Measurement of electron beam energy characteristics at an industrial accelerator
At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac L...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/136210 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-136210 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1362102018-06-17T03:03:39Z Measurement of electron beam energy characteristics at an industrial accelerator Pomatsalyuk, R.I. Shevchenko, V.A. Shlyakhov, I.N. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. Теория и техника ускорения частиц At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimetric wedge technique are presented. A computer simulation method was used to study the features of the wedge application in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide-aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the different techniques is carried out. Енергія випромінення є одним з критичних параметрів у радіаційно-технологічних процесах, а також при проведенні випробувань на прискорювачах електронів. У статті викладені результати модернізації аналізатора спектра пучка промислового прискорювача ЛУ-10 (10 МеВ, 10 кВт) на основі 90˚-електромагніта. Для прийому і обробки даних розроблена система контролю з використанням багатофункціонального USB-пристрою. Приведені результати вимірювання енергетичних характеристик пучка прискорювача за допомогою аналізатора, а також дозиметричного клину. Методом комп'ютерного моделювання вивчені особливості застосування клину у тому разі, коли пучок з широким спектром. Досліджені умови on-line контролю енергії електронів з використанням широкоапертурного стек-монітора. Проведено порівняльний аналіз результатів вимірювання енергій, отриманих різними методами. Энергия излучения является одним из критических параметров в радиационно-технологических процессах, а также при проведении радиационных испытаний на ускорителях электронов. В статье изложены результаты модернизации анализатора спектра пучка электронов на основе 90˚-электромагнита промышленного ускорителя ЛУ-10 (10 МэВ, 10 кВт). Для приема и обработки данных разработана система контроля с использованием многофункционального USB-устройства. Приведены результаты измерения энергетических характеристик пучка ускорителя с помощью анализатора, а также дозиметрического клина. Методом компьютерного моделирования изучены особенности применения клина в случае пучка с широким спектром. Исследованы условия on-line мониторинга энергии электронов с использованием широкоаппертурного стек-монитора. Проведен сравнительный анализ результатов измерения энергии, полученных разными методами. 2017 Article Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос. 1562-6016 PACS: 29.27.Ac; 41.75.Fr; 07.81.+a http://dspace.nbuv.gov.ua/handle/123456789/136210 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Pomatsalyuk, R.I. Shevchenko, V.A. Shlyakhov, I.N. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. Measurement of electron beam energy characteristics at an industrial accelerator Вопросы атомной науки и техники |
description |
At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimetric wedge technique are presented. A computer simulation method was used to study the features of the wedge application in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide-aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the different techniques is carried out. |
format |
Article |
author |
Pomatsalyuk, R.I. Shevchenko, V.A. Shlyakhov, I.N. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. |
author_facet |
Pomatsalyuk, R.I. Shevchenko, V.A. Shlyakhov, I.N. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. |
author_sort |
Pomatsalyuk, R.I. |
title |
Measurement of electron beam energy characteristics at an industrial accelerator |
title_short |
Measurement of electron beam energy characteristics at an industrial accelerator |
title_full |
Measurement of electron beam energy characteristics at an industrial accelerator |
title_fullStr |
Measurement of electron beam energy characteristics at an industrial accelerator |
title_full_unstemmed |
Measurement of electron beam energy characteristics at an industrial accelerator |
title_sort |
measurement of electron beam energy characteristics at an industrial accelerator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/136210 |
citation_txt |
Measurement of electron beam energy characteristics at an industrial accelerator / R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 3-7. — Бібліогр.: 7 назв. — рос. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pomatsalyukri measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT shevchenkova measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT shlyakhovin measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT tenishevaeh measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT titovvyu measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT titovdv measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT uvarovvl measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator AT zakharchenkoaa measurementofelectronbeamenergycharacteristicsatanindustrialaccelerator |
first_indexed |
2025-07-10T00:51:59Z |
last_indexed |
2025-07-10T00:51:59Z |
_version_ |
1837219158448668672 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №6(112) 3
THEORY AND TECHNOLOGY OF PARTICLE ACCELERATION
MEASUREMENT OF ELECTRON BEAM ENERGY CHARACTERISTICS
AT AN INDUSTRIAL ACCELERATOR
R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov,
V.L. Uvarov, A.A. Zakharchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: uvarov@kipt.kharkov.ua
At an electron accelerator, the particle energy is one of critical parameters in the technological processes, as well
as when conducting the radiation tests. The report presents the results of modernization of beam energy-spectrum
analyzer on the basis of a 90˚ electromagnet of an industrial Linac LU-10 (10 MeV, 10 kW). A control system on
the basis of a multifunction USB device for the analyzer data acquisition and processing has been developed. The
results of measuring the energy characteristics of the accelerator beam with the analyzer, as well as using a dosimet-
ric wedge technique are presented. A computer simulation method was used to study the features of the wedge ap-
plication in case of a beam with wide spectrum. The conditions of on-line electron energy control using a wide-
aperture stack monitor are investigated. A comparative analysis of results of the energy determination by the differ-
ent techniques is carried out.
PACS: 29.27.Ac; 41.75.Fr; 07.81.+a
INTRODUCTION
Nowadays, above 20.000 industrial electron acceler-
ators operate throughout the world [1]. Those installa-
tions provide a number of technological processes and
diagnostic procedures – sterilization of outputs of the
medical, pharmaceutical and food industry, modifica-
tion of polymers and semiconductors, elemental analy-
sis, nondestructive testing, etc. [2].
One of critical parameters of any technology using
electron beam is the particle energy (see, e.g., [3]). In
overwhelming majority of cases, the energy spectrum of
the beam of an industrial accelerator is rather wide. The
only method of its precise determination is one based on
the usage of a magnet analyser. At the same time, none
serial accelerator has been equipped with that device. A
standardized off-line wedge-based technique is com-
monly used for measurement of certain characteristics
of the beam spectrum (the most probable Ер and average
Еav value of the electron energy) [4]. A lack of infor-
mation about spectrum limits the possibility of analysis
and optimization of product processing regime relative
to the absorbed dose, in particular, by means of comput-
er simulation (see, e.g., [5]).
In NSC KIPT, an industrial plant with an electron
Linac LU-10 operates for three decades [6]. The accel-
erator is supplied with a kit of diagnostic devices in-
cluding a magnet analyser for measuring the beam spec-
trum. In the work, an updated control system of the
magnet analyser, and also the results of the study of
energy characteristics of the accelerator beam obtained
by the different methods are described.
1. METHODS AND INSTRUMENTATION
1.1. BEAM DIAGNOSTICS DEVICES
In Fig. 1, a scheme of a control system of the LU-10
beam parameters is given. An accelerating structure AS
is followed with the unit of a built-in Faraday cup FС-1
for direct measuring the average beam current. Behind
it, a magnetic induction sensor (the Rogowski loop)
MIS-1 for on-line monitoring the pulse beam current is
situated. A chamber of the 90 magnet analyzer (MA) of
beam spectrum is located downstream. The chamber has
a slit collimator SC and second Faraday cup FС-2 at its
exit. A current source MCS provides the feeding of MA
electromagnet. Behind the MA chamber, the second
sensor MIS-2 and beam scanner S have been mounted
along the beam axis.
A conveyor C is situated at a distance of 920 mm
from the exit window of the accelerator. Behind the
conveyor with the hookup transport containers TC for
placing the treated products, a wide-aperture stack-
monitor SM for continuous on-line monitoring a mode
of the product processing in the electron energy and
absorbed dose is located [7].
SM
e-
e-
AS
MA
FC-2
S
C
TC
MCS
MIS-1 MIS-2
FC-1
SC
Fig. 1. Layout of beam diagnostic devices
of the LU-10 Linac
1.2. МА CONTROL SYSTEM
The determination of beam energy spectrum is car-
ried out by means of changing the current in the magnet
winding within range 0…20 А with the MCS unit and
simultaneous measurement of current from FС-2. To
conducting that procedure in an automatic mode, a con-
trol system on the basis of a multifunctional NI-USB-
6008 module (National Instruments) has been developed
(Fig. 2).
The control voltage at the exit of MCS (0…3V) is
formed with a D To A converter of the NI-USB-6008
module. The value and rate of the voltage change are
command-driven from PC. An interface of the program
for the MSC module control and measurement of energy
spectrum is given in Fig. 3.
mailto:uvarov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2017. №6(112) 4
1.3. MEASUREMENT OF ELECTRON ENERGY
A benchmark study of MA characteristics was con-
ducted by measuring the magnetic field strength along
the trajectory of the bent beam in the magnet chamber
(a magnet track) using a Hall probe.
Amp
Beam
control
To Magnet
Magnet
control
voltage
Magnet
current
FC-2
USBPC
FC current
ADC Input
1 2
DAC output
1
NI-6008
Digital
Output
Magnet power supply
Fig. 2. Control system diagram of LU-10 magnet
analyzer
Fig. 3. Graphical interface of the MA control system
At the same time, the additional calibration is neces-
sary after mounting the MA unit at an accelerator. Such
study was carried out using a dosimetry wedge method
[4]. The independent analysis of conditions of the
measurement of beam energy characteristics with the
wedge was fulfilled by means of computer simulation
on the basis of a transport package GEANT 4 (Fig. 4).
Fig. 4. Conditions of modelling the electron energy
measurement by the wedge technique
The distribution of the absorbed dose along a dosim-
etry film (GEX Corporation, USA; the thickness 18 µm)
in the wedge was reproduced with step 0.1 mm. It corre-
sponds to the uncertainty of the wedge depth coordinate
within 0.015 mm. 510
7
particle trajectories were sim-
ulated for every value of the electron energy.
2. RESULTS AND DISCUSSION
2.1. BEAM SPECTRUM MEASUREMENT
WITH MA
The control of beam energy characteristics at the
LU-10 accelerator is carried out by changing the RF-
power in the accelerating structure AS, as well as by the
height of the beam current pulse. The beam spectra with
various energy in its maximum Ер, measured with the
use of magnet analyzer, are given in Fig. 5. Apart from
the main peek, each spectrum has one more, and the
height of that is decreased with the rise of Ер. When
Ер=13.08 МeV, the cutoff of upper end-point energy of
the spectrum is observed connected with the limit of
MСS current.
0 2 4 6 8 10 12 14 16 18
0,0
0,2
0,4
0,6
0,8
1,0
Т
о
к
Ц
Ф
,
о
тн
.е
д
.
Энергия, МэВ
a b c
Fig. 5. Spectra of the LU-10 beam:
а – Ер=8.34 МeV; b – Ер=9.39 МeV;с – Ер=13.08 МeV
2.2. DETERMINATION OF BEAM ENERGY
CHARACTERISTICS BY DOSIMETRY WEDGE
TECHNIQUE
A feature of the dosimetry wedge application in the
conditions of the LU-10 Linac is the wide two-maximum
beam spectrum, as well as rather great distance from the
accelerator exit window to the wedge, commonly posi-
tioned at a transport container TC (see Fig. 1).
7 8 9 10 11 12 13 14 15 16 17
0
1
2
3
4
5
6
7
8
9
10
11
<
E
>
=
F
(E
<
E
n
),
M
e
V
E
n
, MeV
10 MeV, scan 7.5 cm
source spectrum
spectrum at wedge surface
spectrum at wedge plane
Fig. 6. Average energy over the part of the LU-10
beam spectrum, Ер=10 МeV
The simulation of measurement conditions using the
GEANT 4 package has shown that the spectrum of the
electron radiation incident on the wedge is differed from
the initial one as a result of particle scattering in the air
and beam scanning also. In particular, the tail of low-
energy electrons arises, whence the probable and aver-
age energy of the spectrum of the radiation within the
F
C
c
u
rr
e
n
t,
u
rb
.u
n
Enerqy, MeV
ISSN 1562-6016. ВАНТ. 2017. №6(112) 5
plane of the front surface of the wedge are decreased by
a value of 0.2 МeV. It corresponds to the beam ioniza-
tion loss in the air. At the same time, the average elec-
tron energy at the wedge surface itself differs from its
initial value less than by 0.5% (Fig. 6).
That takes place because a considerable part of the
electrons in the beam spectrum have energy >>Ер. Since
the low-energy electrons are bent with the scanner on a
grater angle, so the relative contribution of particles
with energy Е>Ер enlarges the average electron energy
on the wedge surface as compared with its value within
the whole plane of the front wedge facet.
The results of the numerical experiment on the
measurement of energy characteristics of the LU-10
beam using the wedge method are given in Table 1. The
statistical struggling of the obtained values does not
exceed 0.1%. It was supposed in the calculations, that
the beam scan amplitude at the accelerator exit window
corresponds to its actual value of 7.5 сm. The determi-
nation of
pE and
avE parameters of radiation in the
wedge was carried out on the basis of obtained charac-
teristics of dose distribution along the dosimetry film
and with the use of formulae given in the standard [4].
For a comparison, the cases of actual spectrum with
maximum and average energy Ер and Еav respectively,
and also of monochromatic beam with energy Ер, as
well as the results of the experimental study were con-
sidered (the experimental results are denoted with the
asterix). The statistical straggling of the obtained data
does not exceed 0.1%.
As it is seen from the Table 1 data, the difference be-
tween the calculated and measured
avE values is no more
than 1.5%. The results on
pE for the monochromatic
beam obtained in the numerical experiment are agreed
with the initial data within 0.2%. At the same time, that
difference reaches 12% when the LU-10 actual spectra.
Table 1
Energy characteristics of the LU-10 electron beam
Specified spectrum
parameters, MeV
Energy within the wedge
plane, MeV
Energy within the wedge
surface, MeV
Energy determined by the
wedge technique, MeV
Ep Eav Ep Eav Ep Eav pE avE
8.00
8.00
mono
9.37
7.81
7.81
7.72
8.90
7.81
7.81
7.66
9.26
8.07
9.86
7.61
9.28*
9.00
9.00
mono
10.54
8.81
8.81
8.72
9.89
8.81
8.82
8.65
10.19
9.16
10.70
8.90
10.23*
10.00
10.00
mono
11.45
9.80
9.78
9.72
10.92
9.80
9.78
9.65
11.25
10.21
11.77
9.94
11.34*
11.00
11.00
mono
12.73
10.81
10.77
10.71
11.75
10.81
10.71
10.64
12.03
11.27
12.45
10.91
12.18*
12.00
12.00
mono
13.88
11.81
11.74
11.71
12.79
11.81
11.77
11.63
13.06
12.41
13.45
11.97
13.23*
2.3. ON-LINE MONITORING OF ELECTRON
ENERGY
It was shown in the work [7], that the energy of the
beam electrons can be determined by means of meas-
urement of the ratio qk of charge deposited in the k last
plates of the stack-monitor SM to the total charge, ab-
sorbed in that device. In Fig. 7,a, the distributions of
absorbed charge in the SM plates at various probable
energy Ер of the LU-10 beam spectrum derived by com-
puter simulation are presented.
The appropriate values of the qk coefficient for the
various sets of plates are given in Fig. 8. The data ob-
tained in such a way was fitted with the linear depend-
ences with the estimation of fitting quality using the
coefficient of determination (COD). As it has turned
out, the closest to linear dependences both for Ер and for
Eav are occurred when k=4: COD(Ep, k=4)=0.99632,
COD(Eav, k=4)=0.99965 (Table 2).
The measurement of currents in the plates when the
monitor exposure to full-power beam has shown, that
obtained distributions are considerably differed from the
calculated ones (see Fig. 7,b). It can be explained by the
effect of beam-induced ionization currents in the air
gaps between the plates.
1 2 3 4 5 6 7 8 9 10
0,18
0,16
0,14
0,12
0,10
0,08
0,06
0,04
0,02
0,00
Q
i
/
Q
b
ea
m
n
8 MeV
9 MeV
10 MeV
11 MeV
a
0 1 2 3 4 5 6 7 8 9
0
200
400
600
800
1000
1200
P
la
te
c
u
rr
en
t,
a
rb
.u
n
.
n
E (MeV)
7,63
8,34
9,7
11,2
11,8
12,6
b
Fig. 7. Distribution of absorbed charge (current)
of the LU-10 beam with various electron energy Ер
over the plates of the stack-monitor: a simulation;
b – experiment
ISSN 1562-6016. ВАНТ. 2017. №6(112) 6
Table 2
Linearization coefficients of the Е=F(qk=4) dependence
Ep=A·qk=4+B Eav=C·qk=4+D
A A A/A,% B B B/B,% C C C/C,% D D D/D,%
0.0544 0.3890 4.3 6.1993 0.1497 2.41 8.7997 0.1159 1.32 7.4541 0.0446 0.6
Nevertheless, this time a close to linear dependence
between the electron energy and the relative charge in
the last 4 plates is kept as well though with the other
adjustment coefficients (Fig. 8).
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
7,5
8,0
8,5
9,0
9,5
10,0
10,5
11,0
11,5
(j = 10...1)
(j = 10...2)
(j = 10...3)
(j = 10...4)
(j = 10...5)
(j = 10...6)
(j = 10...7)
(j = 10...8)
(j = 10...9)
(j = 10)
E
m
ax
,
M
eV
Q
j
/ Q
monitor a
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
9,0
9,5
10,0
10,5
11,0
11,5
12,0
12,5
(j = 10...1)
(j = 10...2)
(j = 10...3)
(j = 10...4)
(j = 10...5)
(j = 10...6)
(j = 10...7)
(j = 10...8)
(j = 10...9)
(j = 10)
<
E
>
, M
eV
Q
j
/ Q
monitor
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
9,0
9,5
10,0
10,5
11,0
11,5
12,0
12,5
(j = 10...1)
(j = 10...2)
(j = 10...3)
(j = 10...4)
(j = 10...5)
(j = 10...6)
(j = 10...7)
(j = 10...8)
(j = 10...9)
(j = 10)
<
E
>
, M
eV
Q
j
/ Q
monitor b
Fig. 8. Dependence of the most probable (a)
and average (b) electron energy in the beam
on the relative charge absorbed in the last k plates
of SM (x -experiment)
CONCLUSIONS
The conducted up-grade of control system of the
magnet analyzer of the LU-10 accelerator provided the
possibility to obtain the beam energy spectra in the digi-
tal form, and hence to compute the most probable Ер
and averaged over the spectrum Еav values of the elec-
tron energy. The measurement of the latter using the
standardized dosimetry wedge technique has shown the
agreement of obtained values within <1%. At the same
time, when the wedge application to determination of Ер
of a beam with wide spectrum (e.g., in case of LU-10
plant, Еmax-EminEp) the method can give the apprecia-
bly corrupted data.
One can carry out the on-line monitoring of electron
energy with the use a stack-monitor (SM) of absorbed
beam positioned behind the travel zone of a treated
product. When the beam spectrum is known, the moni-
tor calibration can be performed against the Ер and Еav
parameters, and Еav can be determined with higher accu-
racy than Ер. At the same time, the application a MC
simulation technique for calibration is allowable only
for low-current beam, when radiation induced charge
leakage in the stack is insignificant. In a case when
spectrum information is absent, the SM calibration with
the use of the dosimetry wedge is feasible only against
Еav parameter.
REFERENCES
1. Reviews of Accelerator Science and Technology /
World Scien. Publ. Comp. 2011, v. 4, p. 7-8.
DOI:10,1142/S1793626811000628.
2. Emerging applications of radiation processing /
IAEA-TECDOC-1386, Vienna, 2004.
3. ISO 11137-1. Sterilization of health care products.
Radiation. Part 1. Requirements for Development.
Validation and routine control of a sterilization pro-
cess for medical devices.
4. ISO/ASTM 51649. Practice for dosimetry in an
electron beam facility for radiation processing at
energies between 300 keV and 25 MeV.
5. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov,
A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko.
Analysis and optimization of a mode of industrial
product processing at an electron accelerator // Prob-
lems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2015, № 6(100),
p. 90-94.
6. V.N. Boriskin, S.A. Vanzha, V.N. Vereshchaka,
A.N. Dovbnya, et al. Development of Radiation
Technologies and Tests in “Accelerator”Sc&Res
Est., NSC KIPT // ibid. 2008, № 5(50), p. 150-154.
7. R.I. Pomatsalyuk, V.A. Shevchenko,
A.Eh. Tenishev, D.V. Titov, V.L. Uvarov,
A.A. Zakharchenko. Development of a Method of
Absorbed Dose on-line Monitoring at Product Pro-
cessing by Scanned Electron Beam // ibid. 2016, №
3(103), p. 149-153.
Article received 13.10.2017
ISSN 1562-6016. ВАНТ. 2017. №6(112) 7
ИЗМЕРЕНИЕ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПУЧКА ПРОМЫШЛЕННОГО
УСКОРИТЕЛЯ ЭЛЕКТРОНОВ
Р.И. Помацалюк, В.А. Шевченко, И.Н. Шляхов, А.Э. Тенишев, В.Ю. Титов, Д.В. Титов, В.Л. Уваров,
А.А. Захарченко
Энергия излучения является одним из критических параметров в радиационно-технологических процес-
сах, а также при проведении радиационных испытаний на ускорителях электронов. В статье изложены ре-
зультаты модернизации анализатора спектра пучка электронов на основе 90-электромагнита промышлен-
ного ускорителя ЛУ-10 (10 МэВ, 10 кВт). Для приема и обработки данных разработана система контроля с
использованием многофункционального USB-устройства. Приведены результаты измерения энергетических
характеристик пучка ускорителя с помощью анализатора, а также дозиметрического клина. Методом ком-
пьютерного моделирования изучены особенности применения клина в случае пучка с широким спектром.
Исследованы условия on-line мониторинга энергии электронов с использованием широкоаппертурного стек-
монитора. Проведен сравнительный анализ результатов измерения энергии, полученных разными методами.
ВИМІРЮВАННЯ ЕНЕРГЕТИЧНИХ ХАРАКТЕРИСТИК ПУЧКА ПРОМИСЛОВОГО
ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ
Р.І. Помацалюк, В.А. Шевченко, І.М. Шляхов, А.Е. Тенишев, В.Ю. Титов, Д.В. Титов, В.Л. Уваров,
О.О. Захарченко
Енергія випромінення є одним з критичних параметрів у радіаційно-технологічних процесах, а також при
проведенні випробувань на прискорювачах електронів. У статті викладені результати модернізації аналіза-
тора спектра пучка промислового прискорювача ЛУ-10 (10 МеВ, 10 кВт) на основі 90-електромагніта. Для
прийому і обробки даних розроблена система контролю з використанням багатофункціонального USB-
пристрою. Приведені результати вимірювання енергетичних характеристик пучка прискорювача за допомо-
гою аналізатора, а також дозиметричного клину. Методом комп'ютерного моделювання вивчені особливості
застосування клину у тому разі, коли пучок з широким спектром. Досліджені умови on-line контролю енергії
електронів з використанням широкоапертурного стек-монітора. Проведено порівняльний аналіз результатів
вимірювання енергій, отриманих різними методами.
|