Measurement of electron beam energy characteristics at an industrial accelerator

At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac L...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Pomatsalyuk, R.I., Shevchenko, V.A., Shlyakhov, I.N., Tenishev, A.Eh., Titov, V.Yu., Titov, D.V., Uvarov, V.L., Zakharchenko, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/136210
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-136210
record_format dspace
spelling irk-123456789-1362102018-06-17T03:03:39Z Measurement of electron beam energy characteristics at an industrial accelerator Pomatsalyuk, R.I. Shevchenko, V.A. Shlyakhov, I.N. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. Теория и техника ускорения частиц At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimetric wedge technique are presented. A computer simulation method was used to study the features of the wedge application in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide-aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the different techniques is carried out. Енергія випромінення є одним з критичних параметрів у радіаційно-технологічних процесах, а також при проведенні випробувань на прискорювачах електронів. У статті викладені результати модернізації аналізатора спектра пучка промислового прискорювача ЛУ-10 (10 МеВ, 10 кВт) на основі 90˚-електромагніта. Для прийому і обробки даних розроблена система контролю з використанням багатофункціонального USB-пристрою. Приведені результати вимірювання енергетичних характеристик пучка прискорювача за допомогою аналізатора, а також дозиметричного клину. Методом комп'ютерного моделювання вивчені особливості застосування клину у тому разі, коли пучок з широким спектром. Досліджені умови on-line контролю енергії електронів з використанням широкоапертурного стек-монітора. Проведено порівняльний аналіз результатів вимірювання енергій, отриманих різними методами. Энергия излучения является одним из критических параметров в радиационно-технологических процессах, а также при проведении радиационных испытаний на ускорителях электронов. В статье изложены результаты модернизации анализатора спектра пучка электронов на основе 90˚-электромагнита промышленного ускорителя ЛУ-10 (10 МэВ, 10 кВт). Для приема и обработки данных разработана система контроля с использованием многофункционального USB-устройства. Приведены результаты измерения энергетических характеристик пучка ускорителя с помощью анализатора, а также дозиметрического клина. Методом компьютерного моделирования изучены особенности применения клина в случае пучка с широким спектром. Исследованы условия on-line мониторинга энергии электронов с использованием широкоаппертурного стек-монитора. Проведен сравнительный анализ результатов измерения энергии, полученных разными методами. 2017 Article Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос. 1562-6016 PACS: 29.27.Ac; 41.75.Fr; 07.81.+a http://dspace.nbuv.gov.ua/handle/123456789/136210 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Теория и техника ускорения частиц
Теория и техника ускорения частиц
spellingShingle Теория и техника ускорения частиц
Теория и техника ускорения частиц
Pomatsalyuk, R.I.
Shevchenko, V.A.
Shlyakhov, I.N.
Tenishev, A.Eh.
Titov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Zakharchenko, A.A.
Measurement of electron beam energy characteristics at an industrial accelerator
Вопросы атомной науки и техники
description At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimetric wedge technique are presented. A computer simulation method was used to study the features of the wedge application in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide-aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the different techniques is carried out.
format Article
author Pomatsalyuk, R.I.
Shevchenko, V.A.
Shlyakhov, I.N.
Tenishev, A.Eh.
Titov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Zakharchenko, A.A.
author_facet Pomatsalyuk, R.I.
Shevchenko, V.A.
Shlyakhov, I.N.
Tenishev, A.Eh.
Titov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Zakharchenko, A.A.
author_sort Pomatsalyuk, R.I.
title Measurement of electron beam energy characteristics at an industrial accelerator
title_short Measurement of electron beam energy characteristics at an industrial accelerator
title_full Measurement of electron beam energy characteristics at an industrial accelerator
title_fullStr Measurement of electron beam energy characteristics at an industrial accelerator
title_full_unstemmed Measurement of electron beam energy characteristics at an industrial accelerator
title_sort measurement of electron beam energy characteristics at an industrial accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Теория и техника ускорения частиц
url http://dspace.nbuv.gov.ua/handle/123456789/136210
citation_txt Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос.
series Вопросы атомной науки и техники
work_keys_str_mv AT pomatsalyukri measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT shevchenkova measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT shlyakhovin measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT tenishevaeh measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT titovvyu measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT titovdv measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT uvarovvl measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
AT zakharchenkoaa measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator
first_indexed 2025-07-10T00:51:59Z
last_indexed 2025-07-10T00:51:59Z
_version_ 1837219158448668672
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 3 THEORY AND TECHNOLOGY OF PARTICLE ACCELERATION MEASUREMENT OF ELECTRON BEAM ENERGY CHARACTERISTICS AT AN INDUSTRIAL ACCELERATOR R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: uvarov@kipt.kharkov.ua At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimet- ric wedge technique are presented. A computer simulation method was used to study the features of the wedge ap- plication in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide- aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the differ- ent techniques is carried out. PACS: 29.27.Ac; 41.75.Fr; 07.81.+a INTRODUCTION Nowadays, above 20.000 industrial electron acceler- ators operate throughout the world [1]. Those installa- tions provide a number of technological processes and diagnostic procedures – sterilization of outputs of the medical, pharmaceutical and food industry, modifica- tion of polymers and semiconductors, elemental analy- sis, nondestructive testing, etc. [2]. One of critical parameters of any technology using electron beam is the particle energy (see, e.g., [3]). In overwhelming majority of cases, the energy spectrum of the beam of an industrial accelerator is rather wide. The only method of its precise determination is one based on the usage of a magnet analyser. At the same time, none serial accelerator has been equipped with that device. A standardized off-line wedge-based technique is com- monly used for measurement of certain characteristics of the beam spectrum (the most probable Ер and average Еav value of the electron energy)  [4]. A lack of infor- mation about spectrum limits the possibility of analysis and optimization of product processing regime relative to the absorbed dose, in particular, by means of comput- er simulation (see, e.g., [5]). In NSC KIPT, an industrial plant with an electron Linac LU-10 operates for three decades [6]. The accel- erator is supplied with a kit of diagnostic devices in- cluding a magnet analyser for measuring the beam spec- trum. In the work, an updated control system of the magnet analyser, and also the results of the study of energy characteristics of the accelerator beam obtained by the different methods are described. 1. METHODS AND INSTRUMENTATION 1.1. BEAM DIAGNOSTICS DEVICES In Fig. 1, a scheme of a control system of the LU-10 beam parameters is given. An accelerating structure AS is followed with the unit of a built-in Faraday cup FС-1 for direct measuring the average beam current. Behind it, a magnetic induction sensor (the Rogowski loop) MIS-1 for on-line monitoring the pulse beam current is situated. A chamber of the 90 magnet analyzer (MA) of beam spectrum is located downstream. The chamber has a slit collimator SC and second Faraday cup FС-2 at its exit. A current source MCS provides the feeding of MA electromagnet. Behind the MA chamber, the second sensor MIS-2 and beam scanner S have been mounted along the beam axis. A conveyor C is situated at a distance of 920 mm from the exit window of the accelerator. Behind the conveyor with the hookup transport containers TC for placing the treated products, a wide-aperture stack- monitor SM for continuous on-line monitoring a mode of the product processing in the electron energy and absorbed dose is located [7]. SM e- e- AS MA FC-2 S C TC MCS MIS-1 MIS-2 FC-1 SC Fig. 1. Layout of beam diagnostic devices of the LU-10 Linac 1.2. МА CONTROL SYSTEM The determination of beam energy spectrum is car- ried out by means of changing the current in the magnet winding within range 0…20 А with the MCS unit and simultaneous measurement of current from FС-2. To conducting that procedure in an automatic mode, a con- trol system on the basis of a multifunctional NI-USB- 6008 module (National Instruments) has been developed (Fig. 2). The control voltage at the exit of MCS (0…3V) is formed with a D To A converter of the NI-USB-6008 module. The value and rate of the voltage change are command-driven from PC. An interface of the program for the MSC module control and measurement of energy spectrum is given in Fig. 3. mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2017. №6(112) 4 1.3. MEASUREMENT OF ELECTRON ENERGY A benchmark study of MA characteristics was con- ducted by measuring the magnetic field strength along the trajectory of the bent beam in the magnet chamber (a magnet track) using a Hall probe. Amp Beam control To Magnet Magnet control voltage Magnet current FC-2 USBPC FC current ADC Input 1 2 DAC output 1 NI-6008 Digital Output Magnet power supply Fig. 2. Control system diagram of LU-10 magnet analyzer Fig. 3. Graphical interface of the MA control system At the same time, the additional calibration is neces- sary after mounting the MA unit at an accelerator. Such study was carried out using a dosimetry wedge method [4]. The independent analysis of conditions of the measurement of beam energy characteristics with the wedge was fulfilled by means of computer simulation on the basis of a transport package GEANT 4 (Fig. 4). Fig. 4. Conditions of modelling the electron energy measurement by the wedge technique The distribution of the absorbed dose along a dosim- etry film (GEX Corporation, USA; the thickness 18 µm) in the wedge was reproduced with step 0.1 mm. It corre- sponds to the uncertainty of the wedge depth coordinate within 0.015 mm. 510 7 particle trajectories were sim- ulated for every value of the electron energy. 2. RESULTS AND DISCUSSION 2.1. BEAM SPECTRUM MEASUREMENT WITH MA The control of beam energy characteristics at the LU-10 accelerator is carried out by changing the RF- power in the accelerating structure AS, as well as by the height of the beam current pulse. The beam spectra with various energy in its maximum Ер, measured with the use of magnet analyzer, are given in Fig. 5. Apart from the main peek, each spectrum has one more, and the height of that is decreased with the rise of Ер. When Ер=13.08 МeV, the cutoff of upper end-point energy of the spectrum is observed connected with the limit of MСS current. 0 2 4 6 8 10 12 14 16 18 0,0 0,2 0,4 0,6 0,8 1,0 Т о к Ц Ф , о тн .е д . Энергия, МэВ a b c Fig. 5. Spectra of the LU-10 beam: а – Ер=8.34 МeV; b – Ер=9.39 МeV;с – Ер=13.08 МeV 2.2. DETERMINATION OF BEAM ENERGY CHARACTERISTICS BY DOSIMETRY WEDGE TECHNIQUE A feature of the dosimetry wedge application in the conditions of the LU-10 Linac is the wide two-maximum beam spectrum, as well as rather great distance from the accelerator exit window to the wedge, commonly posi- tioned at a transport container TC (see Fig. 1). 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 < E > = F (E < E n ), M e V E n , MeV 10 MeV, scan 7.5 cm source spectrum spectrum at wedge surface spectrum at wedge plane Fig. 6. Average energy over the part of the LU-10 beam spectrum, Ер=10 МeV The simulation of measurement conditions using the GEANT 4 package has shown that the spectrum of the electron radiation incident on the wedge is differed from the initial one as a result of particle scattering in the air and beam scanning also. In particular, the tail of low- energy electrons arises, whence the probable and aver- age energy of the spectrum of the radiation within the F C c u rr e n t, u rb .u n Enerqy, MeV ISSN 1562-6016. ВАНТ. 2017. №6(112) 5 plane of the front surface of the wedge are decreased by a value of 0.2 МeV. It corresponds to the beam ioniza- tion loss in the air. At the same time, the average elec- tron energy at the wedge surface itself differs from its initial value less than by 0.5% (Fig. 6). That takes place because a considerable part of the electrons in the beam spectrum have energy >>Ер. Since the low-energy electrons are bent with the scanner on a grater angle, so the relative contribution of particles with energy Е>Ер enlarges the average electron energy on the wedge surface as compared with its value within the whole plane of the front wedge facet. The results of the numerical experiment on the measurement of energy characteristics of the LU-10 beam using the wedge method are given in Table 1. The statistical struggling of the obtained values does not exceed 0.1%. It was supposed in the calculations, that the beam scan amplitude at the accelerator exit window corresponds to its actual value of 7.5 сm. The determi- nation of pE  and avE  parameters of radiation in the wedge was carried out on the basis of obtained charac- teristics of dose distribution along the dosimetry film and with the use of formulae given in the standard [4]. For a comparison, the cases of actual spectrum with maximum and average energy Ер and Еav respectively, and also of monochromatic beam with energy Ер, as well as the results of the experimental study were con- sidered (the experimental results are denoted with the asterix). The statistical straggling of the obtained data does not exceed 0.1%. As it is seen from the Table 1 data, the difference be- tween the calculated and measured avE  values is no more than 1.5%. The results on pE  for the monochromatic beam obtained in the numerical experiment are agreed with the initial data within 0.2%. At the same time, that difference reaches 12% when the LU-10 actual spectra. Table 1 Energy characteristics of the LU-10 electron beam Specified spectrum parameters, MeV Energy within the wedge plane, MeV Energy within the wedge surface, MeV Energy determined by the wedge technique, MeV Ep Eav Ep Eav Ep Eav pE  avE  8.00 8.00 mono 9.37 7.81 7.81 7.72 8.90 7.81 7.81 7.66 9.26 8.07 9.86 7.61 9.28* 9.00 9.00 mono 10.54 8.81 8.81 8.72 9.89 8.81 8.82 8.65 10.19 9.16 10.70 8.90 10.23* 10.00 10.00 mono 11.45 9.80 9.78 9.72 10.92 9.80 9.78 9.65 11.25 10.21 11.77 9.94 11.34* 11.00 11.00 mono 12.73 10.81 10.77 10.71 11.75 10.81 10.71 10.64 12.03 11.27 12.45 10.91 12.18* 12.00 12.00 mono 13.88 11.81 11.74 11.71 12.79 11.81 11.77 11.63 13.06 12.41 13.45 11.97 13.23* 2.3. ON-LINE MONITORING OF ELECTRON ENERGY It was shown in the work [7], that the energy of the beam electrons can be determined by means of meas- urement of the ratio qk of charge deposited in the k last plates of the stack-monitor SM to the total charge, ab- sorbed in that device. In Fig. 7,a, the distributions of absorbed charge in the SM plates at various probable energy Ер of the LU-10 beam spectrum derived by com- puter simulation are presented. The appropriate values of the qk coefficient for the various sets of plates are given in Fig. 8. The data ob- tained in such a way was fitted with the linear depend- ences with the estimation of fitting quality using the coefficient of determination (COD). As it has turned out, the closest to linear dependences both for Ер and for Eav are occurred when k=4: COD(Ep, k=4)=0.99632, COD(Eav, k=4)=0.99965 (Table 2). The measurement of currents in the plates when the monitor exposure to full-power beam has shown, that obtained distributions are considerably differed from the calculated ones (see Fig. 7,b). It can be explained by the effect of beam-induced ionization currents in the air gaps between the plates. 1 2 3 4 5 6 7 8 9 10 0,18 0,16 0,14 0,12 0,10 0,08 0,06 0,04 0,02 0,00 Q i / Q b ea m n 8 MeV 9 MeV 10 MeV 11 MeV a 0 1 2 3 4 5 6 7 8 9 0 200 400 600 800 1000 1200 P la te c u rr en t, a rb .u n . n E (MeV) 7,63 8,34 9,7 11,2 11,8 12,6 b Fig. 7. Distribution of absorbed charge (current) of the LU-10 beam with various electron energy Ер over the plates of the stack-monitor: a  simulation; b – experiment ISSN 1562-6016. ВАНТ. 2017. №6(112) 6 Table 2 Linearization coefficients of the Е=F(qk=4) dependence Ep=A·qk=4+B Eav=C·qk=4+D A A A/A,% B B B/B,% C C C/C,% D D D/D,% 0.0544 0.3890 4.3 6.1993 0.1497 2.41 8.7997 0.1159 1.32 7.4541 0.0446 0.6 Nevertheless, this time a close to linear dependence between the electron energy and the relative charge in the last 4 plates is kept as well though with the other adjustment coefficients (Fig. 8). 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5  (j = 10...1)  (j = 10...2)  (j = 10...3)  (j = 10...4)  (j = 10...5)  (j = 10...6)  (j = 10...7)  (j = 10...8)  (j = 10...9)  (j = 10) E m ax , M eV Q j / Q monitor a 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5  (j = 10...1)  (j = 10...2)  (j = 10...3)  (j = 10...4)  (j = 10...5)  (j = 10...6)  (j = 10...7)  (j = 10...8)  (j = 10...9)  (j = 10) < E > , M eV Q j / Q monitor 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5  (j = 10...1)  (j = 10...2)  (j = 10...3)  (j = 10...4)  (j = 10...5)  (j = 10...6)  (j = 10...7)  (j = 10...8)  (j = 10...9)  (j = 10) < E > , M eV Q j / Q monitor b Fig. 8. Dependence of the most probable (a) and average (b) electron energy in the beam on the relative charge absorbed in the last k plates of SM (x -experiment) CONCLUSIONS The conducted up-grade of control system of the magnet analyzer of the LU-10 accelerator provided the possibility to obtain the beam energy spectra in the digi- tal form, and hence to compute the most probable Ер and averaged over the spectrum Еav values of the elec- tron energy. The measurement of the latter using the standardized dosimetry wedge technique has shown the agreement of obtained values within <1%. At the same time, when the wedge application to determination of Ер of a beam with wide spectrum (e.g., in case of LU-10 plant, Еmax-EminEp) the method can give the apprecia- bly corrupted data. One can carry out the on-line monitoring of electron energy with the use a stack-monitor (SM) of absorbed beam positioned behind the travel zone of a treated product. When the beam spectrum is known, the moni- tor calibration can be performed against the Ер and Еav parameters, and Еav can be determined with higher accu- racy than Ер. At the same time, the application a MC simulation technique for calibration is allowable only for low-current beam, when radiation induced charge leakage in the stack is insignificant. In a case when spectrum information is absent, the SM calibration with the use of the dosimetry wedge is feasible only against Еav parameter. REFERENCES 1. Reviews of Accelerator Science and Technology / World Scien. Publ. Comp. 2011, v. 4, p. 7-8. DOI:10,1142/S1793626811000628. 2. Emerging applications of radiation processing / IAEA-TECDOC-1386, Vienna, 2004. 3. ISO 11137-1. Sterilization of health care products. Radiation. Part 1. Requirements for Development. Validation and routine control of a sterilization pro- cess for medical devices. 4. ISO/ASTM 51649. Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV. 5. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko. Analysis and optimization of a mode of industrial product processing at an electron accelerator // Prob- lems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2015, № 6(100), p. 90-94. 6. V.N. Boriskin, S.A. Vanzha, V.N. Vereshchaka, A.N. Dovbnya, et al. Development of Radiation Technologies and Tests in “Accelerator”Sc&Res Est., NSC KIPT // ibid. 2008, № 5(50), p. 150-154. 7. R.I. Pomatsalyuk, V.A. Shevchenko, A.Eh. Tenishev, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko. Development of a Method of Absorbed Dose on-line Monitoring at Product Pro- cessing by Scanned Electron Beam // ibid. 2016, № 3(103), p. 149-153. Article received 13.10.2017 ISSN 1562-6016. ВАНТ. 2017. №6(112) 7 ИЗМЕРЕНИЕ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПУЧКА ПРОМЫШЛЕННОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ Р.И. Помацалюк, В.А. Шевченко, И.Н. Шляхов, А.Э. Тенишев, В.Ю. Титов, Д.В. Титов, В.Л. Уваров, А.А. Захарченко Энергия излучения является одним из критических параметров в радиационно-технологических процес- сах, а также при проведении радиационных испытаний на ускорителях электронов. В статье изложены ре- зультаты модернизации анализатора спектра пучка электронов на основе 90-электромагнита промышлен- ного ускорителя ЛУ-10 (10 МэВ, 10 кВт). Для приема и обработки данных разработана система контроля с использованием многофункционального USB-устройства. Приведены результаты измерения энергетических характеристик пучка ускорителя с помощью анализатора, а также дозиметрического клина. Методом ком- пьютерного моделирования изучены особенности применения клина в случае пучка с широким спектром. Исследованы условия on-line мониторинга энергии электронов с использованием широкоаппертурного стек- монитора. Проведен сравнительный анализ результатов измерения энергии, полученных разными методами. ВИМІРЮВАННЯ ЕНЕРГЕТИЧНИХ ХАРАКТЕРИСТИК ПУЧКА ПРОМИСЛОВОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ Р.І. Помацалюк, В.А. Шевченко, І.М. Шляхов, А.Е. Тенишев, В.Ю. Титов, Д.В. Титов, В.Л. Уваров, О.О. Захарченко Енергія випромінення є одним з критичних параметрів у радіаційно-технологічних процесах, а також при проведенні випробувань на прискорювачах електронів. У статті викладені результати модернізації аналіза- тора спектра пучка промислового прискорювача ЛУ-10 (10 МеВ, 10 кВт) на основі 90-електромагніта. Для прийому і обробки даних розроблена система контролю з використанням багатофункціонального USB- пристрою. Приведені результати вимірювання енергетичних характеристик пучка прискорювача за допомо- гою аналізатора, а також дозиметричного клину. Методом комп'ютерного моделювання вивчені особливості застосування клину у тому разі, коли пучок з широким спектром. Досліджені умови on-line контролю енергії електронів з використанням широкоапертурного стек-монітора. Проведено порівняльний аналіз результатів вимірювання енергій, отриманих різними методами.