Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector

The method of express analysis provides the measurement of radiation spectra of medical radionuclides by a detection module based on an uncooled silicon planar detector and a "scintillator-silicon photosensor" type module. A spectrometric device for express analysis of radionuclide concent...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Deiev, O.S., Kiprich, S.K., Maslov, N.I., Ovchinnik, V.D., Shulika, M.Y., Vasiliev, G.P., Yalovenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136208
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector / O.S. Deiev, S.K. Kiprich, N.I. Maslov, V.D. Ovchinnik, M.Y. Shulika, G.P. Vasiliev, V.I. Yalovenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 117-121. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136208
record_format dspace
spelling irk-123456789-1362082018-06-17T03:04:52Z Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector Deiev, O.S. Kiprich, S.K. Maslov, N.I. Ovchinnik, V.D. Shulika, M.Y. Vasiliev, G.P. Yalovenko, V.I. Детекторы и детектирование ядерных излучений The method of express analysis provides the measurement of radiation spectra of medical radionuclides by a detection module based on an uncooled silicon planar detector and a "scintillator-silicon photosensor" type module. A spectrometric device for express analysis of radionuclide concentration has been developed and its prototyping has been carried out, confirming the operability of the device. The spectrometer analyzer is powered from the USB port of the PC (including a laptop) that provides the possibility of autonomous operation. Test measurements were carried out using the prototype of the spectrometer and X-ray sources, as well as spectral distributions of the radiation of real samples of ⁹⁹ᵐTc in a special container (glass ampoule). For a Si-PIN-detector with a thickness of 300 μm, the emission spectrum consists of a line of ⁹⁹ᵐTc with an energy of 140.5 keV and two peaks of the characteristic X-ray radiation (CXR) of technetium. The calculation in GEANT4 shows the matching of the ⁹⁹ᵐTc activities obtained from the registration of CXR and the main line. A measurement of the technetium concentration both by the 140.5 keV line and on the CXR radiation was proposed that significantly increases the speed of the data accumulation. Методика експрес-аналізу передбачає вимір спектрів випромінювання медичних радіонуклідів детектуючим модулем на основі неохолоджуваного кремнієвого планарного детектора і модулем типу «сцинтилятор - кремнієвий фотосенсор». Розроблено спектрометричний пристрій для експрес-аналізу концентрації радіонуклідів і проведено його макетування, що підтверджує працездатність пристрою. Живлення спектрометра-аналізатора виконано від USB-порту ПК (в тому числі, ноутбука), що забезпечує можливість автономної роботи. Проведено тестові вимірювання з використанням робочого макета спектрометра і джерел рентгенівського випромінювання, а також досліджені спектральні розподіли випромінювання реальних зразків ⁹⁹ᵐТc у спеціальній упаковці (скляній ампулі). Для Si-PIN-детектора товщиною 300 мкм спектр випромінювання складається з лінії ⁹⁹ᵐТc з енергією 140,5 кеВ і двох піків характеристичного рентгенівського випромінювання технеція. Розрахунок у GEANT4 показує узгодження активностей ⁹⁹ᵐТc, отриманих по реєстрації ХРВ і основної лінії. Запропоновано вимірювання концентрації технеція не тільки по лінії 140,5 кеВ, а й по випромінюванню ХРВ, що істотно збільшує швидкість набору даних. Методика экспресс-анализа предусматривает измерение спектров излучения медицинских радионуклидов детектирующим модулем на основе неохлаждаемого кремниевого планарного детектора и модулем типа «сцинтиллятор - кремниевый фотосенсор». Разработано спектрометрическое устройство для экспресс-анализа концентрации радионуклидов и проведено его макетирование, подтверждающее работоспособность устройства. Питание спектрометра-анализатора выполнено от USB-порта ПК (в том числе, ноутбука), что обеспечивает возможность автономной работы. Проведены тестовые измерения с использованием рабочего макета спектрометра и источников рентгеновского излучения, а также исследованы спектральные распределения излучения реальных образцов ⁹⁹ᵐТс в специальной упаковке (стеклянной ампуле). Для Si-PIN-детектора толщиной 300 мкм спектр излучения состоит из линии ⁹⁹ᵐТс с энергией 140,5 кэВ и двух пиков характеристичного рентгеновского излучения технеция. Расчет в GEANT4 показывает согласие активностей ⁹⁹ᵐТc, полученных по регистрации ХРИ и основной линии. Предложено измерение концентрации технеция не только по линии 140,5 кэВ, но и по излучению ХРИ, что существенно увеличивает скорость набора данных. 2017 Article Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector / O.S. Deiev, S.K. Kiprich, N.I. Maslov, V.D. Ovchinnik, M.Y. Shulika, G.P. Vasiliev, V.I. Yalovenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 117-121. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 07.85.Fv, 61.80.Cb http://dspace.nbuv.gov.ua/handle/123456789/136208 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Детекторы и детектирование ядерных излучений
Детекторы и детектирование ядерных излучений
spellingShingle Детекторы и детектирование ядерных излучений
Детекторы и детектирование ядерных излучений
Deiev, O.S.
Kiprich, S.K.
Maslov, N.I.
Ovchinnik, V.D.
Shulika, M.Y.
Vasiliev, G.P.
Yalovenko, V.I.
Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
Вопросы атомной науки и техники
description The method of express analysis provides the measurement of radiation spectra of medical radionuclides by a detection module based on an uncooled silicon planar detector and a "scintillator-silicon photosensor" type module. A spectrometric device for express analysis of radionuclide concentration has been developed and its prototyping has been carried out, confirming the operability of the device. The spectrometer analyzer is powered from the USB port of the PC (including a laptop) that provides the possibility of autonomous operation. Test measurements were carried out using the prototype of the spectrometer and X-ray sources, as well as spectral distributions of the radiation of real samples of ⁹⁹ᵐTc in a special container (glass ampoule). For a Si-PIN-detector with a thickness of 300 μm, the emission spectrum consists of a line of ⁹⁹ᵐTc with an energy of 140.5 keV and two peaks of the characteristic X-ray radiation (CXR) of technetium. The calculation in GEANT4 shows the matching of the ⁹⁹ᵐTc activities obtained from the registration of CXR and the main line. A measurement of the technetium concentration both by the 140.5 keV line and on the CXR radiation was proposed that significantly increases the speed of the data accumulation.
format Article
author Deiev, O.S.
Kiprich, S.K.
Maslov, N.I.
Ovchinnik, V.D.
Shulika, M.Y.
Vasiliev, G.P.
Yalovenko, V.I.
author_facet Deiev, O.S.
Kiprich, S.K.
Maslov, N.I.
Ovchinnik, V.D.
Shulika, M.Y.
Vasiliev, G.P.
Yalovenko, V.I.
author_sort Deiev, O.S.
title Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
title_short Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
title_full Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
title_fullStr Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
title_full_unstemmed Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector
title_sort method for express determination of medical radionuclides ⁹⁹ᵐtc, ⁶⁷cu concentration using spectrometer based on si planar detector
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Детекторы и детектирование ядерных излучений
url http://dspace.nbuv.gov.ua/handle/123456789/136208
citation_txt Method for express determination of medical radionuclides ⁹⁹ᵐTc, ⁶⁷Cu concentration using spectrometer based on Si planar detector / O.S. Deiev, S.K. Kiprich, N.I. Maslov, V.D. Ovchinnik, M.Y. Shulika, G.P. Vasiliev, V.I. Yalovenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 117-121. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT deievos methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT kiprichsk methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT maslovni methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT ovchinnikvd methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT shulikamy methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT vasilievgp methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
AT yalovenkovi methodforexpressdeterminationofmedicalradionuclides99mtc67cuconcentrationusingspectrometerbasedonsiplanardetector
first_indexed 2025-07-10T00:51:46Z
last_indexed 2025-07-10T00:51:46Z
_version_ 1837219142809157632
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 117 DETECTORS AND NUCLEAR RADIATION DETECTION METHOD FOR EXPRESS DETERMINATION OF MEDICAL RADIONUCLIDES 99m Tc, 67 Cu CONCENTRATION USING SPECTROMETER BASED ON Si PLANAR DETECTOR O.S. Deiev, S.K. Kiprich, N.I. Maslov, V.D. Ovchinnik, M.Y. Shulika, G.P. Vasiliev, V.I. Yalovenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine The method of express analysis provides the measurement of radiation spectra of medical radionuclides by a de- tection module based on an uncooled silicon planar detector and a "scintillator-silicon photosensor" type module. A spectrometric device for express analysis of radionuclide concentration has been developed and its prototyping has been carried out, confirming the operability of the device. The spectrometer analyzer is powered from the USB port of the PC (including a laptop) that provides the possibility of autonomous operation. Test measurements were car- ried out using the prototype of the spectrometer and X-ray sources, as well as spectral distributions of the radiation of real samples of 99m Tc in a special container (glass ampoule). For a Si-PIN-detector with a thickness of 300 μm, the emission spectrum consists of a line of 99m Tc with an energy of 140.5 keV and two peaks of the characteristic X- ray radiation (CXR) of technetium. The calculation in GEANT4 shows the matching of the 99m Tc activities obtained from the registration of CXR and the main line. A measurement of the technetium concentration both by the 140.5 keV line and on the CXR radiation was proposed that significantly increases the speed of the data accumulation. PACS: 07.85.Fv, 61.80.Cb INTRODUCTION Modern nuclear medicine uses radioactive isotopes in the form of radiopharmaceuticals, which allow carry- ing out various diagnostic and therapeutic procedures [1, 2]. The most important radionuclide used in 80…90% of the procedures is 99m Tc. This isotope is formed during the decay of the parent isotope 99 Mo [3, 4]. The 99m Tc isotope is separated by physicochemical means and used as a radioactive label in various chemical compounds. A perspective isotope is also 67 Cu. This isotope has a short half-life and low-energy emission lines what reduces the radiation dose on the patient's body. The NSC KIPT developed the physical and techno- logical basis for the production of 99 Мо/ 99m Тс [3, 4] and 67 Cu [5, 6] using the bremsstrahlung of an electron ac- celerator. The obtained real pharmaceutical drug 99m Tc was contained in glass ampoules with a wall thickness of ~ 1 mm. Due to the fact that the obtained pharmaceu- ticals are of different activity, the production of such drugs requires the determination of the concentration of the medical radionuclide in a short time. For the express analysis of the medical radionuclides 99m Tc and 67 Cu concentration a spectrometer analyzer with interchange- able detection modules was developed in NSC KIPT. One of the detection modules based on an uncooled planar silicon detector, the second module is a scintilla- tor-photodetector system. The spectrometer-analyzer was powered from the USB port of the PC (laptop) that provides the possibility of autonomous operation. 1. RADIATION LINES 99m Тс, 67 Cu The half-life of 99m Tc is 6.01 h, the energy and rela- tive intensity of its main lines of gamma and X-ray radi- ation show in Table 1 [7, 8]. The radiation of techneti- um consists of the main line of 140.5 keV (the intensity of the quantum yield per decay 89%) and several lines of the CXR technetium. The K-lines of the CXR techne- tium arise after the internal conversion of electrons from the K shell and total quantum yield is of ~ 8.3% of the main line intensity 140.5 keV. Kα lines have a yield intensity per decay of 6.25%, Kβ  1.157%. Table 1 Energy and intensities of the main lines of gamma and X-rays for 99m Тс Gammas from 99m Tc (6.01 h) Eγ (keV) Iγ (%) 140.511 89 X-rays from 99m Tc (6.01 h ) Eγ (keV) Iγ (%) Assignment 18.251 2.15 Tc Ka2 18.367 4.10 Tc Ka1 20.599 0.333 Tc Kb3 20.619 0.644 Tc Kb1 20.789 0.00357 Tc Kb5 21.005 0.146 Tc Kb2 21.042 0.0302 Tc Kb4 The half-life of 67 Cu is 61.83 h. The 67 Cu emission spectra also consists of several lines (decay mode β - ) and is presented in Table 2. Table 2 Energy and intensities of the main lines of gamma and X-rays for 67 Cu Gammas from 67 Cu (61.83 h ) Eγ (keV) Iγ (%) 91.266 7.0 93.311 16.1 184.577 48.7 X-rays from 67 Cu (61.83 h ) Eγ (keV) Iγ (%) Assignment 8.616 1.95 Zn Ka2 8.639 3.84 Zn Ka1 9.572 0.239 Zn K3 9.572 0.464 Zn K1 ISSN 1562-6016. ВАНТ. 2017. №6(112) 118 The low-energy CXR is strongly absorbed by the walls of the glass ampoule and is not suitable for ex- press analysis of the drug. Therefore, the detection of 67 Cu is detected by gamma radiation lines. The lines with Eγ = 91.266 and 93.311 keV are detected by the Si- PIN detector and line 184.577 keV – by the system of CsI(Tl) scintillator – Si-PIN-photodiode. 2. SPECTROMETER-ANALYZER FOR EXPRESS ANALYSIS OF MEDICAL RADIONUCLIDES CONCENTRATION 99m Tc AND 67 Cu WITH REPLACEABLE DETECTION MODULES The sealed modules of uncooled planar silicon de- tectors and read-out electronics developed and fabricat- ed at the NSC KIPT showed high stability when using in high-energy physics, nuclear physics experiments, devices for monitoring the concentration of elements, and in medical diagnostic devices [9 - 11]. In Fig. 1 two types of detection modules used in the present work are presented, an uncooled silicon PIN detector (on the left) and a detection system CsI(Tl) scintillator  a silicon PIN-photodiode (on the right). Fig. 1. Two types of detection modules: the uncooled Si-PIN detector (on the left) and the detection system CsI(Tl) scintillator – Si-PIN-photodiode (right) A spectrometric channel based on an uncooled Si- PIN detector of 300 μm thickness provides detection of radiation in the energy range Eγ = 5...150 keV with a resolution of FWHM = 1…1.2 keV. Radiation with an energy Eγ > 50 keV is more efficiently registered with the help of detection systems consisting of a scintillator CsI(Tl) and a Si-PIN-photodiode. In [12 - 14] the effi- ciency of quanta registration of different energies for detecting modules based on an uncooled planar Si- detector, as well as a scintillator-photodetector system, was considered. Fig. 2. Prototype of the spectrometer-analyzer for the express analysis of the 99m Tc activity consists of sealed detector, preamplifier, module with a spectrometric amplifier, ADС converter and PC In Fig. 2 spectrometer-analyzer prototype for the fast analysis of the concentration of 99m Tc is shown. The monitor shows the spectrum accumulation. Fig. 3 shows the experimental emission spectrum of a real pharmaceutical preparation 99m Tc, placed in a glass ampoule with a wall thickness of ~ 1 mm, ob- tained by a Si-PIN-detector of 300 μm htickness. Fig. 3. Experimental emission spectrum of the real pharmaceutical preparation 99m Tc, obtained by the Si – PIN-detector of 300 μm thickness (blue curve). Red curves  the fitting of CXR peaks (Kα, Kβ) and 140.5 keV The emission spectrum consists of a main line of 140.5 keV, Compton distribution (49.8 keV  edge), and two CXR lines of technetium (with energy Kα = 18.36 and Kβ = 20.6 keV). Kα lines have a yield intensi- ty per decay of 6.25%, Kβ  1.157% (Table 1). Each emission line has its own absorption coefficient in me- dia and its registration efficiency in Si detector. The calculation in GEANT4 shows the agreement of the 99m Tc activities obtained from the registration of CXR and the main line. A measurement of the technetium concentration both by the 140.5 keV line and on the CXR radiation was proposed, what significantly in- creases the speed of the data accumulation. For experimental measurements the ratio of Kα / Кβ was ~ 5.15…5.35 (the estimate from Table 1 gives a ratio of ~ 5.4), and the ratio of the sum of CXR quanta (Kα + Kβ) exceeded the sum of the quanta at 140.5 keV peak at 15.2 times, what is close to the simulation re- sults for the glass of 1 mm thickness. The dependence of drug activity over the time was measured. Figs. 4, 5 shows the experimental values of drug activity measured at different times (red squares) and the estimated activity rating with allowance for de- cay (blue line). Fig. 4. Experimental values of the activity of the drug for the 140.5 keV line, measured at different times (red squares) and calculated activity with allowance for decay (blue line) ISSN 1562-6016. ВАНТ. 2017. №6(112) 119 Fig. 5. Experimental values of drug activity (the entire spectrum is summed in the interval ΔE = 10…140.5 keV) measured at different times (red squares) and calculated activity with allowance for decay (blue line) These two measurements showed the same decrease in activity 1.45 times in 233 minutes. The speed of ac- cumulation the entire spectrum in the energy range ΔE = 10…140.5 keV exceeds the speed of dialing along the line 140.5 keV by about 37 times. Calculations in GEANT4 give approximately the same ratio of the reg- istered integral spectrum to the baseline. This opens the possibility of calibrating the spectrometer over the inte- gral spectrum and significantly increases the speed of the analysis. 3. CALCULATIONS OF THE INTENSITY OF THE MAIN GAMMA LINE AND X-RAY LINES IN GEANT4 Fig. 6 shows the visual representation in GEANT4 of the trajectories of gamma and X-ray quanta (green lines) for a system: ampoule with liquid (cylinder, yel- low), glass (red) and detector (Si, 300 µm, blue). For simplicity, the trajectories of quanta are shown directed to the area of the detector are normal to its surface. Quanta arise randomly in the volume of a liquid. Fig. 6. Visual presentation in GEANT4 of the trajecto- ries of gamma and X-ray quanta (green lines) for a system: ampoule with liquid (cylinder, yellow), glass (red) and detector (Si, 300 µm, blue) A feature of the passage of low energy quanta through thin layers of matter is their strong absorption. The trajectories of quanta in Fig. 6 are rectilinear, but some of the quanta are absorbed in the glass and liquid, and the quanta passing into the Si detector are only par- tially registered in it. In GEANT4 the relative intensities of the main gamma and X-ray lines registered in Si, 300 µm for 99m Tc for various glass ampoule thicknesses are calculated. The results are presented in Table 3. Table 3 Energy and relative intensities of the main lines of gamma and X-ray radiation registered in Si, 300 µm for 99m Tc for various glass thicknesses of the ampoule Еγ 0.2 mm 0.5 mm 1 mm 2 mm 18.36 24.79 18.83 11.52 5.41 20.6 3.95 3.27 2.33 1.43 140.5 1 1 1 1 As one can see from the data for 1 mm of glass, the calculated increasing of the value of CXR quanta over the main peak is ~14, what is close to the experimental- ly measured value of ~15.2. The results of calculations in GEANT4 of the rela- tive intensities of the main emission lines of 99m Tc for various plastic materials of the exit window with a thickness of 0.5 mm are presented in Table 4. Table 4 Energy and relative intensities of the main lines of gamma and X-ray emission registered in Si, 300 µm for 99m Tc for various materials of the output window, thickness 0.5 mm (GEANT4) Еγ Teflon Plexiglass Kapton 18.36 28.34 30.81 30.74 20.6 4.40 4.69 4.65 140.5 1 1 1 In the case of a thin plastic window, the increasing of the number of CXR quanta over the main peak is ~ 35 times. Note that excitation of CXR Tc and Mo by the main line 140.5 keV is also possible. For the provisional thickness Tc and Mo ~ 100 μm, the yield of CXR (Kα + Kβ) in the full angle does not exceed 0.7% of the inten- sity of the main line for Tc and 0.6% for Mo. The line Kβ CXR Tc with an energy of 20.6 keV may re-emit, exciting CXR Mo. This increases the pos- sible amount of Mo CXR (Kα + Kβ) up to ~ 0.62% of the intensity of the main line in solution Mo 50% / Tc 50% and thickness ~ 100 μm. One should take into ac- count that K-lines of CXR Tc from the process of inter- nal conversion of electrons together give a quanta yield of ~ 8.3% of the intensity of the main line of 140.5 keV. In such an estimate, the distorting effect of additional CXR of technetium and molybdenum is ~ 1.32 / 8.3 = 16%. In pure solution the increase in CXR Tc is ~ 0.7 / 8.3 = 8%. An analysis of the experimental spectrum gives the CXR lines exactly to the energies 19.35 and 20.6 keV. The Kα peak of the Mo line of 17.47 keV would be lo- cated 13 channels to the left. Such a difference would be fixed by the detection system. In addition, the ratio Kα / Kβ for Tc would change noticeably. This fact means that the amount of residual Mo is at least an order of magni- tude smaller than the case considered. ISSN 1562-6016. ВАНТ. 2017. №6(112) 120 4. MEASUREMENT OF THE 99m Tc ACTIVITY WITH A DETECTION MODULE BASED ON THE SCINTILLATOR- PHOTODETECTOR SYSTEM The emission lines of the sources 241 Am, 57 Co, 99m Тс were measured by the detecting system of the scintilla- tor CsI(Tl)-Si-PIN photodiode. Fig. 7 shows the results of gamma-ray spectrum measurements of the 241 Am source  line with Eγ = 59.54 keV and 57 Co, Eγ = 122 keV. The size of the scin- tillator CsI(Tl) is 5510 mm, Si-PIN-photodiode is 550.3 mm. Fig. 7. Gamma spectrum of the 241 Am source  Eγ = 59.54 keV line and 57 Co, Eγ = 122 keV Fig. 8 shows the results of gamma-ray spectrum measurements of 99m Tc the 140.5 keV line. The size of the scintillator CsI(Tl) is 2210 mm, Si-PIN- photodiode is 220.3 mm. Calculation of the drug ac- tivity was carried out according to the number of counts in the peak 99m Tc. The processing is performed by fit- ting the peak of 140.5 keV. Fig. 8. The experimental gamma-ray spectrum of 99m Tc, the 140.5 keV line (blue curve). The red curve is the fitting of the 140.5 keV peak in ORIGIN8 Comparative measurements of drug activity by three spectrometers were performed: by High Purity Cooled Germanium Detector (HPGe) Canberra, by Si-PIN- detector and CsI(Tl)-Si photodiode system. Taking into account the decrease in the 99m Tc emission intensity with time, all the results practically coincide. For exam- ple, for 1 ml of the drug: HPGe gives the activity result 25,900,000 Bq; 300 µm Si-PIN photodiode  25,351,000 Bq in 4π, 2210 mm 3 CsI(Tl) – Si-PIN- photodiode  25,971,000 Bq in total solid angle 4π. All the results are calculated to the end of the bombardment (EOB) time. CONCLUSIONS A spectrometer analyzer with replaceable detection modules was developed in NSC KIPT for the express analysis of medical radionuclides 99m Tc, 67 Cu concentra- tion. One of the detection modules is based on an un- cooled planar Si-PIN-detector (300 μm), the second one is based on a detection system CsI(Tl) scintillator – Si- PIN-photodiode. The spectral distribution of radiation of real samples of the pharmaceutical preparation 99m Tc in various experimental geometry was measured by two detection systems. The emission spectrum consists of a main line of 140.5 keV, Compton distribution (49.8 keV  edge) and two CXR lines of technetium (with energy Kα = 18.36 and Kβ = 20.6 keV). The calculation in GEANT4 shows the agreement of the 99m Tc activities obtained from the registration of CXR and the main line. A measurement of the technetium concentration both by the 140.5 keV line and by the CXR radiation was proposed what significantly increases the speed of the data accumulation. In the case of a thin glass or plastic window, the in- creasing of the value of CXR quanta over the main peak is ~ 35 times. Comparative measurements of drug activity by three spectrometers were performed: HPGe, Si-PIN-detector and CsI(Tl) – Si-photodiode system. Taking into ac- count the decrease in the 99m Tc emission intensity with time, the results practically coincide. REFERENCES 1. N.P. Dikiy, A.N. Dovbnya, S.V. Maryokhin, V.L. Uvarov. On Efficiency of Medical & Biophysi- cal Isotopes Production Using Electron Accelerator // Problems of Atomic Science and Technology. Se- ries “Nuclear Physics Investigations”. 1999, № 3 (34), р. 91-92. 2. V.Yu. Baranov. Isotopes: properties, application. M.: Science “Fizmat. Lit.” 2005, p. 328 (in Russian). 3. N.P. Dikiy, A.N. Dovbnya, V.L. Uvarov. The fun- damentals of 99m Tc production cycle at electron ac- celerator // Problems of Atomic Science and Tech- nology. Series “Nuclear Physics Investigations”. 2004, № 1, p. 168-171. 4. L.I. Nikolaichuk, V.A. Popov, A.I. Tutubalin, O.V. Krivchenko, A.G. Shepelev. Analyses on pro- duction of 99 Mo and 99m Tc isotopes for nuclear med- icine // Problems of Atomic Sience and Technology. Series “Nuclear Physics Investigations”. 2012, № 4(80), p. 160-162. 5. N.I. Ayzatsky, N.P. Dikiy, A.N. Dovbnya, et al. Fea- tures of Cu-67 photonuclear production // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2008, № 3, p. 174-178. 6. N.I. Ayzatsky, N.P. Dikiy, A.N. Dovbnya, et al. 99 Mo and 67 Cu isotope yields under production con- ditions of NSC KIPT electron accelerator KUT-30 // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2010, № 2, p. 140-144. ISSN 1562-6016. ВАНТ. 2017. №6(112) 121 7. The Lund/LBNL Nuclear Data Search, http://nucleardata.nuclear.lu.se/toi/ 8. National nuclear data center, http://www.nndc.bnl.gov/ 9. G.P. Vasilyev, V.K. Voloshin, S.K. Kiprich, et al. Encapsulated modules of silicon detectors of ioniz- ing radiation // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2010, № 3, p. 200-204. 10. V.I. Kulibaba, N.I. Maslov, S.V. Naumov, V.D. Ovchinnik, I.M. Prokhorets. Readout electron- ics for multichannel detectors // Problems of Atomic Science and Technology. Series “Nuclear Physics In- vestigations”. 2001, № 5(39), p. 177-179. 11. N.I. Maslov. Physical and technological aspects of creation and applications of silicon planar detectors // Problems of Atomic Science and Technology. 2013, № 2(84), p. 165-171. 12. G.L. Bochek, O.S. Deiev, N.I. Maslov, V.K. Vo- loshyn. X-ray lines relative intensity depending on detector efficiency, foils and cases thickness for primary and scattered spectra// Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2011, № 3, p. 42-49. 13. G.P. Vasiliev, V.K. Voloshyn, O.S. Deiev, et al. Measurement of Radiation Energy by Spectrometric Systems Based on Uncooled Silicon Detectors // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2014, v. 8, № 2, p. 391- 397. 14. G.P. Vasiliev, V.K. Voloshyn, O.S. Deiev, et al. Radiation dose determination by dual channel spec- trometr in energy range 0.005...1 MeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2012, № 4 (80), p. 205-209. Article received 25.10.2017 СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МЕДИЦИНСКИХ РАДИОНУКЛИДОВ 99m Tc, 67 Cu C ИСПОЛЬЗОВАНИЕМ СПЕКТРОМЕТРА НА ОСНОВЕ Si-ПЛАНАРНОГО ДЕТЕКТОРА А.С. Деев, С.К. Киприч, Н.И. Маслов, В.Д. Овчинник, М.Ю. Шулика, Г.П. Васильев, В.И. Яловенко Методика экспресс-анализа предусматривает измерение спектров излучения медицинских радионукли- дов детектирующим модулем на основе неохлаждаемого кремниевого планарного детектора и модулем типа «сцинтиллятор  кремниевый фотосенсор». Разработано спектрометрическое устройство для экспресс- анализа концентрации радионуклидов и проведено его макетирование, подтверждающее работоспособность устройства. Питание спектрометра-анализатора выполнено от USB-порта ПК (в том числе, ноутбука), что обеспечивает возможность автономной работы. Проведены тестовые измерения с использованием рабочего макета спектрометра и источников рентгеновского излучения, а также исследованы спектральные распреде- ления излучения реальных образцов 99м Тс в специальной упаковке (стеклянной ампуле). Для Si-PIN- детектора толщиной 300 мкм спектр излучения состоит из линии 99m Тс с энергией 140,5 кэВ и двух пиков характеристичного рентгеновского излучения технеция. Расчет в GEANT4 показывает согласие активностей 99m Тc, полученных по регистрации ХРИ и основной линии. Предложено измерение концентрации технеция не только по линии 140,5 кэВ, но и по излучению ХРИ, что существенно увеличивает скорость набора дан- ных. СПОСІБ ЕКСПРЕСНОГО ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ МЕДИЧНИХ РАДІОНУКЛІДІВ 99m Tc, 67 Cu З ВИКОРИСТАННЯМ СПЕКТРОМЕТРА НА ОСНОВІ Si-ПЛАНАРНОГО ДЕТЕКТОРА О.С. Деєв, С.К. Кіпріч, М.І. Маслов, В.Д. Овчинник, М.Ю. Шуліка, Г.П. Васильєв, В.І. Яловенко Методика експрес-аналізу передбачає вимір спектрів випромінювання медичних радіонуклідів детекту- ючим модулем на основі неохолоджуваного кремнієвого планарного детектора і модулем типу «сцинтиля- тор  кремнієвий фотосенсор». Розроблено спектрометричний пристрій для експрес-аналізу концентрації радіонуклідів і проведено його макетування, що підтверджує працездатність пристрою. Живлення спектро- метра-аналізатора виконано від USB-порту ПК (в тому числі, ноутбука), що забезпечує можливість автоно- мної роботи. Проведено тестові вимірювання з використанням робочого макета спектрометра і джерел рент- генівського випромінювання, а також досліджені спектральні розподіли випромінювання реальних зразків 99m Тc у спеціальній упаковці (скляній ампулі). Для Si-PIN-детектора товщиною 300 мкм спектр випроміню- вання складається з лінії 99m Тc з енергією 140,5 кеВ і двох піків характеристичного рентгенівського випро- мінювання технеція. Розрахунок у GEANT4 показує узгодження активностей 99m Тc, отриманих по реєстрації ХРВ і основної лінії. Запропоновано вимірювання концентрації технеція не тільки по лінії 140,5 кеВ, а й по випромінюванню ХРВ, що істотно збільшує швидкість набору даних. http://nucleardata.nuclear.lu.se/toi/