Regimes of irradiation by electrons of samples of materials in supercritical water convection loop
The specially designed in the NSC KIPT Supercritical Water Convection Loop (SCWCL) with an irradiation chamber coupled to an electron accelerator LPE-10 gives an opportunity for corrosion and mechanical tests of materials under electron irradiation. Specimens in water flow are irradiated by the 10 M...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/136202 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Regimes of irradiation by electrons of samples of materials in supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, A.N. Dovbnya, S.V. Dyuldya, Yu.V. Gorenko, V.A. Momot, S.K. Romanovsky, A.N. Savchenko, V.I. Solodovnikov, V.Yu. Titov, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 185-190. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136202 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1362022018-06-17T03:03:50Z Regimes of irradiation by electrons of samples of materials in supercritical water convection loop Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Dovbnya, A.N. Dyuldya, S.V. Gorenko, Yu.V. Momot, V.A. Romanovsky, S.K. Savchenko, A.N. Solodovnikov, V.I. Titov, V.Yu. Shelepko, S.V. Tcebenko, G.N. Применение ускорителей в радиационных технологиях The specially designed in the NSC KIPT Supercritical Water Convection Loop (SCWCL) with an irradiation chamber coupled to an electron accelerator LPE-10 gives an opportunity for corrosion and mechanical tests of materials under electron irradiation. Specimens in water flow are irradiated by the 10 MeV/10 kW electron beam of the LPE-10 linear accelerator at 23…25 MPa and 350…400°C. Presented are the irradiation regime parameters for the 500 hours long work session of the SCWCL. Спеціально розроблена в ХФТІ надкритична водяна конвекційна петля (НВКП) з камерою опромінення, яка зв’язана з прискорювачем електронів ЛПЕ-10, дозволяє проводити корозійні тести потенційних конструкційних матеріалів реакторів IV покоління з надкритичним водяним охолодженням (SCWR) під опроміненням. Зразки в потоці води при 350…400°C, 23…25 МПа опромінюються 10 МеВ/10 кВт електронним пучком лінійного прискорювача ЛПЕ-10. Приводяться параметри режимів опромінення зразків під час 500-годинного сеансу роботи НВКП. Специально разработанная в ХФТИ сверхкритическая водяная конвекционная петля (СВКП) с камерой облучения, связанная с ускорителем электронов ЛУЭ-10, позволяет проводить коррозийные тесты потенциальных конструктивных материалов реакторов IV поколения со сверхкритическим водяным охлаждением (SCWR) под облучением. Образцы в потоке воды при 350…400°C, 23…25 МПа облучаются электронным пучком 10 МэВ/10 кВт линейного ускорителя ЛУЭ-10. Приводятся параметры режимов облучения образцов во время 500-часового сеанса работы СВКП. 2017 Article Regimes of irradiation by electrons of samples of materials in supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, A.N. Dovbnya, S.V. Dyuldya, Yu.V. Gorenko, V.A. Momot, S.K. Romanovsky, A.N. Savchenko, V.I. Solodovnikov, V.Yu. Titov, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 185-190. — Бібліогр.: 19 назв. — англ. 1562-6016 PACS: 07.35.+k, 29.20.Ej, 28.52.Fa http://dspace.nbuv.gov.ua/handle/123456789/136202 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Dovbnya, A.N. Dyuldya, S.V. Gorenko, Yu.V. Momot, V.A. Romanovsky, S.K. Savchenko, A.N. Solodovnikov, V.I. Titov, V.Yu. Shelepko, S.V. Tcebenko, G.N. Regimes of irradiation by electrons of samples of materials in supercritical water convection loop Вопросы атомной науки и техники |
description |
The specially designed in the NSC KIPT Supercritical Water Convection Loop (SCWCL) with an irradiation chamber coupled to an electron accelerator LPE-10 gives an opportunity for corrosion and mechanical tests of materials under electron irradiation. Specimens in water flow are irradiated by the 10 MeV/10 kW electron beam of the LPE-10 linear accelerator at 23…25 MPa and 350…400°C. Presented are the irradiation regime parameters for the 500 hours long work session of the SCWCL. |
format |
Article |
author |
Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Dovbnya, A.N. Dyuldya, S.V. Gorenko, Yu.V. Momot, V.A. Romanovsky, S.K. Savchenko, A.N. Solodovnikov, V.I. Titov, V.Yu. Shelepko, S.V. Tcebenko, G.N. |
author_facet |
Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Dovbnya, A.N. Dyuldya, S.V. Gorenko, Yu.V. Momot, V.A. Romanovsky, S.K. Savchenko, A.N. Solodovnikov, V.I. Titov, V.Yu. Shelepko, S.V. Tcebenko, G.N. |
author_sort |
Bakai, A.S. |
title |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
title_short |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
title_full |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
title_fullStr |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
title_full_unstemmed |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
title_sort |
regimes of irradiation by electrons of samples of materials in supercritical water convection loop |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136202 |
citation_txt |
Regimes of irradiation by electrons of samples of materials in supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, A.N. Dovbnya, S.V. Dyuldya, Yu.V. Gorenko, V.A. Momot, S.K. Romanovsky, A.N. Savchenko, V.I. Solodovnikov, V.Yu. Titov, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 185-190. — Бібліогр.: 19 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bakaias regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT boriskinvn regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT bratchenkomi regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT dovbnyaan regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT dyuldyasv regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT gorenkoyuv regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT momotva regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT romanovskysk regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT savchenkoan regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT solodovnikovvi regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT titovvyu regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT shelepkosv regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop AT tcebenkogn regimesofirradiationbyelectronsofsamplesofmaterialsinsupercriticalwaterconvectionloop |
first_indexed |
2025-07-10T00:51:04Z |
last_indexed |
2025-07-10T00:51:04Z |
_version_ |
1837219096129699840 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №6(112) 185
REGIMES OF IRRADIATION BY ELECTRONS OF SAMPLES
OF MATERIALS IN SUPERCRITICAL WATER CONVECTION LOOP
A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, A.N. Dovbnya, S.V. Dyuldya, Yu.V. Gorenko,
V.A. Momot, S.K. Romanovsky, A.N. Savchenko, V.I. Solodovnikov, V.Yu. Titov,
S.V. Shelepko, G.N. Tcebenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: boriskin@kipt.kharkov.ua
The specially designed in the NSC KIPT Supercritical Water Convection Loop (SCWCL) with an irradiation
chamber coupled to an electron accelerator LPE-10 gives an opportunity for corrosion and mechanical tests of mate-
rials under electron irradiation. Specimens in water flow are irradiated by the 10 MeV/10 kW electron beam of the
LPE-10 linear accelerator at 23…25 MPa and 350…400°C. Presented are the irradiation regime parameters for the
500 hours long work session of the SCWCL.
PACS: 07.35.+k, 29.20.Ej, 28.52.Fa
INTRODUCTION
The Supercritical Water-Cooled Reactor (SCWR) is
one of the most promising options identified for R&D
under the Generation IV (GenIV) program [1]. At the
Atomic Energy of Canada Limited (AECL), the it was
recognized as the next evolutionary step of CANDU
technology and obtained a high priority status [2, 3]. The
SCWR relevant R&D are carried out in Korea [4, 5], U.S.
[6, 7], Japan [8], Russia [9], and China [10]. Different
candidate structural materials are considered for the
SCWR: austenitic and ferretic-martensitic (F/M) stainless
steels (SS), Ni-, Zr- and Ti-based alloys, and innovative
oxide dispersion strengthened (ODS) steels and alloys.
Their corrosion rates and stress corrosion cracking
(SCC) in pure SCW is studied experimentally using
SCW circulation loops (SCWCL) without irradiation.
However, the SCW properties under irradiation are
not investigated in detail. The irradiation induced radioly-
sis impact on the SCW flow control and instabilities, incl.
the sub- to supercritical state transitions, is of great inter-
est for SCWR R&D, and can also affect the corrosion of
materials. This requires thorough studies at dedicated
experimental facilities [11] providing combined expo-
sure of samples to both SCW flow and irradiation.
In 2009, the Canadian government provided funding
to support the collaborative activities between the NSC
KIPT and the AECL Chalk River Laboratories aimed at
the development of advanced experimental facilities and
methodologies for the assessment of structural materials
recognized as promising candidates for SCW reactors.
In 2010-2012, the convection loops were specially de-
veloped, in KIPT, for in situ investigations of combined
effect of ionizing irradiation and heterophase fluctua-
tions of the supercritical water (SCW) environment on
corrosion, oxidation, and mechanical properties of met-
als and alloys. The irradiation cell (IC) equipped Super-
critical Water Convection Loop (SCWCL) was coupled
to the 10 MeV, 10 kW electron accelerator LPE-10 as a
basis for the test bench of the Canada-Ukraine Electron
Irradiation Test Facility (CU-EITF) for corrosion tests
of structural materials of GenIV SCWR [12, 13].
Three SCWCL models were developed and manu-
factured:
a) the prototype one without an irradiation cell;
b) the all-welded SCWCL with four-channel IC;
c) the dismountable SCWCL with the circulation
pump and the IC made from the Ti alloy VT22.
The internal volume of each loop is about 4 liters.
The pipes of all the devices (a-c) and the IC of the
SCWCL model (b) were made from the 12X18H10T
stainless steel. Dimensions of the loops (1.21.5 m,
Fig. 1) and other component parts of the SCWCLs were
essentially determined by the size and arrangement of
the KIPT sited bunker room (see Fig. 1) which houses
the electron accelerator LPE-10 [14, 15].
Fig. 1. Placement of the SCWCL in the bunker room
of the LPE-10 electron linac
In the present paper, the results of the investigations
of the SCWCL Loop-1 and Loop-1a operating modes
are presented.
1. REFERENCE DESIGN PARAMETERS
The evaluation of the CU-EITF circulation loop ope-
rational parameters was based on the one-dimensional
thermal-hydraulic (TH) model [16 - 18] of a single-
channel, single-phase natural convection loop. For a
steady-state operation of a closed loop of length L, the
enthalpy h is a periodical function of pass length x
(h(0) = h(L)), and the overall pressure drop vanishes:
loop
0d, xwxp . (1)
The steady-state mass flow rate w is a root of Eq. 1.
The computer code solves it for flexible models of cir-
culation loops of segmented structure (Fig. 2). Each i
th
segment of a loop is characterized by its geometrical
parameters (length li, slope i, hydraulic diameter Di),
the applied heating/cooling power density qi = Qi, and
the hydrodynamic friction factors. Obviously, the bal-
ance of heating and cooling powers 0i iii DSlq
must be kept to obtain a steady-state solution.
ISSN 1562-6016. ВАНТ. 2017. №6(112) 186
Fig. 2. Typical schemes of natural circulation loops
(NCLs) with horizontal heater and cooler (HH-HC)
and vertical heater and horizontal cooler (VH-HC)
The following friction model was implemented [16]:
i
ii xxxK
D
xf
xhwxC
2
Re
,,k
, (2)
where Re = w·D/(h) is the Reynolds number of a flow,
(h) is the dynamical viscosity of a fluid, the coefficient
25.0
3164.0
,
64
max
ReRe
Ref , (3)
describes dynamical friction in laminar and turbulent
flows, and the coefficients Ki are (phenomenological)
dimensionless local friction factors (K-factors, or re-
striction coefficients) of the convection loop segments.
The equation (1) was solved numerically by the itera-
tive calculations and summarization of pressure drops
with enthalpy profiles for all segments of a circulation
loop until the total pressure drop reduces to a reasonably
small value, a tolerance limit of calculation. Then the
density, temperature, mass and linear velocity profiles
were calculated along all SCWCL segments using the
obtained value of the steady-state mass flow rate w.
For the CU-EITF SCWCL reference design, the pre-
liminary TH calculations results were taken into ac-
count. They determined a rather conservative choice of
the loop piping internal diameter (D = 32 mm) and the
electric heater power (Q = 20 kW). The dimensions of
the SCWCL were fixed to a width of 1.2 m and a height
of 1.5 m. The results of the TH characterization of such
a reference design of CU-EITF SCWCL are presented
below in this section.
1.1. SUPERCRITICAL OPERATION MODE
An integrated compilation of calculated output char-
acteristics of an expected steady state operation mode of
CU-EITF SCWCL is presented in Fig. 3,a-d for a super-
critical regime (p = 23 MPa, Tin = 650 K) of a loop. The
results depicted in this figure are self-descriptive, and
are not discussed here in detail. Let’s emphasize major
conclusions that follow from these calculations:
the acceptable mass (~50…100 gm/s, see Fig. 3,a)
and linear (up to 1 m/s, see Fig. 3,b) rates of SCW
natural convection flow are obtainable;
the loop overheat is prevented (see Fig. 3,c) in a wide
range of heater power Q and up to large (К > 300)
values of the SCWCL legs effective K-factor;
the characteristic SCW temperatures Tout at the entrance
of irradiation cell are close to the inlet temperature;
the characteristic densities of SCW entering the irra-
diation cell (see Fig. 3,d) are of order of 0.3 gm/cc at
reasonable local friction factors K ~ (10…100), and
Q < 30 kW.
0 5 10 15 20 25 30 35 40
0
50
100
150
200
250
300
350
400
K = 10
K = 100
K = 300
M
as
s f
lo
w
ra
te
(g
m
/s)
Heater power (kWth)
K = 0
K = 1
CU-EITF SCWCL
T
in
= 650 K
P = 23 MPa
D = 32 mm
a
0 5 10 15 20 25 30 35 40
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
K = 0
K = 1
Sp
ee
d
(m
/s)
Heater power (kWth)
K = 10
K = 100
K = 300
CU-EITF SCWCL
T
in
= 650 K
P = 23 MPa
D = 32 mm
b
0 5 10 15 20 25 30 35 40
650
651
652
660
670
680
690
700
710
720
K = 300
K = 100
K = 10
O
ut
le
t t
em
pe
ra
tu
re
(K
)
Heater power (kWth)
K = 1
K = 0
CU-EITF SCWCL
T
in
= 650 K
P = 23 MPa
D = 32 mm
c
0 5 10 15 20 25 30 35 40
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
K = 0
K = 1
K = 10
SC
W
d
en
si
ty
(g
m
/c
c)
Heater power (kWth)
K = 100
K = 300
CU-EITF SCWCL
T
in
= 650 K
P = 23 MPa
D = 32 mm
d
Fig. 3. Heater power Q dependencies of W (a), v (b),
Tout (c) and out (d) for the reference configuration
CU-EITF SCWCL operating in a supercritical mode
(23 MPa, 650 K)
1.2. IMPACT OF e-BEAM ON THE CU-EITF
SCWCL STEADY STATE REGIME
The calculations above describe an “idle” mode of a
SCWCL operation without irradiation when all power
input Q is due to an electric heater. Though valuable
experiments on the SCW flow dynamics and materials
corrosion can be conducted in this mode, too, of great
interest is the impact of the accelerator e-beam (EB)
irradiation supplied power on the SCWCL TH parame-
ters. This section deals with the TH effects caused by a
loop extra heating by a EB irradiation power deposition.
This occurs in the 180 mm long IC positioned at the
vertical leg of the loop. It was introduced into the TH
model as an additional heater segment of this length
starting at a distance 22.1 cm from the bottom pipe lev-
el. The reduced hydraulic diameter DIC = 26 mm of this
segment (that is due to the presence of the IC internals),
has been calculated from the SCW filled free volume of
irradiation cell, and used in TH modeling.
At calculations, a conservative assumption had been
made that the total nominal power of the KIPT linac e-
beam (7 kW) is spent to the SCW heating. Obviously, it
ISSN 1562-6016. ВАНТ. 2017. №6(112) 187
is a rather strong assumption that, however, will show
the amplitude of the expected effect.
0 5 10 15 20 25 30 35 40
0
25
50
75
100
125
150
M
as
s
flo
w
ra
te
(g
m
/s
)
Heater power (kWth)
7 kW e-beam OFF
7 kW e-beam ON
CU-EITF SCWCL
T
in
= 650 K
P = 23 MPa K = 10
650
651
652
653
654
D = 32 mm D
IC
= 26 mm
IC
o
ut
le
t t
em
pe
ra
tu
re
(K
)
Fig. 4. Heater power Q dependencies of W and Tout
without (open markers) and with (bold markers) extra
heating of the CU-EITF SCWCL irradiation cell
by 7 kW electron beam
The results of calculations are shown in Fig. 4 as
functions of a power Q of the SCWCL conventional
horizontal electric heater. One can see that qualitatively
the loop behavior is not affected by the introduction of
irradiation induced extra heating though certain quanti-
tative effects are definitely observed.
1.3. SUBCRITICAL OPERATION MODE
The reference CU-EITF SCWCL model has also
been applied to the evaluation of subcritical operation of
the facility. The conditions p = 9.9 MPa, Tin = 533 K
(350°C) were chosen to simulate characteristics of cool-
ant environment of reactors of CANDU family.
The basic TH model (1) - (3) is of limited use for de-
tailed calculations at subcritical conditions since it is
intrinsically a single-phase model. However, it can cir-
cumscribe the domain in a parameter space where un-
wanted effects of a flow boiling are suppressed.
The model was tuned to the above mentioned sub-
critical initial conditions. The results of calculations are
presented in Fig. 5 for both idle and e-beam powered
cases of the facility operation. One can see in Fig. 5,a
that the subcritical regime characteristic values of the
mass flow rate w = 50…200 gm/s are of the same order
of magnitude (or greater) then that of in a mainstream
supercritical mode. The major constraint arises from the
fact that at gradual increase of power Q the outlet tem-
perature can reach a water saturation temperature Ts at
9.9 MPa (see Fig. 5,a). Therefore, the subcritical exper-
iments have to be conducted either at a reduced power
or at a special attention paid to the local hydraulic re-
sistance of a loop components.
Fig. 5 shows that at subcritical experiments kept in-
side the single-phase domain, the SCWCL operates with
the same mass flow rates w ~ 50…100 gm/s that are
expected for the supercritical operation mode.
2. EXPERIMENTAL
2.1. LOOP-1
The SS 12X18H10T made SCWCL prototype meas-
uring 12201550 mm (Fig. 6,b) was developed and
manufactured for preliminary tests on the experimental
stand without irradiation. The internal diameter of the
loop piping was 32 mm, the external one was 40 mm.
The prototype had two 820 mm long main coolers and
two auxiliary coolers which were mounted on branch
pipes with measuring manifolds. The water was sup-
plied to the coolers from general pipelines that deliver it
to the accelerators cooling systems. The coolant pres-
sure was up to 4 atmospheres, the volumetric flow was
up to 12 liters per minute. The water temperature in the
mains was 15…35ºС depending on the season.
0 5 10 15 20 25 30 35 40
0
50
100
150
200
250
300
350
D = 32 mm D
IC
= 26 mm
M
as
s
fl
o
w
r
at
e
(g
m
/s
)
Heater power (kWth)
7 kW e-beam OFF: K=1 K=10 K=20
7 kW e-beam ON
: K=1 K=10 K=20
CU-EITF SCWCL
T
in
= 533 K
P = 9.9 MPa
a
0 5 10 15 20 25 30 35 40
530
540
550
560
570
580
590
D = 32 mm D
IC
= 26 mm
IC
o
u
tl
et
t
em
p
er
at
u
re
(
K
)
Heater power (kWth)
7 kW e-beam OFF: K=1 K=10 K=20
7 kW e-beam ON
: K=1 K=10 K=20
CU-EITF SCWCL
T
in
= 533 K
P = 9.9 MPa
T
s
(9.9 MPa)
b
Fig. 5. Q-dependencies of W (a) and Tout (b) for
a subcritical regime of CU-EITF SCWCL
a b
Fig. 6. The SCWCLs Loop-1a with cup-type heaters (a)
and Loop-1 (b) with radiative heaters on the test stand
a b
Fig. 7. Cup-type (0.4 kW, 100 mm working length)
heater (a) and radiation-type (up to 10 kW, 310 mm
internal working length) heaters with silit heating
elements (b)
The SS made heaters with silit elements (Fig. 7,b)
were developed and manufactured for the prototype.
The total power of one block of heaters was up to
10 kW. The work temperature inside the heater was up
to 1100ºС.
In total, 15 experimental “hot sessions” of operation
were conducted with total duration of 70 hr (incl. 12 hr
with water in the supercritical conditions). The water
ISSN 1562-6016. ВАНТ. 2017. №6(112) 188
pressure amounted to 30 MPa. The loop surface temper-
ature did not exceeded 430ºС. At the same time, it
reached 1100ºС under the heaters.
During the experiments, the power rack and the con-
trol rack worked in-line with the computer. The results
of one of the work sessions are presented at Figs. 8, 9.
During this session, the loop prototype and heaters were
wrapped with 30 mm thick basalt fiber and Al foil to
decrease thermal losses. Big coolers were not used. The
heaters power, water flow to the small coolers and water
drain from the emergency valve were registered and
controlled by the operator with the aid of a computer.
Fig. 8. Videogram from the PC screen of CU-EITF
operator during the SCWCL prototype test
Fig. 9. Temperature, pressure, electric power,
and water volume changes plots during the SCWCL
prototype test session
The plots of the electric power (W) changes (in rela-
tive units), the temperatures at the loop surface (T), the
water pressure in the loop (P), and the volume (V) of
water passed through the valve are shown in Fig. 9. The
values of W gradually increased from 5 kW at the be-
ginning of the session, and then up to 15.5 kW.
The loop surface temperature T incidentally increased
up to 410°С while the temperature inside the heaters
reached 1049°С. Up to 3660 ml of water out of 4210 ml
has flown out from the loop through the emergency
valve (see the plot of V) due to thermal expansion.
The pressure in the loop was 25 MPa. At 15.5 kW
electrical power, the thermal balance in the loop was
achieved at an average loop surface temperature 404°С
while the temperature difference at loop surface reached
11…12 K. The small water coolers picked out total
power reached 7 kW. The upper cooler took off 3 kW
(water flow 10.6 kg/min, temperature difference 4°С).
The lower cooler picked out 2.4 kW (water flow
11.2 kg/min, temperature difference 3°С). The other
remained power losses were up to 1.5 kW.
Basing on these data, the water mass flow rate in the
loop during this session was 60 g/s. At the loop section-
al area of about 8 cm
2
, we obtained the flow linear ve-
locity of about 52 cm/s.
During the last session, the strength limit in the part
of the loop prototype under one of the heaters was ex-
ceeded. This resulted in the rupture of the loop horizon-
tal part (Fig. 10), and the damage of the heater.
a b
Fig. 10. Top view at the point of rupture of the SCWCL
prototype pipe (a) and the 200 magnification cross
section electron microscopy along the specimen break
In Fig. 10,b, the cracks penetrating inside the pipe
metal to the substantial depth up to 500 m are clearly
seen. The considerable thinning of the pipe wall thick-
ness in the vicinity and in the places of the break argued
about the exceed of the tensile stresses of a material
over the yield stress limit and testifies that the damage
occurred is because of material operational conditions.
3.2. LOOP-1a
The design of the loops with irradiation chambers
(see Fig. 6,a) was developed basing on the information
obtained during these tests of the prototype. In order to
strengthen the construction, the lower horizontal part of
the loop with fastened heaters was made of the 40 mm
external diameter pipes having a 6 mm thick wall. The
sizes of the main coolers were decreased.
The connection of the SCWCL to the chemical anal-
ysis mains was arranged through the 10 mm diameter
manifolds and fitting joints. The manifolds were welded
into the loop near the top left and bottom left corners
(see Fig. 6,a). The sensor was implemented into the loop
for the water flow rate control [19].
3.3. TESTS OF THE CU-EITF OPERATION
MODES UNDER 10 MeV e-IRRADIATION
SCWCL “Loop 1a” was mounted in the LPE-10 ac-
celerator bunker for specimen irradiation (Fig. 11) mon-
itored by the video camera and the control systems of
the CU-EITF and LPE-10 [17 - 19].
Constructed and mounted Loop_1a (free convection)
Loop, coolers and heaters
are thermo isolated
Irradiation cell (4 tubes with specimens)
Accelerator outlet
Coolers
Frame
Fig. 11. SCWCL “Loop-1a” during mounting
in the LPE-10 accelerator bunker
Four sessions of irradiation of samples by the
10…11 MeV EB were conducted at the LPE-10 linac.
The EB mean current was 0.5…0.8 mA (Fig. 12). The
EB pulse frequency was 250 Hz at the pulse duration
3.4 s and the beam irradiation cell scanning frequency
ISSN 1562-6016. ВАНТ. 2017. №6(112) 189
of 3.5 Hz. The average vertical span of the beam in the
irradiation cell plane was 21 cm (Fig. 11).
The total duration of sessions was 572 h including
497 h under the beam. The maximum fluence on the
irradiation cell surface was more than 10
20
e/cm
2
.
The EB parameters were controlled by the LPE op-
erator (see Fig. 12) and were archived (see Fig. 13).
The photometry of electron flux density in the irra-
diation cell zone was made before the sessions, and is
shown in Fig. 14.
The operating conditions for SCWCL “Loop-1a”
were: the pressure 23.5 MPa, the maximum temperature
at the IC surface up to 380ºС (see Figs. 9-11). The simu-
lation estimated mass flow rate was 70…80 g/s. Corre-
spondingly, the linear velocity of subcritical water in the
IC cartridges was ~0.5 m/s. The parameters of “Loop-
1a” were controlled by the session operator (Fig. 15)
and saved to the archive (Figs. 16, 17).
Fig. 12. The display of the LPE-10 operator’s control
panel
Fig. 13. LPE-10 parameters archive.
Information on 12.08.2012
Fig. 14. Glass photometry of the e-beam (30.07.2012).
The glass (S3) is behind the irradiation cell on the left
and in front of the cell – on the right (S2). The layout
of samples in the cell is in the middle
CONCLUSIONS
The stable subcritical and supercritical operating
modes of two options of the 1.21.5 m 4 litre water
convection loop volume were substantiated by calcula-
tions and confirmed experimentally. It is experimentally
shown that with adequate external thermal insulation of
the loops the external heaters with capacity of
6…15 kW are enough for the transition of the convec-
tion water loops in the supercritical mode operation.
Fig. 15. The display on the CU-EITF operator’s control
panel. The cooling of the loop at the end of the session
a b
Fig. 16. The irradiation cell, T and cooler, Tcool,
temperature curves (°C), the curves of water pressure
P (bar) and mass M in the loop (a) and the consoleplot
(b) at the beginning of irradiation mode (10.08.2012)
a b
Fig. 17. The irradiation cell, T and cooler, Tcool,
temperature curves (°C) and the curve of water pressure
P (bar) and mass M in the loop (a) and the console
P/(T-II) plot (b) at the ending of irradiation
(26.08.2012)
REFERENCES
1. U.S. DOE nuclear energy research advisory commit-
tee and the Generation IV international forum // A
Technology Roadmap for Generation IV Nuclear
Energy Systems. GIF-002-00, (December 2002).
2. R.B. Duffey, H.F. Khartabil, I.L. Pioro,
J.M. Hopwood. The future of nuclear: SCWR Gen-
eration IV high performance channels // Proc. of the
11
th
Int. Conf. on Nucl. Eng. (ICONE-11), Shinjuku,
Tokyo, Japan, April 20-23, 2003. Paper № 36222, 8
p.
3. K.P. Boyle, D. Brady, D. Guzonas, H. Khartabil, et
al. Canada’s Generation IV national program –
overview // Proc. of the 4
th
Int. Symp. on SCWRs,
March 8-11, 2009, Heidelberg, Germany. Paper
№ 74, 13 p.
4. Y.-Y. Bae, J. Jang, H.-Y. Kim, H.-Y. Yoon,
H.-O. Kang, K.-M. Bae. Research activities on a su-
percritical pressure water reactor in Korea // Nucl.
Eng. Tech. 2007, v. 39, № 4, p. 273-286.
5. S.-Y. Hong, K. Lee, S.-M. Bae, Y.-B. Kim, et al.
Interim results of SCWR development feasibility
study in Korea // Proc. of the 4
th
Int. Symp. on
SCWRs, March 8-11, 2009, Heidelberg, Germany.
Paper № 50, 6 p.
ISSN 1562-6016. ВАНТ. 2017. №6(112) 190
6. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre,
E.A. West, T.R. Allen, et al. Corrosion and stress
corrosion cracking in supercritical water // JNM.
2007, v. 371, p. 176-201.
7. M.H. Anderson, J.R. Licht, M.L. Corradini. Progress
on the University of Wisconsin super-critical water
heat transfer facility // Proc. of the 11
th
Int. Topical
Meeting on Nuclear Reactor Thermal-Hydraulics
(NURETH 11), Avignon, France, October 2-6, 2005,
paper № 265.
8. Y. Ishiwatari, Y. Oka, K. Yamada. Japanese R&D
projects on pressure-vessel type SCWR // Proc. of
the 4
th
Int. Symp. on SCWRs, March 8-11, 2009,
Heidelberg, Germany, Paper № 73, 9 p.
9. Yu.D. Barnayev, P.L. Kirillov, V.M. Poplavskij,
V.N. Sharapov. Nuclear reactors based on super-
critical pressure water // Atomic energy. 2004, v. 96,
№ 5, p. 374-380.
10. X. Cheng. R&D activities on SCWR in China //
Proc. of the 4
th
Int. Symp. on SCWRs, March 8-11,
2009, Heidelberg, Germany. Paper № 53, 14 p.
11. P. Hajek, R. Vsolak, M. Ruzickova. First experience
with operating the supercritical water loop // Proc. of
the 4
th
Int. Symp. on SCWRs, March 8-11, 2009,
Heidelberg, Germany. Paper № 69, 10 p.
12. A.S. Bakai, V.N. Boriskin, A.N. Dovbnya,
S.V. Dyuldya, D.A. Guzonas. Supercritical water
convection loop (NSC KIPT) for materials assess-
ment for the next generation reactors // Proc. of the
5
th
Int. Symp. on SCWRs. Vancouver, BC, Canada,
March 13-16, 2011, Paper № 51.
13. A.S. Bakai, V.N. Boriskin, M.I. Bratchenko,
E.Z. Biller, P.A. Bytenko, V.A. Bocharov,
V.N. Vereshchaka, A.N. Dovbnya, S.V. Dyuldya,
Yu.V. Gorenko, G.G. Kovalev, V.A. Momot,
O.A. Repihov, S.K. Romanovsky, A.N. Savchenko,
V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov,
A.V. Torgovkin, V.V. Handak, S.V. Shelepko,
G.N. Tcebenko. Electron irradiation of the material
samples of new generation nuclear reactors in the
supercritical water convection loop // Problems of
Atomic Sci. and Tech. Ser. “Nucl. Phys. Investiga-
tions”. 2013, № 6(88), p. 230-234.
14. A.N. Dovbnya, M.I. Ayzatsky, V.N. Boriskin, et al.
Electron Linacs Based Radiation Facilities of
Ukrainian National Science Centre KIPT // Bull. Am.
Phys. Soc. 1997, v. 42, № 3, p. 1391.
15. M.I. Ayzatsky, V.N. Boriskin, A.M. Dovbnya, et al.
The NSC KIPT Electron Linacs R&D // Problems of
Atomic Sci. and Tech. Ser. “Nucl. Phys. Investiga-
tions”. 2003, № 2(41), p. 19-24.
16. Natural circulation data and methods for advanced
water cooled nuclear power plant designs IAEA-
TECDOC-1281, IAEA, Vienna, 2002, 252 p.
17. Natural circulation in water cooled nuclear power
plants: Phenomena, models, and methodology for
system reliability assessments. IAEA-TECDOC-
1474, IAEA, Vienna, 2005, 649 p.
18. M. Sharmaa, D.S. Pilkhwal, P.K. Vijayan, D. Saha,
R.K. Sinha. Steady state and linear stability analysis
of a supercritical water natural circulation loop //
Nucl. Eng. Design. 2010, v. 240, p. 588-597.
19. A.S. Bakai, E.Z. Biller, A.M. Bovda, V.N. Boriskin,
Yu.V. Gorenko, V.A. Momot, L.V. Onischenko,
V.I. Solodovnikov, S.V. Shelepko. Monitoring the
flow rate of water in the Supercritical Convection
Loop // Problems of Atomic Sci. and Tech. Ser.
“Nucl. Phys. Investigations”. 2016, № 3(103),
p. 120-122.
Article received 31.10.2017
РЕЖИМЫ ОБЛУЧЕНИЯ ЭЛЕКТРОНАМИ ОБРАЗЦОВ МАТЕРИАЛОВ В СВЕРХКРИТИЧЕСКОЙ
ВОДЯНОЙ КОНВЕКЦИОННОЙ ПЕТЛЕ
А.С. Бакай, В.Н. Борискин, М.И. Братченко, А.Н. Довбня, С.В. Дюльдя, Ю.В. Горенко, В.А. Момот,
С.К. Романовский, А.Н. Савченко, В.И. Солодовников, В.Ю. Титов, С.В. Шелепко, Г.Н. Цебенко
Специально разработанная в ХФТИ сверхкритическая водяная конвекционная петля (СВКП) с камерой
облучения, связанная с ускорителем электронов ЛУЭ-10, позволяет проводить коррозийные тесты потенци-
альных конструктивных материалов реакторов IV поколения со сверхкритическим водяным охлаждением
(SCWR) под облучением. Образцы в потоке воды при 350…400°C, 23…25 МПа облучаются электронным
пучком 10 МэВ/10 кВт линейного ускорителя ЛУЭ-10. Приводятся параметры режимов облучения образцов
во время 500-часового сеанса работы СВКП.
РЕЖИМИ ОПРОМІНЕННЯ ЕЛЕКТРОНАМИ ЗРАЗКІВ МАТЕРІАЛІВ У НАДКРИТИЧНІЙ ВО-
ДЯНІЙ КОНВЕКЦІЙНІЙ ПЕТЛІ
О.С. Бакай, В.М. Борискін, М.І. Братченко, А.М. Довбня, С.В. Дюльдя, Ю.В. Горенко, В.О. Момот,
С.К. Романовський, А.М. Савченко, В.І. Солодовников, В.Ю. Титов, С.В. Шелепко, Г.Н. Цебенко
Спеціально розроблена в ХФТІ надкритична водяна конвекційна петля (НВКП) з камерою опромінення,
яка зв’язана з прискорювачем електронів ЛПЕ-10, дозволяє проводити корозійні тести потенційних конс-
трукційних матеріалів реакторів IV покоління з надкритичним водяним охолодженням (SCWR) під опромі-
ненням. Зразки в потоці води при 350…400°C, 23…25 МПа опромінюються 10 МеВ/10 кВт електронним
пучком лінійного прискорювача ЛПЕ-10. Приводяться параметри режимів опромінення зразків під час 500-
годинного сеансу роботи НВКП.
|