MicroRNAs in normal and cancer cells: a new class of gene expression regulators

MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review describes miRNA biogenesis, their functions i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Bagnyukova, T.V., Pogribny, I.P., Chekhun, V.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України 2006
Назва видання:Experimental Oncology
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/137582
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:MicroRNAs in normal and cancer cells: a new class of gene expression regulators / T.V. Bagnyukova, I.P. Pogribny, V.F. Chekhun // Experimental Oncology. — 2006. — Т. 28, № 4. — С. 263-269. — Бібліогр.: 101 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-137582
record_format dspace
spelling irk-123456789-1375822018-06-18T03:03:52Z MicroRNAs in normal and cancer cells: a new class of gene expression regulators Bagnyukova, T.V. Pogribny, I.P. Chekhun, V.F. Reviews MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review describes miRNA biogenesis, their functions in normal cells, and alterations of miRNA sets in cancer and roles of antitumorigenic and oncogenic miRNAs in cancer development. Микро PHK(miRNAs) — это малое не кодирующие РНК, негативно регулирующие экспрессию генов на посттранскринц ионном уровне и принимаюшие участие в развитии, лифферешшровке. пролиферации и апоптозе клеток, а также выполняющие важную роль в опухолевом процессе. В обзоре обсужден биогенез miRNA, функции этих молекул в нормальных клетках, изменения набора miRNA в опухолевых клетках и роль противоопухолевых и онкогенных nnRNAs в опухолевой прогрессии. Ключевые сюва: микроРНК, рак. онкоген, опухолевый супрессор. 2006 Article MicroRNAs in normal and cancer cells: a new class of gene expression regulators / T.V. Bagnyukova, I.P. Pogribny, V.F. Chekhun // Experimental Oncology. — 2006. — Т. 28, № 4. — С. 263-269. — Бібліогр.: 101 назв. — англ. 1812-9269 http://dspace.nbuv.gov.ua/handle/123456789/137582 en Experimental Oncology Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Reviews
Reviews
spellingShingle Reviews
Reviews
Bagnyukova, T.V.
Pogribny, I.P.
Chekhun, V.F.
MicroRNAs in normal and cancer cells: a new class of gene expression regulators
Experimental Oncology
description MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review describes miRNA biogenesis, their functions in normal cells, and alterations of miRNA sets in cancer and roles of antitumorigenic and oncogenic miRNAs in cancer development.
format Article
author Bagnyukova, T.V.
Pogribny, I.P.
Chekhun, V.F.
author_facet Bagnyukova, T.V.
Pogribny, I.P.
Chekhun, V.F.
author_sort Bagnyukova, T.V.
title MicroRNAs in normal and cancer cells: a new class of gene expression regulators
title_short MicroRNAs in normal and cancer cells: a new class of gene expression regulators
title_full MicroRNAs in normal and cancer cells: a new class of gene expression regulators
title_fullStr MicroRNAs in normal and cancer cells: a new class of gene expression regulators
title_full_unstemmed MicroRNAs in normal and cancer cells: a new class of gene expression regulators
title_sort micrornas in normal and cancer cells: a new class of gene expression regulators
publisher Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
publishDate 2006
topic_facet Reviews
url http://dspace.nbuv.gov.ua/handle/123456789/137582
citation_txt MicroRNAs in normal and cancer cells: a new class of gene expression regulators / T.V. Bagnyukova, I.P. Pogribny, V.F. Chekhun // Experimental Oncology. — 2006. — Т. 28, № 4. — С. 263-269. — Бібліогр.: 101 назв. — англ.
series Experimental Oncology
work_keys_str_mv AT bagnyukovatv micrornasinnormalandcancercellsanewclassofgeneexpressionregulators
AT pogribnyip micrornasinnormalandcancercellsanewclassofgeneexpressionregulators
AT chekhunvf micrornasinnormalandcancercellsanewclassofgeneexpressionregulators
first_indexed 2025-07-10T02:37:38Z
last_indexed 2025-07-10T02:37:38Z
_version_ 1837225800380710912
fulltext Experimental Oncology ���� ��������� ���� ��ecem�er�� ������� ��������� ���� ��ecem�er�� ����ecem�er�� ����� ��� ��� MicroRNAs are a novel class of small�� ~ 1���5 nu- cleotides long�� non-coding RNAs that post-trans- criptionally negatively regulate gene expression. The first miRNA�� lin-4�� was discovered in 1��� in Cae- norhabditis elegans [���� �5]. The lin-4 miRNA gene encodes a ��-nucleotide non-coding RNA that nega- tively regulates the translation of another gene�� lin-14�� �y �ase-pairing to complementary sites within its �´-untranslated region ��´-UTR�� affecting the develop- ment timing. This type of regulation is an exception from the accepted concept of gene expression regula- tion. However�� a significant num�er of recent studies have demonstrated that miRNA-mediated regulation of gene expression is a wide-spread phenomena in eukaryotic organisms that control the fundamental cellular processes such as development�� proliferation�� and apoptosis [�]. Moreover�� altered miRNA profiles have �een found in a variety of cancers indicating their significant role in cancer development [���� �5]. Hundreds of miRNAs have �een identified in animals�� plants and viruses�� among them > ��� miRNA genes in the human genome [7]. Many miRNAs are highly con- served �etween variety of evolutionary distinguished species [�] supporting the hypothesis a�out important functions of these small molecules in organisms. In this review�� we descri�e miRNA �iogenesis�� their functions in the cell�� paying special attention to tumor cells. miRNA biogeNesis ANd modes of ActioN miRNA genes are located mainly within introns of protein-coding and non-coding sequences�� as well as in intergenic regions [�1�� 1��]. In the first case�� expression of corresponding miRNAs may �e linked with transcriptional regulation of their host genes and�� hence�� reveals tissue specificity due to expression of different sets of genes [��� ���� �7]. In the second case�� expression of miRNAs is regulated independently via their own regulatory elements [1��]. In addition�� a recent study has shown that a num�er of mammalian miRNAs are derived from �NA repetitive sequences�� including LINE-� transposa�le elements [��]. miRNAs are transcri�ed �y RNA polymerase II producing long primary-miRNAs �pri-miRNAs�� [5�]. Within a pri-miRNA�� the miRNA itself forms a stem-loop hairpin structure �Figure���� which is excised in the nucleus �y the RNase III endonuclease �rosha associated with dou�le-stranded RNA-�inding domain-containing protein �GCR� �in mammals�� or Pasha �in Drosophila and C. elegans�� [���� ��]. �rosha asymmetrically cleaves �oth strands of the hairpin stem-loop at sites near the �ase of the primary stem-loop resulting in release ���7�-nucleo- tide pre-miRNA [�1]. Pre-miRNA is exported to the cytoplasm �y Ran-GTP-dependent Exportin-5 complex [��]. The cytoplasmic RNase III endonuclease �icer1 with associated proteins TRBP and PACT in mammals excises a RNA-hairpin duplex from pre-miRNA. The fully mature miRNA incorporates in a single-stranded form into ri�onucleoprotein complex termed as the RNA-induced silencing complex �RISC��. In mammals�� miRNAs negatively regulate their targets �y either �inding to imperfect complementary sites within the �´-untranslated regions of their mRNA-targets [17]�� or �y targeting specific cleavage of homologous mRNAs [��]. In the first case�� miRNAs reduce protein levels of target genes �y post-transcriptionally repressing target- gene expression without affecting mRNA levels of these genes�� whereas in the second case�� miRNAs induce the degradation of target mRNAs �y the RISC. Interestingly�� that miR-1�� positively affects the replication of hepa- titis C virus �y �inding to its 5´-noncoding region [4�]. It is unclear whether this effect is unique or represents an unknown yet mechanism of miRNA action. To date�� many details of miRNA-mediated gene expression regulation have �een clarified. In contrast�� regulation of miRNA expression is not fully understood. Epigenetic alterations play an important role in general regulation of gene expression [4�]�� �ut little attention has �een paid to miRNA genes. A recent study con- microRNAs iN NoRmAl ANd cANceR cells: A New clAss of geNe expRessioN RegulAtoRs T.V. Bagnyukova1, 2, I.P. Pogribny2, V.F. Chekhun3, * 1Department of Biochemistry, Precarpathian National University, Ivano-Frankivsk 76025, Ukraine 2Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA 3Department of Mechanisms of Anticancer Therapy, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kyiv 03022, Ukraine MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review describes miRNA biogenesis, their functions in normal cells, and alterations of miRNA sets in cancer and roles of antitumorigenic and oncogenic miRNAs in cancer development. Key Words: microRNA, cancer, oncogene, tumor suppressor. Received: November 1, 2006. *Correspondence: Fax: +380 44 2581656 E-mail: chekhun@onconet.kiev.ua Abbreviation used: miRNAs — microRNAs. Exp Oncol ���� ���� 4�� ������� ��4 Experimental Oncology ���� ��������� ���� ��ecem�er�� ducted �y Saito et al. [��] showed clearly the role of epigenetic mechanisms in expression of mir-127 gene�� which is located within a CpG island on chromosome 14q��.�1. Additionally�� the inhi�ition of histone deacet- ylase and the resulting rapid alterations in miRNA levels in �reast cancer cells [��] further indicate the importance of epigenetic mechanisms in regulation of miRNA genes expression. On the other hand�� miRNAs may �e involved in regulation of chromatin structure �Figure��. In support of this hypothesis�� a recent pre- diction of miRNA target genes in humans contained various histone-modifying proteins�� including histone methyltransferases�� methyl CpG-�inding proteins�� and histone deacetylases [�4]. Recent finding �y Gross- hans et al. [�4] that chromatin-remodeling factor is one of let-7 predicted target genes in C. elegans provided extra evidence to this hypothesis. In addition�� miRNAs can affect chromatin structure indirectly �y regulating proteins that involved in the maintenance of chromatin organization. For instance�� miR-1��a involved in the histone H� lysine � methylation and preservation of heterochromatin via regulation of retino�lastoma-1 protein [��]. In any case�� the area of miRNAs/epigene- tic changes relationships remains unexplored. miRNAs As RegulAtoRs of diffeReNt cellulAR pRocesses miRNA genes represent only a small part �~�.5� �%�� of the genome [7�� 17]�� �ut they regulate approxi- mately �� to ��% of all human genes and there is an average ��� predicted targets per miRNA [54�� 5��� ���� �4]. Among these putative target-genes�� there is a large group of genes involved in development�� cell differentiation�� apoptosis�� transcriptional regulation�� and other physiological processes [4���� 1��� 5��� 51�� 5��� 7��� 7��� ��]. Possi�ly�� not all predicted mRNAs are real targets of corresponding miRNAs. However�� recent report a�out altered expression of hundreds of mRNAs in response to in vivo inhi�ition of miR-1�� supports hypothesis of multiple targets for one miRNA [5�]. To date�� only a few miRNA targets have �een identi- fied and confirmed experimentally thus clarifying the mechanisms of their action. For example�� the let-7 family controls the timing of developmental processes in C. elegans [1��17]�� and the involvement of miRNAs in developmental processes has also �een shown in Drosophila [�]. Several studied miRNAs are involved in regulation of cell differentiation; thus�� miR-�1 in Drosophila [�1] and miR-1��a in mice [��] control axial patterning of the em�ryo. Brain-specific miR-1�4a and miR-� affect neural differentiation in mouse em�ryo- nic stem cells [57]. A complex system of interacting miRNAs and transcription factors have �een found to regulate cell fate determination in C. elegans [1��� ���� 47�� ��] and Drosophila [�5]. In these models�� the miRNAs and protein factors formed reciprocal negative feed�ack loops allowing the existence of only one of two sta�le states; the switch is gained �y mutual re- figure. Biogenesis and cellular functions of miRNAs. Polymerase II transcri�es miRNA gene forming long hairpin-�earing primary miRNA �pri-miRNA��. The hairpin structure is excised �y RNase III endonuclease �rosha�� and resulting pre-miRNA is transported into cytoplasm �y Exportin-5 in a RAN-GTP dependent way. The cytoplasmic RNase III endonuclease �icer excises the top loop of the miRNA giving RNA-RNA duplex. After unwinding�� one strand of the duplex is degraded�� and another strand is mature miRNA. It can induce mRNA cleavage�� if complementarity to �´-untranslated regions of targets is perfect�� translational repression�� if comple- mentarity is imperfect�� and transcriptional repression due to interactions with chromatin Experimental Oncology ���� ��������� ���� ��ecem�er�� ��5���� ��������� ���� ��ecem�er�� ��5�ecem�er�� ��5�� ��5 ��5 pression of miRNA expression through corresponding transcription factors. A very intriguing pro�lem is miRNA patterns in stem cells and their changes during differentiation. Generally�� stem cells possess a specific set of miRNAs which is replaced during development [4��� ��]. A key charac- teristic of stem cells is their capacity to divide for long periods. In this respect�� stem cells are similar to cancer cells�� which are also capa�le of escaping cell cycle ar- rest. Therefore�� there is growing interest to elucidate the mechanisms responsi�le for indicated properties. Results of recent experiments suggest miRNA involve- ment in stem cell self-renewal [���� �4]. Drosophila with a null mutation of �icer-1�� which is required for miRNA processing�� reduced �y ��% germline stem cell division [�7]. It is known that the transition from G1 to S phases of the cell cycle is negatively regulated �y �acapo ��ap���� an inhi�itor of cyclin-dependent kinase. In the mutant Drosophila�� �ap was over-expressed�� possi�ly due to a�sence of �ap-down-regulating miRNAs. Therefore�� miRNAs are required for germline stem cells to transit the G1/S checkpoint �y repressing the G1/S inhi�itor �ap. These results allow speculating that miRNAs could have a similar role in cancer cells [�7]. In addition to important roles of miRNAs in regulation of various cellular physiological pathways mentioned a�ove�� a recent o�servation of targeting repetitive se- quences�� such as Alu elements�� �y miRNAs indicates a crucial role of miRNAs in defense of the mammalian genome via silencing of foreign �NA sequences pre- venting and maintaining sta�ility of the genome [�7]. miRNAs ANd cANceR Taking into account an important role of miRNAs in regulation of the key processes of cell life and death�� the involvement of microRNAome deregulation in di- sease development�� including cancer�� can �e predicted. Indeed�� recent studies showed a link �etween altered miRNA patterns and cancer [1���1��� �5�� ���� �1�� 44]. Al- tered miRNA patterns in tumor versus non-tumor cells have �een found in chronic lymphocytic leukemia [1�]�� B-cell lymphomas [�7�� ���� 55��]�� Burkitt’s lymphoma [7�]�� �reast cancer [45]�� lung cancer [4��� ���� �7]�� colorectal cancer [74]�� glio�lastoma [1�]�� follicular thyroid carcinoma [�4]�� cholangiocarcinoma [7�]�� and hepatocellular carcinoma [75]. Additionally�� detailed studies reveal that more than half of miRNA genes are located at sites in the human genome associated with amplification�� deletion or translocation in cancer�� sug- gesting direct relationship �etween miRNA a�normali- ties and cancer pathogenesis [11�� 14�� �1�� ���� 1�1]. Generally�� there are two approaches linking miRNAome deregulation to cancer in the context of diagnosis and prognosis: �i�� comparison of glo�al miRNA profiles in cancer and non-cancer tissues; and�� �ii�� search for individual miRNAs that may have diagnostic and prognostic significance in certain types of cancer. For example�� chronic lymphocytic leukemia is accompanied �y loss of miR-15a and miR-1�-1 lo- cated in frequently deleted chromosomal region [1�]; in lung cancer�� the let-7 miRNA is down-regulated�� and its reduced expression correlates with poor survival of patients [��]; miR-155 is over-expressed in B-cell lymphomas [�7�� 55]. miRNAs involved in cancer can have either pro- or anti-tumorigenic action [5�]. Anti-tumorigenic�� or tumor-suppressing miRNAs act as inhi�itors of cell proliferation and stimulators of apoptosis. Contrarily�� group of miRNAs acting in the opposite direction �y stimulating cell proliferation and inhi�iting of cell death is termed “oncogenic miRNAs” [�5]. Ta�le summarizes availa�le information regarding cancer-related miRNAs and their targets. Tumor-sup- pressor miRNAs are frequently down-regulated or deleted in cancer and�� respectively�� their targets are over-expressed. These include transcription factors and other regulatory proteins stimulating cell growth and proliferation. Oncogene RAS is negatively regulated �y let-7 miRNA�� which is down-regulated in human lung cancer [4�]. Two mem�ers of BCL family�� BCL� and BCL��� are targets of miR-15a/miR1�-1 and miR- 1�7�� respectively. Both miRNAs are often deleted or down-regulated in leukemia and lymphomas [1��� �7] and increased level of � and BCL� proteins suppresses apoptosis and promotes cell proliferation [�4]. miR-14� regulates extracellular signal-regulated kinase 5 �ERK5���� a MAP kinase that is activated �y growth factors and in- volved in regulation of cell proliferation [7�]. Table. Selected tumor suppressor and oncogene miRNAs miRNAs Targets Type of cancer References Tumor suppressor miRNAs (downregulated or deleted in cancer) miR-15a BCL2 B-cell chronic lymphocytic 8, 11, 13, 15, 24, 27 miR-16-1 BCL2 Adenomas, leukemia, lymphomas, pituitary let-7 RAS lung cancer 2, 46, 90, 97 miR-143 ERK5 breast, colon and lung cancer 3, 45, 74, 97 miR-145 ? miR-127 BCL6 Bladder, colon and prostate cancer 82 Oncogene miRNAs (upregulated in cancer) miR-155 ? B-cell lymphomas, Burkitt’s lymphoma, breast, colon, lung, thyroid cancer 27, 45, 55, 73, 91, 92, 97 The miR-17- 92 cluster E2F1 PTEN TGFBR2 lymphomas, breast, colon, lung, pancreas and prostate cancer 38, 39, 92 miR-21 PTEN breast, colon, glioblastoma, liver, lung, pancreas, prostate, stomach cancer 18, 5, 59, 72, 92, 97 miR-372 LATS2 testicular germ cell cancer 93 miR-373 LATS2 miR-106a RB1 colon, liver, lung, pancreas, pros- tate cancer 59, 92, 97 miR-9 CDH1 breast cancer 45 Both tumor suppressor and oncogene miRNAs The miR-17-92 cluster: miR-17-5p E2F1 77 miR-20a E2F1 77 miR-17-5p AIB1 breast cancer 41 miR-130a MAFB 29 Over-expression of oncogenic miRNAs negatively regulates tumor-suppressor genes including retino- �lastoma 1 �RB1; a regulator of the cell cycle���� large tumor suppressor homolog � �LATS�; an inhi�itor of cyclin-dependent kinase ����� E-cadherin �C�H1; involved in cell-cell adhesion���� transforming growth factor-β receptor II �TGFBR���. PTEN �phosphatase and tensin homolog���� a target of two miRNAs�� miR-�1 and the miR-17-�� cluster�� encodes a phosphatase ��� Experimental Oncology ���� ��������� ���� ��ecem�er�� that inhi�its PI-� kinase pathway; the last promotes cell survival/growth [7�]. Several target genes have �een found for the miR- 17-�� cluster that includes seven miRNAs: miRs-17-5p�� -17-�p�� -1��� -1�a�� -1���� -���� and -��. The miR-17-�� cluster is located on human chromosome 1�q�1�� a re- gion that is easily amplified in several types of cancer including lymphomas [��]. A remarka�le feature of this cluster is its capacity to function as �oth oncogene and tumor suppressor with the result depending on the real situation in the cell. Using a mouse model of c-Myc-in- duced B-cell lymphoma�� He et al. [��] found that en- forced expression of the miR-17-�� cluster dramatically accelerates disease development with a simultaneous decrease in apoptosis�� indicating that these miRNAs act primarily �y suppressing cell death. O’�onnell et al. [77] showed that c-Myc trans- criptionally regulated the miR-17-�� expression. In addition�� two miRNAs in this cluster�� miR-17-5p and miR-���� regulated the transcription factor E�F1�� func- tioning �oth as oncogene and tumor suppressor�� at posttranscriptional level. E�F1 and c-Myc are known to induce each other’s expression. In the a�sence of other controls�� this can set up a positive feed�ack loop lead- ing to over-expression of �oth genes with destructive consequences for normal cell-cycle regulation. At high level of expression�� E�F1 favors apoptosis induction through the ARF-p5� pathway [�5]. Therefore�� damp- ening of translation efficiency �y the miR-17-�� cluster might shift the E�F1 action to enhanced proliferation. Generally�� the loop c-Myc/miR-17-5p-miR-��a/E�F1 ensures precise control �y c-Myc of target gene expres- sion with simultaneous activation of their transcription and restriction of their translation. Therefore�� this cluster reveals�� on one hand�� oncogenic action stimulating cell proliferation and�� on the other hand�� suppressor activity via negative regulatory feed-�ack loop c-Myc/miR- 17-5p-miR-��a/E�F1 [5�]. Recently one more tumor suppressor action of this cluster has �een found: in �reast cancer�� miR-17-5p repressed translation of the oncogene AIB1 �“amplified in �reast cancer 1”�� [41]. Another miRNA�� miR-1��a�� also exhi�its �oth tumor suppressor and oncogene action. This miRNA targets the transcription factor MAFB that plays a dual role in carcinogenesis acting as �oth oncogene and tumor suppressor [7�]. �espite the fact of the esta�lished link �etween miRNAs deregulation and cancer�� very little is known regarding miRNA changes during early stages of carcinogenesis. He et al. [4�] showed that in non-tu- mor tissues adjacent to papillary thyroid carcinoma�� miR-��1�� highly expressed in tumor cells�� was also up-regulated — pro�a�ly reflecting an early event in pathogenesis. In hepatocellular carcinomas�� miR-�� and miR-�1 expression was enhanced in preneo- plastic nodules compared to normal liver�� and further increased in tumors [5�]. First signs of miRNA altera- tions during carcinogenesis require extensive studies to determine the key miRNAs that could reflect early events in cancer development. coNclusioNs ANd peRspectives �iscovered recently�� miRNAs have �een unexpected- ly recognized as new glo�al regulators of gene expression that control the key processes in the cell — growth�� development�� apoptosis. miRNAs are a�le to simultaneously regulate many mRNAs forming regulatory network that can act in a flexi�le manner for precise and quick effects on gene expression. A prominent role of oncogene and tumor-suppres- sor miRNAs in cancer renders them as a useful tool for diagnostic and prognostic purposes [���� �7]. miRNA profiles are very informative�� reflecting the develop- mental progress and differentiation state of tumors; moreover�� they �etter than mRNA profiles distinguish cancer and non-cancer tissues [�5�� ��] and in some cases are changed already at early stages of cancer development prior clinical signatures of disease [11�� 75]. Altered expression of specific miRNAs has �een found in a diversity of cancers giving a promising per- spective to use such miRNAs as targets for anticancer therapy. One approach may �e treatment with precur- sors of tumor suppressor miRNAs that are often down- regulated in cancer. For example�� the let-7 miRNA may �e useful in treatment of lung cancer [�5]; as demon- strated on human cancer cells�� transfect ion with its precursor suppressed proliferation and simultaneously decreased RAS and c-MYC proteins [�]. In case of oncogene miRNAs�� an effective approach might �e using antisense olidonucleotides to inhi�it respective miRNAs due to competition with mRNAs for �inding miRNAs [���� ��]. Antisense therapy has �een success- fully tested in vitro [4��� 71]�� and chemically modified anti-miRNAs termed ‘antagomirs’ could inhi�it specific miRNAs and su�sequently upregulated their targets in vivo [5�]. However�� �efore wide practical use�� a num�er of questions should �e clarified. They include miRNA roles in cellular pathways and mechanisms of regulation of their expression in general and search and confirmation critical miRNAs involved in the de- velopment of given type of cancer in particular. Finally�� a fully unexplored area is effects of anticancer therapy on the miRNA expression. Some data indicate that such treatment can alter miRNA profiles in cancer cells and result in resistance to anticancer drugs [�1�� 7�]. Therefore�� �oth fundamental and clinic-related studies are needed to �etter understand roles of miRNAs in normal and cancer cells and modulate cellular growth�� proliferation and meta�olism using miRNAs. AckNowledgemeNts This work was supported in part �y a Postgraduate Research Program administered �y the Oak Ridge Institute for Science and Education �TB��. RefeReNces 1. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 microRNA family  members mir-48, mir-84, and mir-241 function together to  regulate developmental timing in Caenorhabditis elegans. Dev  Cell 2005; 9: 403–14. Experimental Oncology ���� ��������� ���� ��ecem�er�� ��7���� ��������� ���� ��ecem�er�� ��7�ecem�er�� ��7�� ��7 ��7 2. Akao Y, Nakagawa Y, Naoe T. let-7 MicroRNA functions  as a potential growth suppressor in human colon cancer cells.  Biol Pharm Bull 2006; 29: 903–6. 3. Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145  are  possible  common  oncomicroRNAs  in  human  cancers.  Oncol Rep 2006; 16: 845–50. 4. Ambros V. MicroRNA  pathways  in  flies  and  worms:  growth, death, fat, stress, and timing. Cell 2003; 113: 673–6. 5. Ambros V. The functions of animal microRNAs. Nature  2004; 431: 350–5. 6. Bartel DP. MicroRNAs: genomics, biogenesis, mecha- nisms, and function. Cell 2004; 116: 281–97. 7. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved  and  nonconserved  human  microRNAs.  Nat  Genet  2005;  37: 766–70. 8. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1 downregulation in  pituitary adenomas. J Cell Physiol 2005; 204: 280–5. 9. Boutla A, Delidakis C, Tabler M. Developmental defects  by antisense-mediated inactivation of micro-RNAs 2 and 13  in Drosophila and the identification of putative target genes.  Nucleic Acids Res 2003; 31: 4973–80. 10. Calin GA, Croce CM. MicroRNA-cancer connection:  the beginning of a new tale. Cancer Res 2006; 66: 7390–4. 11. Calin GA, Croce CM. Genomics  of  chronic  lym- phocytic  leukemia microRNAs as new players with clinical  significance. Semin Oncol 2006; 33: 167–73. 12. Calin GA, Croce CM. MicroRNA signatures in human  cancers. Nat Rev Cancer 2006; 6: 857–66. 13. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and  down-regulation of micro-RNA genes miR15 and miR16 at 13q14  in chronic lymphocytic leukemia. PNAS 2002; 99: 15524–9. 14. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located  at fragile sites and genomic regions involved in cancers. PNAS  2004; 101: 2999–3004. 15. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabb- ri M, Iuliano R, Palumbo T, Pichiorri F, RoldoC, Garson R, Seviqnani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A microRNA signature associated with  prognosis and progression in chronic lymphocytic leukemia.  N Engl J Med 2005; 353: 1793–801. 16. Carrington JC, Ambros V. Role of microRNAs in plant  and animal development. Science 2003; 301: 336–8. 17. Carthew RW. Gene  regulation  by  microRNAs.  Curr  Opin Genet Dev 2006; 16: 203–8. 18. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is  an antiapoptotic factor in human glioblastoma cells. Cancer  Res 2005; 65: 6029–33. 19. Chang S, Johnston RJ Jr, Hobert O. A transcriptional  regulatory cascade that controls left/right asymmetry in chemo- sensory neurons of C. elegans. Genes Dev 2003; 17: 2123–37. 20. Chang S, Johnston RJ Jr, Frøkjær-Jensen C, Locke- ry S, Hobert O. MicroRNAs  act  sequentially  and  asym- metrically to control chemosensory laterality in the nematode.  Nature 2004; 430: 785–98. 21. Kovalchuk OV, Pogribny IP, Chekhun VF. Role  of  microRNA ome changes  in drug  resistance of breast cancer  cells. Abstract of UKR Conference “molecular bases and clinical  problems of drug resistance”. Oncol 2006; 3 (Suppl): 75. 22. Cheng LC, Tavazoie M, Doetsch F. Stem cells: from  epigenetics to microRNAs. Neuron 2005; 46: 363–7. 23. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense  inhibition of human miRNAs and indications for an involve- ment of miRNA in cell growth and apoptosis. Nucleic Acids  Res 2005; 33: 1290–7.  24. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferra- cin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting  BCL2. PNAS 2005; 102: 13944–9. 25. Cummins JM, Velculescu VE. Implications of micro-RNA  profiling for cancer diagnosis. Oncogene 2006; 25: 6220–7. 26. Denli AM, Tops BB, Plasterk RH, Ketting RF, Han- non GJ. Processing of primary microRNAs by the Micropro- cessor complex. Nature 2004; 432: 231–5. 27. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomes MF, Lund E, Dahlberg JE. Accumulation of miR-155 and BIC RNA  in human B cell lymphomas. PNAS 2005; 102: 3627–32. 28. Esquela-Kerscher A, Slack FJ. Oncomirs — microRNAs  with a role in cancer. Nat Rev Cancer 2006; 6: 259–69. 29. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmi- no A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin GA, Liu CG, Bloomfield CD, Andreeff M, Croce CM. MicroRNA fingerprints during human megakaryocytopoiesis.  PNAS 2006; 103: 5078–83. 30. Gonzalo S, Blasco MA. Role of Rb family in the epi- genetic definition of chromatin. Cell Cycle 2005; 4: 752–5. 31. Gregory RI, Shiekhattar R. MicroRNA biogenesis and  cancer. Cancer Res 2005; 65: 3509–12. 32. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor  complex mediates the genesis of microRNAs. Nature 2004;  432: 235–40. 33. Gregory RI, Chendrimada TP., Cooch N, Shiekhat- tar R. Human RISC couples microRNA biogenesis and post- transcriptional gene silencing. Cell 2005; 123: 631–40. 34. Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates  several transcription factors at the larval to adult transition in  C. elegans. Dev Cell 2005; 8: 321–30. 35. Hammond SM. MicroRNAs as oncogenes. Curr Opin  Genet Dev 2006; 16: 4–9. 36. Hammond SM. MicroRNA therapeutics: a new niche for  antisense nucleic acids. Trends Mol Med 2006; 12: 99–101. 37. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated  by the microRNA pathway. Nature 2005; 435: 974–8. 38. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92,  is  overexpressed  in  human  lung  cancers  and  enhances  cell  proliferation. Cancer Res 2005; 65: 9628–32. 39. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a  potential human oncogene. Nature 2005; 435: 828–33. 40. He L, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A. The role of microRNA genes in  papillary thyroid carcinoma. PNAS 2005; 102: 19075–80. 41. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates  breast cancer cell proliferation by inhibiting translation of AIB1  mRNA. Mol Cell Biol 2006; 26: 8191–201. 42. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem  cell-specific microRNAs. Dev Cell 2003; 5: 351–3.  ��� Experimental Oncology ���� ��������� ���� ��ecem�er�� 43. Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLos Biol  2004; 2: E98. 44. Hwang HW, Mendell JT. MicroRNAs in cell proliferation,  cell death, and tumorigenesis. Br J Cancer 2006; 94: 776–80. 45. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Me- nard S, Palazzo JP, Rosenberg A, Musiani P, Volnia S, Nenci I, Calin GA, Qnerzoli P, Negrini M, Croce CM. MicroRNA gene  expression deregulation  in human breast cancer. Cancer Res  2005; 65: 7065–70. 46. Johnson SM, Grosshans H, Shingara J, Byrom M, Jar- vis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 2005; 120:  635–47. 47. Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O. MicroRNAs acting  in a double-negative  feedback  loop to control a neuronal cell fate decision. PNAS 2005; 102:  12449–54. 48. Jones PA, Baylin SB. The fundamental role of epigenetic  events in cancer. Nat Rev Genet 2002; 3: 415–28. 49. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-spe- cific microRNA. Science 2005; 309: 1577–81. 50. Jovanovic M, Hengartner MO. miRNAs and apoptosis:  RNAs to die for. Oncogene 2006; 25: 6176–87. 51. Karp X, Ambros V. Encountering microRNAs in cell fate  signaling. Science 2005; 310: 1288–9. 52. Kent OA, Mendell JT. A small piece in the cancer puzzle:  microRNAs as  tumor suppressors and oncogenes. Oncogene  2006; 25: 6188–96. 53. Kim VN. MicroRNA biogenesis: coordinated cropping  and dicing. Nat Rev Mol Cell Biol 2005; 6: 376–85. 54. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyiou- kos C, Mourelatos Z, Hatzigeorgiou A. A combined computa- tional-experimental approach predicts human microRNA targets.  Genes Dev 2004; 18: 1165–78. 55. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are  highly expressed in Hodgkin, primary mediastinal and diffuse  large B cell lymphomas. J Pathol 2005; 207: 243–9. 56. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Ep- stein EJ, MacMelamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat  Genet 2005; 37: 495–500. 57. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic  stem cell-derived  neurogenesis. Stem Cells 2006; 24: 857–64. 58. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;  438: 685–9. 59. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Fran- kel W, Jacob ST, Ghoshal K. Downregulation of miR-122 in the  rodent and human hepatocellular carcinomas. J Cell Biochem  2006; 99: 671–8. 60. Lamy P, Andersen CL, Dyrskjøt L, Tørring N, Ørntoft T, Wiuf C. Are microRNAs located in genomic regions associated  with cancer? Br J Cancer 2006; 95: 1415–8.  61. Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unner- stall U, Marks DS, Sander C, Tuschl T, Gaul U. Antisense-me- diated depletion reveals essential and specific functions of micro- RNAs in Drosophila development. Cell 2005; 121: 1097–108. 62. Lee RC, Feinbaum RL, Ambros V. The C. elegans heter- ochronic gene lin-4 encodes small RNAs with antisense comple- mentarity to lin-14. Cell 1993; 75: 843–54.  63. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell  2003; 115: 787–98. 64. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing,  often flanked by adenosines, indicates that thousands of human  genes are microRNA targets. Cell 2005; 120: 15–20. 65. Li X, Carthew RW. A microRNA mediates EGF recep- tor signaling and promotes photoreceptor differentiation in the  Drosophila eye. Cell 2005; 123: 1267–77.  66. Lin SL, Ying SY. Gene silencing in vitro and in vivo using  intronic microRNAs. Meth Mol Biol 2006; 342: 295–312. 67. Lin SL, Miller JD, Ying SY. Intronic microRNA (miR- NA). J Biomed Biotechnol 2006; 2006: 26818. 68. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expres- sion profiles classify human cancers. Nature 2005; 435: 834–8. 69. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Sri- neel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. MicroRNA-re- sponsive “sensor” transgenes uncover Hox-like and other devel- opmentally regulated patterns of vertebrate microRNA expression.  Nat Genet 2004; 36: 1079–83. 70. Mattick JS, Makunin IV. Small  regulatory RNAs  in  mammals. Hum Mol Genet 2005; 14: R121–32. 71. Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence- specific  inhibition of microRNA- and siRNA-induced RNA  silencing. RNA 2004; 10: 544–50.  72. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of  human micro-RNA in growth and response to chemotherapy in  human cholangiocarcinoma cell lines. Gastroenterology 2006;  130: 2113–29. 73. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-1555/BIC RNA in  children with Burkitt lymphoma. Genes Chromosomes Cancer  2004; 39: 167–9. 74. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microR- NAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–91. 75. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA  expression patterns in hepatocellular carcinoma and non-tumor- ous tissues. Oncogene 2006; 25: 2537–45. 76. Nishimoto S, Nishida E. MAPK signalling: ERK5 versus  ERK1/2. EMBO Rep 2006; 7: 782–6. 77. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Men- dell JT. c-Myc-regulated microRNAs modulate E2F1 expession.  Nature 2005; 435: 839–43. 78. Plasterk RHA. Micro RNAs in animal development. Cell  2006; 124: 877–81. 79. Pouponnot C, Sii-Felice K, Hmitou I, Rocques N, Lecoin L, Druillenec S, Felder-Schmittbuhl MP, Eychene A. Cell  context reveals a dual role  for Maf  in oncogenesis. Oncogene  2006; 25: 1299–310. 80. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bet- tinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide  let-7 RNA regulates developmental  timing  in Caenorhabditis elegans. Nature 2000; 403: 901–6. 81. Rodrigues A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and trans- cription units. Genome Res 2004; 14: 1902–10. 82. Saito J, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA. Specific activation of microRNA-127  with downregulation of the proto-oncogene BCL6 by chroma- Experimental Oncology ���� ��������� ���� ��ecem�er�� ������� ��������� ���� ��ecem�er�� ����ecem�er�� ����� ��� ��� tin-modifying drugs in human cancer cells. Cancer Cell 2006;  9: 435–43. 83. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA  levels by histone deacetylase  inhibition. Cancer Res 2006; 66: 1277–81. 84. Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fis- cher KA, Ruohola-Baker H. The microRNA pathway plays a  regulatory role in stem cell division. Cell Cycle 2006; 5: 172–5. 85. Slack FJ, Weidhaas JB. MicroRNAs as a potential magic  bullet in cancer. Future Oncol 2006; 2: 73–82. 86. Smalheiser NR, Torvik VI. Mammalian microRNAs  derived from genomic repeats. Trends Genet 2005; 21: 322–6. 87. Smalheiser NR, Torvik VI. Alu elements within human  mRNAs are probable microRNA targets. Trends Genet 2006;  22: 532–6. 88. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. Human embryonic stem cells express a unique set of microRNAs.  Dev Biol 2004; 270: 488–98. 89. Tagawa H, Seto M. A microRNA cluster as a target of  genomic amplification in malignant lymphoma. Leukemia 2005;  19: 2013–6. 90. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of  the  let-7   microRNAs in human lung cancers in association with shortened  postoperative survival. Cancer Res 2004; 64: 3753–6. 91. Tam W, Dahlberg JE. miR-155/BIC as an oncogenic  microRNA. Genes Chromosomes Cancer 2006; 45: 211–2. 92. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanta G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid  tumors defines cancer gene targets. PNAS 2006; 103: 2257–61. 93. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, et al. A genetic  screen implicates miRNA-372 and miRNA-373 as oncogenes in  testicular germ cell tumors. Cell 2006; 124: 1169–81. 94. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A lim- ited set of human MicroRNA is deregulated in follicular thyroid  carcinoma. J Clin Endocrinol Metab 2006; 91: 3584–91. 95. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation  of the heterochronic gene lin-14 by lin-4 mediates temporal pattern  formation in C. elegans. Cell 1993; 75: 855–62. 96. Wu J, Xie X. Comparative sequence analysis reveals an  intricate network among REST, CREB and miRNA in mediating  neuronal gene expression. Genome Biol 2006; 7: R85.1–14. 97. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular  profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;  9: 189–98. 98. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates  the nuclear export of pre-microRNAs and short hairpin RNAs.  Genes Dev 2003; 17: 3011–6. 99. Yoo AS, Greenwald I. LIN-12/Notch activation leads to  microRNA-mediated down-regulation of Vav in C. elegans. Science  2005; 310: 1330–3. 100. Zeng Y. Principles of micro-RNA production and matura- tion. Oncogene 2006; 25: 6156–62. 101. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatziqeorqion A, Gimot- ty PA, Weber BL, Concos G. MicroRNAs exhibit high frequency  genomic alterations in human cancer. PNAS 2006; 103: 9136–41. МикроРНК в НоРМальНых и опухолевых КлетКах: Новый Класс РегулятоРов эКспРессии геНов Микро РНК (miRNAs) �� ��о ������ ���ко�ир���и�� РНК, ������и��о р�����ир���и�� �к��р����и� ����о� �� �о���р���кри��ио�-miRNAs) �� ��о ������ ���ко�ир���и�� РНК, ������и��о р�����ир���и�� �к��р����и� ����о� �� �о���р���кри��ио�-) �� ��о ������ ���ко�ир���и�� РНК, ������и��о р�����ир���и�� �к��р����и� ����о� �� �о���р���кри��ио�- �о� �ро���� и �ри�и����и�� �ч���и�� � р�з�и�ии, �ифф��р����иро�к��, �ро�иф��р��ии и ��о��оз�� к����ок, � ��кж�� ���о��я��и�� ��ж��� ро�ь � о��хо����о� �ро�������. В обзор�� об��ж���� био������з miRNA, ф��к�ии ��их �о���к�� � �ор���ь��х к����к�х, из-miRNA, ф��к�ии ��их �о���к�� � �ор���ь��х к����к�х, из-, ф��к�ии ��их �о���к�� � �ор���ь��х к����к�х, из- �������ия ��бор� miRNA � о��хо�����х к����к�х и ро�ь �ро�и�оо��хо�����х и о�ко������х miRNAs � о��хо����о�� �ро�р����ии.miRNA � о��хо�����х к����к�х и ро�ь �ро�и�оо��хо�����х и о�ко������х miRNAs � о��хо����о�� �ро�р����ии. � о��хо�����х к����к�х и ро�ь �ро�и�оо��хо�����х и о�ко������х miRNAs � о��хо����о�� �ро�р����ии.miRNAs � о��хо����о�� �ро�р����ии. � о��хо����о�� �ро�р����ии. Ключевые слова: �икроРНК, р�к, о�ко����, о��хо������� ���р����ор. Copyright © Experimental Oncology, 2006