Radiation shield of therapeutic electron accelerator “CLINAC”

It is anticipated that a therapeutic electron accelerator “Clinac” (manufactured by Varian Co., USA) will be installed at NSC KIPT. It has been suggested that the available compartment having thick concrete walls might be used as a medical treatment room. In this connection, the analysis has been ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Voronko, V.A., Dovbnya, A.N., Pugachev, G.D., Sotnikov, V.V., Uvarov, V.L., Shestakova, V.S.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/136196
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Radiation shield of therapeutic electron accelerator “CLINAC” / V.A. Voronko, A.N. Dovbnya, G.D. Pugachev, V.V. Sotnikov, V.L. Uvarov, V.S. Shestakova // Вопросы атомной науки и техники. — 2017. — № 6. — С. 181-184. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136196
record_format dspace
spelling irk-123456789-1361962018-06-17T03:06:54Z Radiation shield of therapeutic electron accelerator “CLINAC” Voronko, V.A. Dovbnya, A.N. Pugachev, G.D. Sotnikov, V.V. Uvarov, V.L. Shestakova, V.S. Применение ускорителей в радиационных технологиях It is anticipated that a therapeutic electron accelerator “Clinac” (manufactured by Varian Co., USA) will be installed at NSC KIPT. It has been suggested that the available compartment having thick concrete walls might be used as a medical treatment room. In this connection, the analysis has been made for correspondence of the com-partment protection characteristics to the accelerator safe operation requirements. The protection capability was estimated for a mode of the accelerator operation at electron energy of 18 MeV with a target made of tungsten. Equivalent dose rates behind the shield were calculated with due regard for the direct bremsstrahlung from the target, and also, for the scattered photon emission and neutron radiation. To reduce the scattered radiation level in the entrance area, the variant of shielding maze has been proposed. The estimated radiation dose of the accelerator staff does not exceed the values permissible by the radiation safety standards. According to the calculations made, the concentration of ozone produced in the treatment room will be also below the MPC level. У ННЦ ХФТІ передбачається встановити терапевтичний прискорювач електронів “Clinac” (фірма Varian, США). Як процедурний кабінет запропоновано використовувати наявне приміщення з товстими стінами із бетону. У зв'язку з цим проведено аналіз відповідності захисних характеристик приміщення вимогам безпечної експлуатації прискорювача. Оцінка захисту проводилася для режиму роботи прискорювача з енергією електронів 18 МеВ і мішенню із вольфраму. Розраховані значення потужності еквівалентної дози за захистом з урахуванням прямого гальмівного випромінювання від мішені, а також розсіяного фотонного випромінення і нейтронів. Для зниження рівня розсіяного випромінювання біля входу в приміщення запропонований варіант захисного лабіринту. Отримана оцінка дозового навантаження на обслуговуючий персонал прискорювача не перевищує значень, що допускаються нормами радіаційної безпеки. Проведений розрахунок напрацювання озону в процедурному кабінеті показав, що його концентрація також не перевищуватиме допустимий рівень. В ННЦ ХФТИ предполагается установить терапевтический ускоритель электронов “Clinac” (фирма Varian, США). В качестве процедурного кабинета предложено использовать имеющееся помещение с толстыми стенами из бетона. В связи с этим проведен анализ соответствия защитных характеристик помещения требованиям безопасной эксплуатации ускорителя. Оценка защиты проводилась для режима работы ускорителя с энергией электронов 18 МэВ и мишенью из вольфрама. Рассчитаны значения мощности эквивалентной дозы за защитой с учетом прямого тормозного излучения от мишени, а также рассеянного фотонного излучения и нейтронов. Для снижения уровня рассеянного излучения у входа в помещение предложен вариант защитного лабиринта. Полученная оценка дозовой нагрузки на обслуживающий персонал ускорителя не превышает значений, допускаемых нормами радиационной безопасности. Проведенный расчет наработки озона в процедурном кабинете показал, что его концентрация также не будет превышать допустимый уровень. 2017 Article Radiation shield of therapeutic electron accelerator “CLINAC” / V.A. Voronko, A.N. Dovbnya, G.D. Pugachev, V.V. Sotnikov, V.L. Uvarov, V.S. Shestakova // Вопросы атомной науки и техники. — 2017. — № 6. — С. 181-184. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 87.56.bd; 28.41.Qb http://dspace.nbuv.gov.ua/handle/123456789/136196 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Voronko, V.A.
Dovbnya, A.N.
Pugachev, G.D.
Sotnikov, V.V.
Uvarov, V.L.
Shestakova, V.S.
Radiation shield of therapeutic electron accelerator “CLINAC”
Вопросы атомной науки и техники
description It is anticipated that a therapeutic electron accelerator “Clinac” (manufactured by Varian Co., USA) will be installed at NSC KIPT. It has been suggested that the available compartment having thick concrete walls might be used as a medical treatment room. In this connection, the analysis has been made for correspondence of the com-partment protection characteristics to the accelerator safe operation requirements. The protection capability was estimated for a mode of the accelerator operation at electron energy of 18 MeV with a target made of tungsten. Equivalent dose rates behind the shield were calculated with due regard for the direct bremsstrahlung from the target, and also, for the scattered photon emission and neutron radiation. To reduce the scattered radiation level in the entrance area, the variant of shielding maze has been proposed. The estimated radiation dose of the accelerator staff does not exceed the values permissible by the radiation safety standards. According to the calculations made, the concentration of ozone produced in the treatment room will be also below the MPC level.
format Article
author Voronko, V.A.
Dovbnya, A.N.
Pugachev, G.D.
Sotnikov, V.V.
Uvarov, V.L.
Shestakova, V.S.
author_facet Voronko, V.A.
Dovbnya, A.N.
Pugachev, G.D.
Sotnikov, V.V.
Uvarov, V.L.
Shestakova, V.S.
author_sort Voronko, V.A.
title Radiation shield of therapeutic electron accelerator “CLINAC”
title_short Radiation shield of therapeutic electron accelerator “CLINAC”
title_full Radiation shield of therapeutic electron accelerator “CLINAC”
title_fullStr Radiation shield of therapeutic electron accelerator “CLINAC”
title_full_unstemmed Radiation shield of therapeutic electron accelerator “CLINAC”
title_sort radiation shield of therapeutic electron accelerator “clinac”
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/136196
citation_txt Radiation shield of therapeutic electron accelerator “CLINAC” / V.A. Voronko, A.N. Dovbnya, G.D. Pugachev, V.V. Sotnikov, V.L. Uvarov, V.S. Shestakova // Вопросы атомной науки и техники. — 2017. — № 6. — С. 181-184. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT voronkova radiationshieldoftherapeuticelectronacceleratorclinac
AT dovbnyaan radiationshieldoftherapeuticelectronacceleratorclinac
AT pugachevgd radiationshieldoftherapeuticelectronacceleratorclinac
AT sotnikovvv radiationshieldoftherapeuticelectronacceleratorclinac
AT uvarovvl radiationshieldoftherapeuticelectronacceleratorclinac
AT shestakovavs radiationshieldoftherapeuticelectronacceleratorclinac
first_indexed 2025-07-10T00:50:20Z
last_indexed 2025-07-10T00:50:20Z
_version_ 1837219051677417472
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 181 RADIATION SHIELD OF THERAPEUTIC ELECTRON ACCELERATOR “CLINAC” V.A. Voronko, A.N. Dovbnya, G.D. Pugachev, V.V. Sotnikov, V.L. Uvarov, V.S. Shestakova National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine E-mail: uvarov@kipt.kharkov.ua It is anticipated that a therapeutic electron accelerator “Clinac” (manufactured by Varian Co., USA) will be in- stalled at NSC KIPT. It has been suggested that the available compartment having thick concrete walls might be used as a medical treatment room. In this connection, the analysis has been made for correspondence of the com- partment protection characteristics to the accelerator safe operation requirements. The protection capability was es- timated for a mode of the accelerator operation at electron energy of 18 MeV with a target made of tungsten. Equiv- alent dose rates behind the shield were calculated with due regard for the direct bremsstrahlung from the target, and also, for the scattered photon emission and neutron radiation. To reduce the scattered radiation level in the entrance area, the variant of shielding maze has been proposed. The estimated radiation dose of the accelerator staff does not exceed the values permissible by the radiation safety standards. According to the calculations made, the concentra- tion of ozone produced in the treatment room will be also below the MPC level. PACS: 87.56.bd; 28.41.Qb INTRODUCTION The National Science Center “Kharkiv Institute of Physics and Technology (NSC KIPT) is going to install an electron accelerator manufactured by Varian Co. (model Clinac 2300 C/D). On delivery, the Company provides only tabular standard protection data for the treatment room, which are intended for the use at the early stages of the therapeutic complex design. There- fore it was necessary to confirm its compliance with the regulatory requirements of a country where the accel- erator is to be installed. In this connection, an analysis was performed to assess both the radiation protection of the intended accelerator chamber, as well as the ozone production during accelerator operation. The analysis was carried out with regard to the “Radiation safety rules for electron accelerators under No. 1442/23971 d/d 21 August, 2013”, to the recommendations on radiation shield calculations for electron accelerators, and also, other regulatory documents. Fig. 1 shows the schematic of the intended Clinac working chamber at the level -4.800 is 6.9 m wide, 9 m long, the floor-ceiling height being 3.4 m. The side shielding of the facility will be provided by the existing 2 m thick concrete walls, and by the earth. At the top, the chamber is shielding by 1.2 m thick concrete con- structions. The installation control is assumed to be arranged in the adjacent premise at the level -4.800 separated from the accelerator chamber by the maze shielding against scattered radiation. The auxiliary operational areas are supposed to be located in the adjacent premises. 1. BREMSSTRAHLUNG SHIELDING CALCULATIONS The analysis has been performed for the radiation shielding of the Clinac accelerator and its production of ozone at an electron energy of 18 MeV and a working load of 2000 Sv/week. For calculations, we have chosen the points A1 – A8 at mark -4.800, which are at service personnel location sites expected to have the highest radiation level (see Fig. 1), and also outside the building in the fill-up ground. Longitudinal section of the accelerator working chamber, passing through the isocenter: 1 – accelerator CLINAC; 2 – therapeutic couch; 3 – modulator casing; 4 – stand and gantry; 5 – concrete shield; 6 – shielding maze; O’ – isocenter mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2017. №6(112) 182 Referring to Figure, we use the following notation: O and O 1 are the radiation source (accelerator head) and the isocenter, respectively; A1 – is the point at the angle of radiation θ = 0 outside the maze shield; A2 – is the point at the maze entrance, θ = 34°; A3 – is the point behind the side shield of the vault; A4 – is the point out- side the building in the ground; A5 – is the point at mark – 3.800 in an adjacent hall; A6 – is the point outside the maze’s entry; A7 – is the point at θ = 20° in the hall, before the maze’s entrance; A8 – is the point on the ground floor, above the isocenter (at mark 1.000). The Clinac radiation characteristics used in the calculations are as follows. - Maximum energy of accelerated electrons for the modes of exposure to electrons and bremsstrah- lung 18 MeV; - bremsstrahlung dose rate at the isocenter 720 Gy/h; - bremsstrahlung dose rate external to the isocenter 0.72 Gy/h; - neutron -to-bremsstrahlung dose ratio at the isocen- ter < 0.2%; - shield materials  concrete, lead; - beam size and possible beam directions are provid- ed by Varian Co. on delivery of Clinac with a set of electronic applicators enabling the formation of six different fields measuring  66 cm, 1010 cm, 1515 cm, 2020 cm, 2525 cm; - feasible directions of the accelerator head: straight down – θ= 0°, and sideways – θ = 90°; - radiation source- to- isocenter distance 1.05 m; - accelerator operational mode (workload per week, equal to the product of the mean dose received by a single patient for the time of exposure by the number of patients) 2000 Sv/week. The given below equivalent dose H  rates at the points of interest correspond to the mode of facility op- eration with a tungsten target and a tantalum smoothing filter. Under these conditions, the bremsstrahlung is the dominant factor of radiation hazard, which governs the accelerator shield thickness. Noteworthy also is the pro- duction of harmful chemical substances (ozone and ni- trogen oxides) in the air. For a soft biological tissue, the relation between the absorbed and equivalent doses of bremsstrahlung is de- termined by the formula H(Sv)= 1.09 D(Gy). For sim- plicity, in our calculations, H was assumed to equal D. For a soft biological tissue, the relation between the absorbed and equivalent doses of bremsstrahlung is de- termined by the formula H(Sv)= 1.09 D(Gy). For sim- plicity, in our calculations, H was assumed to equal D. At the NSC KIPT, the design value of the standard reference dose rate RDRA with the safety factor 2 at the workplaces of category “A” staff amounts to 4.1 μSv/h. The maximum workload W for the procedures without the smoothing filter (Field Flow Fractionation, FFF) has been determined by the Clinac supplier to be 2000 Sv/week at a 50-hour work week. The permissible bremsstrahlung dose rate P at a distance R is given by the expression 6 2 2 1.0 10 ( ) ( ) Wr b P T R      , (1) where W is the workload (Sv/week), r is the radiation source-to-isocenter distance (m); Tx is the operational period of all the category “A” personnel shifts per week; b(θ) is the radiation yield factor in the (θ )-direction. In accordance to the data of refs. [2], [5], we put the solid angle value in the range from 0° to 14° to be b()=1; and in the angular ranges from 14° to 20° and from 20° to 40° we put b()=0.26 and b()=0.1, respectively. For solid angles greater than 40°, b(θ) is taken to be 0.01. The angular coordinates and the distances to the points of interest with respect to the point O, at which the electron accelerator target is located, are given in Table 1. Table 1 Distances to the points of interest, angular coordinates and yield factors Points А1 А2 А3 А4 А5 А6 А7 А8 R (m) 8 10 6 8 8 10 8.5 3.5  0 0 0 34 90 0 90 40 20 180 b() 1 0.1 0.01 1 0.01 0.1 0.2 6 0.01 Table 2 gives the calculated values for the equiva- lent dose rates (EDR) at unshielded control points, the necessary dose attenuation K(X), the concrete shield thickness Xcalc., and also the thickness of the existing shield Xactual. Here and below, we use the attenuation of the bremsstrahlung dose rate for the concrete shield of density 2.3 g/cm 3 . Table 2 EDR at points of interest (μSv/h), the necessary attenuation К(х), shield thickness (required and existing) Points А1 А2 А3 А4 А5 А6 А7 А8 H , μSv/h 6.910 5 4.410 4 1.210 4 6.910 5 6.910 3 4.410 3 1.610 5 3.610 4 К(Х) 1.710 5 1.110 4 310 3 1.710 5 1.710 3 1.110 3 410 4 8.810 3 Хcalcul., cm 240 190 160 240 152 145 207 185 Хactual, cm 300 270 200 300 200 200 250 120 The obtained shield thickness data for primary screening at points A1 and A4, X=240 cm, are in good agreement with the data of Table 2-1 for typical shield of the Clinac accelerator under standard procedures (X= 236.2 cm) at the concrete density ρ=2.355 g/cm 3 . It is evident from Table 2 that the existing shield thickness at the at mark -4.800 is sufficient for the pri- mary and secondary screening of the personnel against the accelerator radiation. Point A8 is found in the attic- floor room, where the coefficient of occasional presence of the personnel is equal to T=0.06, and the existing shield will suffice for the protection. ISSN 1562-6016. ВАНТ. 2017. №6(112) 183 2. CONSIDERATION OF THE SCATTERED RADIATION To calculate the scattered radiation contribution to the EDR at the entry to the treatment room (working chamber of the accelerator), the principal reflecting sur- face S1 was chosen in accordance with the recommenda- tions given in ref. [3]. In the calculations, the brems- strahlung was assumed to be produced at the point O resulting from interaction of electron beam with the tungsten target, the primary collimator, the smoothing filter, the secondary collimator, and thereupon incidents on the scattering surface S1. The EDR of the scattered radiation at point B1, scat- tered by the surface S1, is determined according to ref. [3] by the formula 1 2 6 2 1 1, 0 1 1 2 1 ( )1.0 10 ( ) b E S CosWr b H RT R         , (2) where 1(1,E0) is the differential dose albedo for the bremsstrahlung with end-point energy E0, incident on the scattering surface S1 at an angle 1 relative to the normal to this surface. rad. is the radiation angle, R is the distance from the radiation source to the scattering surface S1 (m) in the maze of the treatment room, R1 is the distance from the surface S1 to the maze entry (point В1). Using the parameters of the accelerator and the geometrical dimensions of the accelerator chamber, we obtain the initial data for calculating the EDR of the scattered radiation: R=7.2 m; R1=11.2 m; rad.=30; 1=60 ° ; (,Е)=310 -3 ; S1=2.1 m 2 ; b()=0.01; r=1.05. Based on these data and formula (2), one can estimate the scattered radiation contribution to the EDR at point B (Нв = 0.21 μSv/h). With account of the direct radia- tion contribution from point O at point B (Нв = 0.34 μSv/h), the total dose rate at point B1 is estimated to be НΣ=0.55 μSv/h. Thus, the steel layer 6 mm thick will be sufficient for screening the door of the Clinac treatment room. 3. NEUTRON SHIELDING CALCULATION In a working shift time, at an operating load of 2000 Sv/week and a 50-hour workweek, the mean EDR value of photoneutrons produced during accelerator operation, at a distance of 2 m from the target at the isocenter, will amount to 6 2 71.0 10 4,41 10n n W r c H c T         , (3) where c is the ratio of the neutron EDR at the isocenter to the bremsstrahlung dose rate (c=0.2%); α is the neu- tron flux density-to-EDR conversion factor (α=1.7 μSv·cm 2 ·s/h). So, the neutron flux density at the distance R=1 m (at the isocenter) will be Hn=5.2·10 4 n/cm 2 ·s. The attenuation of photoneutron EDR in the con- crete shielding can be estimated using the relation Кн=ехр(d/λ), (4) where d is the concrete shielding thickness (cm); λ is the photoneutron relaxation length in the concrete (equal to 16 cm). Table 3 lists the values of neutron flux density at the calculation points without radiation shielding Nn, the neutron-induced dose rate H  , and also, the necessary dose rate attenuation Kn. The data on the existing practical shield thickness Xactual, the required neutron shield thickness Dmarg., and the margin of neutron EDR attenuation Kmarg. are given in Table 4. Table 3 Neutron flux density (n/cm 2 s·), neutron-induced dose rateH  (μSv/h) and the necessary neutron dose rate attenuation Kn Points А1 А2 А3 А4 А5 А6 А7 А8 R(m) 8 10 6 8 8 10 8.5 3.5 Nn 8.1·10 2 5.2·10 2 1.44·10 3 8.1·10 2 8.1·10 2 5.2·10 2 7.2·10 2 4.2·10 3 H n 1.38·10 3 8.84·10 2 2,45·10 3 1.38·10 3 1.38·10 3 8.84·10 2 1.22·10 3 7.14·10 3 Kn 3.37·10 2 2.16·10 2 6·10 2 3.37·10 2 3.37·10 2 2.16·10 2 3·10 2 1.74·10 2 Table 4 Neutron shielding characteristics Points А1 А2 А3 А4 А5 А6 А7 А8 d(Х)actual(cm) 300 270 200 300 200 200 250 120 Dconcrete(cm) 94 86 103 94 94 86 92 120 Кmargin 3.9·10 5 6.4·10 5 4.3·10 2 3.9·10 5 7.5·10 2 1.2·10 3 1.9·10 4 1 It is evident from the table that neutrons make prac- tically no contribution to the EDR behind the shield, and their impact may be neglected. 4. CALCULATION OF OZONE CONCENT- RATION AND FORBIDDEN PERIOD Considering that at operation of an accelerator with energy up to 30 MeV the toxicity of air radiolysis prod- ucts (ozone and nitrogen oxides) is mainly determined by ozone (ozone MPC is by a factor of 50 lower than the MPC of nitrogen oxides), the ventilation calculation is based on the provision of the desired ozone concen- tration reduction. In the “Radiation safety regulations for electron accelerators”, there are no instructions for calculating the ozone production by medical accelera- tors. There is a belief that when interacting with air, the bremsstrahlung of the accelerator produces far less radi- olysis products than the electron beam does. It is as- sumed also that with the operating exhaust ventilation, the reduction in ozone concentration down to the per- missible value occurs practically for a few seconds after the accelerator is turned off; and in this case, the forbid- den period concept loses its practical meaning for the operating staff. For all that the patient stays all the time ISSN 1562-6016. ВАНТ. 2017. №6(112) 184 in the accelerator chamber (treatment room) with the accelerator being in operation. In view of this, the anal- ysis has been performed to estimate the ozone produc- tion in the accelerator working chamber with the use of the data of practice guidelines [2, 3] and the available literary sources. In accordance with Supplement 2 to the “Radiation safety regulations for electron accelerators” (i. 2.16), the forbidden period of staff entrance to the working chamber is determined by the formula         ln / ( ) ,oz FORB chamb chem oz C T K MPC (5) where Coz is the ozone concentration in the working chamber at the instant of radiation exposure, mg/m 3 ; MPCoz is the maximum permissible ozone concentra- tion, 0.1 mg/mm 3 ; Кchamb. is the air change per hour in the accelerator working chamber, hour -1 ; λchem. is the coefficient characterizing the chemical instability of ozone, hour -1 , (chem=1.2 h -1 ) For determining the ozone concentration in the working chamber with the point radiator at its center, the chamber was assumed to be spherical with radius R. The ozone concentration was calculated by the formula   22.4 10 1 exp ( ) ,oz chamb chamb Ð C K t K           (6) where P is the average absorbed dose rate in air, Gy/s; Кchamb. is the air change in the irradiated volume, h -1 ; t is the time of air irradiation, h; =rad+chem. characterizes the radiation and chemical instabilities of ozone, h -1 . rad is calculated by the formula rad=34P 0,6 , h - . (7) The average absorbed dose rate in air for the cham- ber with the point radiator was determined through nu- merical integration of expression (1) over 4π. The angu- lar distribution data are given in Section 1. On exposure of a patient to radiation having the EDR equal to 12.1 Gy/min. (0.2 Gy/s) in the angular range from 0 to 14°, the maximum average EDR value in the treatment room of 211 m 3 in volume will make 0.0065P  Gy/s; and λ=1.66 h -1 ; Coz=0.042 mg/m3. Thus, even in the mode of operation without the smoothing filter at the patient dose of 20 Gy per run, the ozone concentration will not exceed the MPC value. Therefore, the forbidden period of entrance to the work- ing chamber after the accelerator is turned off, loses its meaning. During the whole session of patient exposure, the ozone concentration in the chamber also will not exceed the MPC value. CONCLUSIONS The necessary design values for concrete shield thickness have been tabulated to provide safe operation of the installation with electron energy of up to 18 MeV. It follows from the present data that the existing radia- tion shield is sufficient to prevent the excess of the tol- erable dose rate (TDRA). For the treatment room protec- tion, a 6 mm thick steel door must be installed in the shielding maze. During the irradiation session, the ozone concentration in the treatment room will not ex- ceed the MPC value. Therefore, there is no need for setting a forbidden period for the staff to enter the treatment room. REFERENCES 1. Radiation safety standards in Ukraine (NRBU-97), Kiev, 1997; “Main sanitary regulations for radiation safety of Ukraine”, National sanitary rules 6.177- 2005-09-02. Kiev, 2005. 2. Radiation safety regulations for electron accelerators under No. 1442/23974, d/d 21 August, 2013. 3. Uniform rules for design and safe service of radia- tion-process installations. (Unified rules for gamma- electron). Moscow, 1988. 4. Health Physics. Two-volume book / Edited by N.G. Gusev. 3 rd edition, revised and enlarged. Mos- cow: “Ehnergoatomizdat”, 1989. 5. K. Nurlybaev, Yu.N. Martynyuk, A.I. Karakash, et al. Radiation safety in beam therapy using electron accelerators // ANRI. 2014, № 1, p. 15. Article received 09.10.2017 РАДИАЦИОННАЯ ЗАЩИТА ТЕРАПЕВТИЧЕСКОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ “CLINAC” В.А. Воронко, А.Н. Довбня, Г.Д. Пугачeв, В.В. Сотников, В.Л. Уваров, В.С. Шестакова В ННЦ ХФТИ предполагается установить терапевтический ускоритель электронов “Clinac” (фирма Varian, США). В качестве процедурного кабинета предложено использовать имеющееся помещение с толстыми стенами из бетона. В связи с этим проведен анализ соответствия защитных характеристик помещения требованиям безопасной эксплуатации ускорителя. Оценка защиты проводилась для режима работы ускорителя с энергией электронов 18 МэВ и мишенью из вольфрама. Рассчитаны значения мощности эквивалентной дозы за защитой с учетом прямого тормозного излучения от мишени, а также рассеянного фотонного излучения и нейтронов. Для снижения уровня рассеянного излучения у входа в помещение предложен вариант защитного лабиринта. Полученная оценка дозовой нагрузки на обслуживающий персо- нал ускорителя не превышает значений, допускаемых нормами радиационной безопасности. Проведенный расчет нара- ботки озона в процедурном кабинете показал, что его концентрация также не будет превышать допустимый уровень. РАДІАЦІЙНИЙ ЗАХИСТ ТЕРАПЕВТИЧНОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ “CLINAC” В.О. Воронко, А.М. Довбня, Г.Д. Пугачов, В.В. Сотников, В.Л. Уваров, В.С. Шестакова У ННЦ ХФТІ передбачається встановити терапевтичний прискорювач електронів “Clinac” (фірма Varian, США). Як процедурний кабінет запропоновано використовувати наявне приміщення з товстими стінами із бетону. У зв'язку з цим проведено аналіз відповідності захисних характеристик приміщення вимогам безпечної експлуатації прискорювача. Оцінка захисту проводилася для режиму роботи прискорювача з енергією електронів 18 МеВ і мішенню із вольфраму. Розраховані значення потужності еквівалентної дози за захистом з урахуванням прямого гальмівного випромінювання від мішені, а також розсіяного фотонного випромінення і нейтронів. Для зниження рівня розсіяного випромінювання біля входу в приміщення запропонований варіант захисного лабіринту. Отримана оцінка дозового навантаження на об- слуговуючий персонал прискорювача не перевищує значень, що допускаються нормами радіаційної безпеки. Проведе- ний розрахунок напрацювання озону в процедурному кабінеті показав, що його концентрація також не перевищуватиме допустимий рівень.