yb by means of photonuclear reaction. The characteristics of 175 Yb is practically coincide with pa- rameters of 153 Sm and 177 Lu (Table). RESULTS AND DISCUSSION Irradiation of Yb2O3 nanoparticles of a natural isotope composition weight`s 123.5 mg in a mixture with clinop- tilolite nanoparticles (265.4 mg) by bremsstrahlung with an Emax=13.5 MeV was carried out. The prevalence of 176 Yb isotope is 12.6%. The reaction cross section of 176 Yb(,n) 175 Yb (T1/2=100.8 hours) have two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 1). Also, nucle- ar reactions take place on the isotopes 170,168 Yb during the irradiation by bremsstrahlung of ytterbium with natural isotopic composition. The prevalence of 170,168 Yb isotopes are 3.14% and 0.135%, respectively. The reaction cross section of 170 Yb(,n) 169 Yb (T1/2=32.018 days) also has two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 2). Therefore, the 169 Yb impurity, when using ytterbium with a natural isotopic composition, may amount to about 3% of the activity. And as mentioned above, the pres- ence of small amounts of 169 Yb will not cause any seri- ous problem in the “in vivo” application of 175 Yb. The use of the enriched 176 Yb allows a significant reduction in the 169 Yb impurity. 10 15 20 0 100 200 300 400 c ro s s s e c ti o n , m b n E  , MeV 176 Yb(n) 175 Yb Fig. 1. Cross section of reaction 176 Yb(,n) 175 Yb [8] Also, nuclear reactions take place on the isotopes 170,168 Yb during of the irradiation by bremsstrahlung of ytterbium of a natural isotopic composition. The preva- lence of 170,168 Yb isotopes are 3.14% and 0.135%, re- spectively. The reaction cross section of 170 Yb(,n) 169 Yb (T1/2=32.018 days) also has two maximums at 12.5 and 16 MeV about 350 mbn (Fig. 2). Therefore, the 169 Yb impurity, when using ytterbium with a natural isotopic composition, may amount to about 3% of the activity. Using enriched 176 Yb allows to significantly reduce the impurity of 169 Yb. Procedure of deriving Yb2O3 in nanosize state was the following: the grinding of ytterbium oxide in an agate mortar for a long time, the precipitation of powder in the distilled water. The velocity of subsidence of of ytterbium oxide particles was being determined out of the equation:   9 )(2 2rg V o , where , o  density of ytterbium oxide particles and water, accordingly; g  acceleration of free falling; r  particle radius;   dynamic viscosity of water. The powder of yttrium oxide was placed in a cylinder with distilled water 12 cm high. A solution of ytterbium ox- ide particles was then precipitated for 735 hours. The supernatant of a solution of ytterbium oxide was then evaporated. This allowed obtaining nanoparticles of ytterbium oxide with an average size of 180 nm. 10 15 20 0 100 200 300 400 c ro s s s e c ti o n , m b n E  , MeV 170 Yb(n) 169 Yb Fig. 2. Cross section of reaction 170 Yb(,n) 169 Yb [8] 1000 2000 3000 4000 5000 6000 10 1 10 2 10 3 10 4 169 Yb 198 keV 169 Yb 177,2 keV 175 Yb 113,8 keV 43 K 617,5 keV 175 Yb 282,5 keV 175 Yb 396,3 keV 24 Na 1369 keV c o u n ts number channel Yb 2 O 3 +clinoptilolite 511 keV 56 Mn 846,8 keV Fig. 3. The spectrum of Yb2O3+clinoptilolite after irradiated bremsstrahlung with Emax = 13.5 MeV The particles of clinoptilolite were obtained by the following method: grinding in an agate mortar, deposi- tion in a cylinder with distilled water 10 cm high for 1 hour, reprecipitation of the supernatant in the cylinder (H = 10 cm) for 4.5 hours. After decantation, the precip- itate was evaporated on a water bath. This made it pos- sible to obtain clinoptilolite particles 2.5 μm in size. After activation of samples and standards the activi- ty of radioisotopes obtained in reactions 176 Yb(,n) 175 Yb has been measured by Ge(Li)-detector with volume 50 cm 3 and with energy resolution 3.2 keV in the area of 1332 keV. In Fig. 3 shows the spectrum of a mixture of ytterbium nanoparticles of natural isotopic composition (180 nm) and of clinoptilolite particles (2.5 μm) (see Fig. 3) after irradiation with bremsstrahlung. The estimate of the average energy of neutrons for a gamma radiation with the energy of 13.5 MeV of reac- tion 176 Yb(,n) 175 Yb is equal 980 keV [9, 10]. Therefore, the average energy of recoil nuclei of 175 Yb is equal 5.6 keV. For this energy recoil nuclei, 175 Yb can leave nanoparticles of Yb2O3 from a depth of 3.8 nm (Fig. 4). The procedure for the isolation of the particles cli- noptilolite was the following: a mixture of ytterbium nanoparticles and clinoptilolite particles was mixed in of magnetic stirrer; the precipitation of powder in a cyl- inder with the distilled water 12 cm high for 4.5 hours; drying the sediment in a water bath. This procedure was carried out twice. The spectrum of the precipitate of clinoptilolite particles with implanted atoms 169,175 Yb is ISSN 1562-6016. ВАНТ. 2017. №6(112) 132 shown in Fig. 5. The yield of 175 Yb was 1.7% of the total activity of the mixture of ytterbium nanoparticles and clinoptilolite particles. The given value of an yield practically coincides with settlement value of 1.53%. 2 4 6 8 10 2 3 4 5 ra n g e o f 1 7 5 Y b i n y tt e rb iu m o x id e , n m ion energy, keV Fig. 4. 175 Yb ranges in ytterbium oxide 1000 2000 3000 4000 5000 6000 10 100 169 Yb 198 keV 511 keV 175 Yb 396,3 keV 24 Na 1369 keV 175 Yb 282,5 keV 175 Yb 113,8 keV number channel c o u n ts extract Fig. 5. The spectrum of separated clinoptilolite particles after irradiated bremsstrahlung with Emax=13.5 MeV On the linear accelerator of electrons of NSC KIPT with an energy of 36 MeV and a current 260 А it is possible to produce 1.2 Ci 175 Yb during the day with using of ytterbium (30 g) with a natural isotopic compo- sition [4]. In the targets of similar masses, but enriched in 176 Yb, the daily yield can attain 8 Ci for 175 Yb. CONCLUSIONS The possibility of photonuclear production of 175 Yb medical radioisotopes produced by reaction 176 Yb(,n) 175 Yb (T1/2=100.8 hours) was investigated. As a result there is preparation with high specific activity of 175 Yb which is necessary for systemic radionuclide therapy, especially when using peptides with pharmacological side effects. In NSC KIPT on the linear accelerator of electrons with E=36 MeV and a current 260 А it is possible to produce 1.2 Ci 175 Yb during the day by using of ytterbi- um (30 g) of natural isotope composition. REFERENCES 1. A.F. Tsyb, B.Y. Drozdovskyi, V.V. Krylov, et al. Palliative therapy with samarimoxabibor 153 Sm with metastatic bone lesions // Med. Radiol. Radiat. Safe- ty. 2002, v. 49, p. 61-69. 2. L. Nassan, B. Achkar, T. Yassine. Post-recoil ther- mal annealing study of 177 Lu, 169 Yb, 175 Yb, 166 Ho and 153 Sm in different organometallic compounds // Nukleonika. 2011, v. 56(2), p. 185-190 (in Russian). 3. S. Chakraborty, P.R. Unni, M. Venkatesh, M.R.A. Pillai. Feasibility study for production of 175 Yb: a promising therapeutic radionuclide // Appl. Radiat. Isot. 2002, v. 57, p. 295-301. 4. M.U. Khandaker, H. Haba, N. Otuka, A.R. Usman. Investigation of (d,x) nuclear reactions on natural yt- terbium up to 24 MeV // Nucl. Instr. Meth. Phys. Res. 2014, v. B335, p. 8-18. 5. N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselskiy, et al. Photonuclear method of production of free 153 Sm by use of nanoparticles of samarium oxide and cli- notilolite / / Problems of Atomic Science and Tech- nology. Series “NPI”. 2016, № 3(66), p. 162-165. 6. M.R.A. Pillai. Metallic radionuclides and therapeu- tic radiopharmaceuticals. Warszawa: “Institute of nuclear chemistry and technology”, 2010, 252 p. 7. F. Rosch F.E. Forssell-Aronsson. Radio-lanthanides in nuclear medicine // Metal Ions and Their Com- plexes in Medication. New York, NY: Marcel Dek- ker, Inc. 2004, p. 77-108. 8. A.M. Goryachev, G.N. Zalesnyy. Photoneutron cross sections for Yb-170, 171, 172, 173, 174 and 176 in the region of giant resonance // Vopr. Teor. Yad. Fiz. 1976, v. 5, p. 42-48 (in Russian). 9. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. Photonuclear reactions. Modern status experi- menttal data. Moskow: “University book”, 2008, 304 p. 10. B.S. Ishkhanov, I.M. Kapitonov. The interaction of electromagnetic radiation with atomic nuclei. Mos- kow: “MGU”, 1979, 216 p. Article received 04.10.2017 ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА Yb-175 Н.П. Дикий, A.Н. Довбня, Н.В. Красносельский, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец Использование фотоядерных нанотехнологий позволяет получить изотоп 175Yb с лучшими характеристиками без со- держания примесей других изотопов. Проведено облучение наночастиц Yb2О3 с массой естественного изотопного соста- ва 123,5 мг в смеси с наночастицами клиноптилолита с помощью тормозного излучения с Emax=13,5 МэВ. Распростра- ненность изотопов 176Yb составляет 12,6%. Сечение реакции 176Yb(,n)175Yb (Т1/2=100,8 ч) имеет два максимума при 12,5 и 16 МэВ около 350 мбн. После отделения частиц клиноптилолита активность 175Yb в них составляла 3,2% от общей активности образца для размеров наночастиц Yb2О3 180 нм. ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА Yb-175 М.П. Дикий, A.М. Довбня, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров, І.Д. Федорець Використання фотоядерних нанотехнологій дозволяє отримати ізотоп 175Yb з кращими характеристиками без вмісту домішок інших ізотопів. Проведено опромінення наночастинок Yb2О3 з масою природного ізотопного складу 123,5 мг у суміші з наночастинками кліноптілоліта за допомогою гальмівного випромінювання з Emax=13,5 МеВ. Поширеність ізо- топів 176Yb становить 12,6%. Перетин реакції 176Yb(,n)175Yb (Т1/2=100,8 год.) має два максимуми при 12,5 і 16 МеВ близько 350 мбн. Після відділення частинок кліноптілоліта активність 176Yb у них становила 3,2% від загальної актив- ності зразка для розмірів наночастинок Yb2О3 180 нм. https://scholar.google.com.ua/citations?user=KSed3q8AAAAJ&hl=en&oi=sra https://inis.iaea.org/search/search.aspx?orig_q=RN:46129059 https://inis.iaea.org/search/search.aspx?orig_q=RN:46129059