Theoretical and experimental research of hot rolling of aluminum strips for solar collector

The article investigates the process of rolling aluminum strips with aluminum wire inside for the solar collector components. The closure of coal mines, the constant rise in the cost of oil and gas compel to refer to the methods for producing renewable (alternative) energy. An urgent problem is t...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Makeeva, A.S., Kuzmenko, O.S., Remez, O.A., Frolov, Ya.V., Uwarow, I., Gridin, O.Yu.
Format: Article
Language:English
Published: Інститут геотехнічної механіки імені М.С. Полякова НАН України 2016
Series:Геотехнічна механіка
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/137795
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Theoretical and experimental research of hot rolling of aluminum strips for solar collector / A.S. Makeeva, O.S. Kuzmenko, O.A. Remez, Ya.V. Frolov, I. Uwarow, O.Yu. Gridin // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2016. — Вип. 128. — С. 149-157. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-137795
record_format dspace
spelling irk-123456789-1377952018-06-19T03:03:24Z Theoretical and experimental research of hot rolling of aluminum strips for solar collector Makeeva, A.S. Kuzmenko, O.S. Remez, O.A. Frolov, Ya.V. Uwarow, I. Gridin, O.Yu. The article investigates the process of rolling aluminum strips with aluminum wire inside for the solar collector components. The closure of coal mines, the constant rise in the cost of oil and gas compel to refer to the methods for producing renewable (alternative) energy. An urgent problem is the enhancement of solar manufacturing technologies in order to improve the quality and reduce the cost of products. The article presents the results of experimental and theoretical studies of the hot rolling process of aluminum strips with aluminum wire between them for internal collector channels. The velocity fields were researched; dependence on the rolling load changes for different degrees of deformation was obtained. It was found that for obtaining high-quality welding strips with wire between them the degree of deformation should be more than 35%. The comparison of the dependencies obtained experimentally and with the theoretical calculations was carried out, which showed a high degree of similarity. The comparison of the dependences obtained experimentally with the theoretical calculations was carried out, which showed a high degree of reproducibility, repeatability and similarity. Scientific novelty of the research lies in the parameters justification of hot rolling process of two aluminum strips with aluminum wire between them for partial welding of aluminum strips. These results can be used in industrial processes for the parts production of solar collectors in alternative energy. This study was supported by German Academic Exchange Service (DAAD) in the framework of German-Ukrainian project «Praxispartnershaft Metalurgie». Стаття присвячена дослідженню технологічного процесу прокатки алюмінієвих штаб з алюмінієвою проволокою всередині для отримання деталей сонячного колектору. Зачинення вугільних шахт, постійне зростання вартості нафтопродуктів та газу змушує звертатися до способів отримання відновлюваної (альтернативної) енергії. Актуальної є проблема вдосконалення технології виготовлення сонячних колекторів з метою покращення якості та зменшення вартості виробу. У статті наведені результати експериментальних та теоретичних досліджень процесу гарячої прокатки алюмінієвих штаб с алюмінієвою проволокою між ними для отримання внутрішніх каналів колектору. Досліджено поле швидкостей, отримані залежності зміни сили прокатки для різних ступеней деформації. Встановлено, що для отримання якісного зварювання штаб з проволокою між ними, ступінь деформації повинна бути не менше 35%. Виконано порівняння залежностей, отриманих експериментально, з теоретичними розрахунками, що показали високий ступінь збіжності результатів. Наукова новизна досліджень полягає в обґрунтуванні параметрів процесу гарячої прокатки двох алюмінієвих полос з алюмінієвою проволокою всередині для парціального, часткового зварювання алюмінієвих штаб. Представлені результати можуть біти використані в технологічних процесах отримання деталей сонячних колекторів в альтернативній енергетиці. Дослідження, результати яких приведені в даній статті, виконані в межах сучасного спільного німецько- українського проекту «Praxispartnershaft Metalurgie», який фінансується німецьким товариством академічних обмінів DAAD. Статья посвящена исследованию технологического процесса прокатки алюминиевых полос с алюминиевой проволокой внутри для получения деталей солнечного коллектора. Закрытие угольных шахт, постоянный рост стоимости нефтепродуктов и газа вынуждает обращаться к способам получения возобновляемой (альтернативной) энергии. Актуальной является проблема совершенствования технологий изготовления солнечных коллекторов с целью улучшения качества и уменьшения стоимости изделий. В статье приведены результаты экспериментальных и теоретических исследований процесса горячей прокатки алюминиевых полос с алюминиевой проволокой между ними для получения внутренних каналов коллектора. Исследовано поле скоростей, получены зависимости изменения силы прокатки для различных степеней деформации. Установлено, что для получения качественного сваривания полос с проволокой между ними степень деформации должна быть не менее 35 %. Выполнено сравнение зависимостей, полученных экспериментально, с теоретическими расчетами, показавшее высокую степень сходимости результатов. Научная новизна исследований заключается в обосновании параметров процесса горячей прокатки двух алюминиевых полос с алюминиевой проволокой внутри для парциального, частичного сваривания алюминиевых полос. Приведенные результаты могут быть использованы в технологических процессах получения деталей солнечных коллекторов в альтернативной энергетике. Исследования, результаты которых приведены в данной статье, выполнены в рамках совместного немецко-украинского проекта «Praxispartnershaft Metalurgie», финансируемого немецким обществом академических обменов DAAD. 2016 Article Theoretical and experimental research of hot rolling of aluminum strips for solar collector / A.S. Makeeva, O.S. Kuzmenko, O.A. Remez, Ya.V. Frolov, I. Uwarow, O.Yu. Gridin // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2016. — Вип. 128. — С. 149-157. — Бібліогр.: 6 назв. — англ. 1607-4556 http://dspace.nbuv.gov.ua/handle/123456789/137795 669.716:621.77.016.2:539.388.22 en Геотехнічна механіка Інститут геотехнічної механіки імені М.С. Полякова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The article investigates the process of rolling aluminum strips with aluminum wire inside for the solar collector components. The closure of coal mines, the constant rise in the cost of oil and gas compel to refer to the methods for producing renewable (alternative) energy. An urgent problem is the enhancement of solar manufacturing technologies in order to improve the quality and reduce the cost of products. The article presents the results of experimental and theoretical studies of the hot rolling process of aluminum strips with aluminum wire between them for internal collector channels. The velocity fields were researched; dependence on the rolling load changes for different degrees of deformation was obtained. It was found that for obtaining high-quality welding strips with wire between them the degree of deformation should be more than 35%. The comparison of the dependencies obtained experimentally and with the theoretical calculations was carried out, which showed a high degree of similarity. The comparison of the dependences obtained experimentally with the theoretical calculations was carried out, which showed a high degree of reproducibility, repeatability and similarity. Scientific novelty of the research lies in the parameters justification of hot rolling process of two aluminum strips with aluminum wire between them for partial welding of aluminum strips. These results can be used in industrial processes for the parts production of solar collectors in alternative energy. This study was supported by German Academic Exchange Service (DAAD) in the framework of German-Ukrainian project «Praxispartnershaft Metalurgie».
format Article
author Makeeva, A.S.
Kuzmenko, O.S.
Remez, O.A.
Frolov, Ya.V.
Uwarow, I.
Gridin, O.Yu.
spellingShingle Makeeva, A.S.
Kuzmenko, O.S.
Remez, O.A.
Frolov, Ya.V.
Uwarow, I.
Gridin, O.Yu.
Theoretical and experimental research of hot rolling of aluminum strips for solar collector
Геотехнічна механіка
author_facet Makeeva, A.S.
Kuzmenko, O.S.
Remez, O.A.
Frolov, Ya.V.
Uwarow, I.
Gridin, O.Yu.
author_sort Makeeva, A.S.
title Theoretical and experimental research of hot rolling of aluminum strips for solar collector
title_short Theoretical and experimental research of hot rolling of aluminum strips for solar collector
title_full Theoretical and experimental research of hot rolling of aluminum strips for solar collector
title_fullStr Theoretical and experimental research of hot rolling of aluminum strips for solar collector
title_full_unstemmed Theoretical and experimental research of hot rolling of aluminum strips for solar collector
title_sort theoretical and experimental research of hot rolling of aluminum strips for solar collector
publisher Інститут геотехнічної механіки імені М.С. Полякова НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/137795
citation_txt Theoretical and experimental research of hot rolling of aluminum strips for solar collector / A.S. Makeeva, O.S. Kuzmenko, O.A. Remez, Ya.V. Frolov, I. Uwarow, O.Yu. Gridin // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2016. — Вип. 128. — С. 149-157. — Бібліогр.: 6 назв. — англ.
series Геотехнічна механіка
work_keys_str_mv AT makeevaas theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
AT kuzmenkoos theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
AT remezoa theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
AT frolovyav theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
AT uwarowi theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
AT gridinoyu theoreticalandexperimentalresearchofhotrollingofaluminumstripsforsolarcollector
first_indexed 2025-07-10T04:29:31Z
last_indexed 2025-07-10T04:29:31Z
_version_ 1837232841090400256
fulltext ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 149 UDC 669.716:621.77.016.2:539.388.22 Makeeva A.S., Doctoral Student, Kuzmenko O.S., Student, Remez O.A., Ph.D. (Tech.), Assistant Professor, Frolov Ya.V., D.Sc. (Tech.), Professor (NMetAU) Uwarow I., Student, Gridin O.Yu., D.Sc. (Tech.), Professor (University of Paderborn, Germany) THEORETICAL AND EXPERIMENTAL RESEARCH OF HOT ROLLING OF ALUMINUM STRIPS FOR SOLAR COLLECTOR Макеєва Г.С., аспірант, Кузменко О.С., студент, Ремез О.А., канд. техн. наук, доцент, Фролов Я.В., д-р техн. наук, професор (НМетАУ) Уваров І., студент, Гридін О.Ю., д-р техн. наук, професор (Університет м. Падерборн, ФРН) ТЕОРЕТИЧНЕ ТА ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ГАРЯЧОЇ ПРОКАТКИ АЛЮМІНІЄВИХ СМУГ ДЛЯ ОТРИМАННЯ СОНЯЧНОГО КОЛЕКТОРА Макеева А.С., аспирант, Кузменко А.С., студент, Ремез О.А., канд. техн. наук, доцент, Фролов Я.В., д-р техн. наук, профессор (НМетАУ) Уваров И., студент, Гридин А.Ю., д-р техн. наук, профессор (Университет г. Падерборн, ФРГ) ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ГО- РЯЧЕЙ ПРОКАТКИ АЛЮМИНИЕВЫХ ПОЛОС ДЛЯ ПОЛУЧЕНИЯ СОЛНЕЧНОГО КОЛЛЕКТОРА Abstract. The article investigates the process of rolling aluminum strips with aluminum wire inside for the solar collector components. The closure of coal mines, the constant rise in the cost of oil and gas compel to refer to the methods for producing renewable (alternative) energy. An urgent problem is the enhancement of solar manufacturing technologies in order to improve the quality and reduce the cost of products. The article presents the results of experimental and theoretical studies of the hot rolling process of aluminum strips with aluminum wire between them for internal collec- tor channels. The velocity fields were researched; dependence on the rolling load changes for dif- ferent degrees of deformation was obtained. © А.С. Макеева, А.С. Кузменко, О.А. Ремез, Я.В. Фролов, И. Уваров, А.Ю. Гридин, 2016 ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 150 It was found that for obtaining high-quality welding strips with wire between them the degree of deformation should be more than 35%. The comparison of the dependencies obtained experimen- tally and with the theoretical calculations was carried out, which showed a high degree of similarity. The comparison of the dependences obtained experimentally with the theoretical calculations was carried out, which showed a high degree of reproducibility, repeatability and similarity. Scientific novelty of the research lies in the parameters justification of hot rolling process of two aluminum strips with aluminum wire between them for partial welding of aluminum strips. These results can be used in industrial processes for the parts production of solar collectors in alternative energy. This study was supported by German Academic Exchange Service (DAAD) in the framework of Ger- man-Ukrainian project «Praxispartnershaft Metalurgie». Keywords: hot rolling, the aluminum strips, internal channels, the degree of deformation. Introduction In recent years, the closure of coal mines, the constant rise of the cost of oil and gas compel to pay attention to the methods for producing so-called renewable (alter- native) energy, which undoubtedly will soon need to gain energy independence and compensate the lack of conventional fuels. The main advantages of these technolo- gies are the absolute environmental friendliness, ease of use, long operating systems, minimal service and maintenance. Using renewable energy sources, we have a signif- icant effect on the environment and energy crisis in the world, as well as we get inde- pendent of traditional forms of energy, significant cost savings and confidence in the future. One of the main sources of energy for this type of systems is the sun energy. The use of sun energy in our country has a special place, because climatic condi- tions especially in south of Ukraine allow to use all year round effectively solar sys- tem, which based on solar collectors for autonomous hot water and heating. Solar systems are equipment for heating water, which include solar collectors. The technol- ogy of collectors’ production is constantly evolving and developing in order to im- prove the quality and reduce the cost of products. One of the main step of this tech- nology is partial connection of aluminum strips with getting inner channel between aluminum strips. The study of the plastic deformation process in hot rolling of aluminum strips with aluminum wire will allow setting the technological features of manufacturing process of these parts. A key point of producing such types of parts of solar collectors is creating inner channel between aluminum stripes easier, cheaper and more effec- tively. One of possible variants of its solution is a partial connection to the two alu- minum strips with an aluminum wire between them during hot rolling. Formulation of the problem The aim of this research is to study the plastic deformation parameters of joint- rolling the two aluminum strips with an aluminum wire between them to obtain an aluminum plate with internal channels. Condition of the problem Questions of aluminum strips hot rolling were studied by many scientists. The au- thors in [1] found that the bonding strength of the material in hot rolling can be com- ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 151 pared with the original material strength. It was also found that the most important parameter in the process of rolling is the initial temperature, the annealing tempera- ture, elongation and roll speed. The most important factor is the temperature. It was also found that the hot rolling gives greater bonding strength than the cold one. Influ- ence of rolling temperature on the microstructure and mechanical properties of the aluminum strips was investigated in [2]. Based on the studies [3] model compound bimetals multilayer has been devel- oped, whereby the especially of anisotropy of deformation bounding were deter- mined, it was analyzed the influence of such parameters as friction coefficient, de- formation coefficient, roll radius on the quality metal compounds. Those parameters could be used in our researches. In a study [4] was determined dependence during the heat treatment of the influ- ence of the frictional coefficient on the compound of aluminum strips. It is found that the rate of bond strength increases with increasing annealing temperature, moreover, the extreme value of strain for the compounds decreases with increasing annealing temperature. In a study [5] the processes of hot and cold rolling welding of two aluminum strips with several thicknesses and varying deformation degrees and temperature were researched. The strain and temperature limit were found at which the compound of aluminum strips with hot and cold rolling take place. Scientists [6] found that not only materials but geometry of the channels influence on the quality of collector. In this study, production technology of multichannel col- lector was optimized by rolling and partial welding. The various forms of channels were tested experimentally and the most optimal form was identified. The results and achievements of studies that were conducted earlier have been studied and taken into attention in our experiment. A distinctive feature of the exper- iment is the presence of aluminum wire between the aluminum strips. Experimental part For the experiments test specimens in the form of strips of aluminum alloy EN AW-1050 and aluminum wire from the same alloy were prepared. The aluminum plate size: 200 mm 70 mm 3 mm (Fig. 1), with holes for rivets in order to the composition of the two aluminum strips of aluminum wire between them during rolling was as a single blank without displacement. The aluminum wire of 1.5 mm diameter, 250 mm in length were used. The experiment was conducted according to the following diagram (Fig. 2). The two aluminum stripes and wires were degreased by alcohol and connected into the composition strip - wire - strip and were fixed by rivets to prevent shift of the ele- ments relative to each other during rolling. The simple was heated in a furnace to a temperature of 500 0С. The rolling was conducted at the deformation degree of 30- 40%, for 220 mm diameter rolls. Rolled samples were measured and had heat treatment in an oven at 2000С for two hours. ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 152 Figure 1 – The example of the experimental aluminum strips sample Figure 2 – The scheme of the experiment The results and their discussion In the result of this experiment elongation coefficient, spread coefficient, defor- mation coefficient were calculated. The measurements of rolling load also were cal- culated during rolling within accuracy 1000 samples per second. As a result of rolling with a degree of deformation of 30-31% (samples 1 and 2, Table 1) there was no quality welding and the task has not been achieved. During rolling with the deformation of 35% and more (samples 3-7, Table 1), surface weld- ing was successful. According to the results of measurements elongation coefficient, spread coefficient were calculated and they are proportional to the deformation coef- ficient. Table 1 – Deformations indicators ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 153 № Width after rolling, mm Length after rolling, mm Deformation co- efficient, % Elongation co- efficient, % Spread coefficient, % 1 71,0 270 30,28 35,00 1,43 2 71,0 269 31,00 34,00 1,43 3 71,5 278 36,67 39,00 2,14 4 72,0 297 41,94 48,50 2,86 5 71,8 295 40,83 47,50 2,57 6 71,5 278 35,17 39,00 2,14 7 71,0 276 34,67 38,00 1,43 In the results of researches the border of the deformation degree during the hot rolling was determined, at which welding of aluminum stripes with aluminum wires between them take place. The visual sample of this experiment is shown in Fig. 3. Figure 3 – Aluminum wire before and after rolling During the experiments the measurements of speed and rolling load were con- ducted for each experiment. The simulation of the process by finite element software product Q-Form was done as well. (Fig. 4) In a theoretical study with the help of the Q-Form software were set the same process parameters as in experimental studies. The velocity field was analyzed, that was obtained by simulation hot rolling alu- minum strips, with aluminum wire. As a result of simulation the velocity distribution of the metal during rolling was obtained. The strip speed at the exit of the rolls is 143 mm / sec, strip speed at the in- let of the rolls is 92 mm / s. At the figture 5 the velocity distribution in the field of de- formation is shown. ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 154 Figure 4 – Hot rolling aluminum plates simulation in Q-Form Figure 5 – Field of speeds in hot rolling aluminum plates simulation During the research the series of experimental rollings were carried out as well as simulations to determine the effect of such technological parameters of the process as temperature, degree of deformation and the diameter of the rolls on the rolling load and the quality of the strips connection. As the result of research the satisfactory con- vergence of experimental and theoretical data about the rolling force was received (Fig. 6). This conclusion makes it possible to lead further theoretical study of the effect of temperature, degree of deformation and the diameter of the rolls on the strength and quality of rolling. ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 155 Figure 6 – The experimental and theoretical data about the rolling force Conclusions Making analyze of conducting studies it should be noticed the following. During the hot rolling of aluminum strips with aluminum wire between them the velocity field, elongation coefficient, spread coefficient and the deformation coefficient were re- searched, dependence rolling load from rolling time was obtained for different degrees of deformation. It was found experimentally that for quality welding strips with wire between them the rolling load must be at least 35%. The comparison of the experimen- tally obtained dependences with the theoretical calculations by computer simulation in the software product Q-Form was conducted, which showed a high degree of reproduc- ibility. Rationale for the use of this software will allow to reduce in the future the dura- tion of experimental studies in determining the rational technological process parame- ters of hot rolling of the two strips with aluminum wire inside to improve the quality of welding them together in order to obtain plates with internal channels, which are used in the manufacture of solar collector. _____________________________ REFERENCES 1. H. Yan and J.G. Lenard (2004), «A study of warm and cold roll-bonding of an aluminium alloy», Ma- terials Science and Engineering, Vol. 385, pp. 419-428, available at: http://www.sciencedirect.com/science/article/pii/S0921509304009062 2. Z.J. Wang, L. Zhai, M. Ma, H. Yuan and W.C. Liu (2015), «Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot rolling», Materials Science and Engineering, Vol. 644, pp. 194–203, available at: http://www.sciencedirect.com/science/article/pii/S0921509315301878 3. Gajanan P. Chaudhari and V. Akoff (2009), «Cold roll bonding of multi-layered bi-metal laminate composites», Composites Science and Technology, Vol. 69, pp. – 1667-1675, available at: http://www.sciencedirect.com/science/article/pii/S0266353809001298 4. R. Jamaati and M. R.Toroghinejad (2010), «Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process», Materials and Design, Vol. 31, pp. 4508-4513, available at: http://www.sciencedirect.com/science/article/pii/S0261306910002335 5. M. Eizadjou, H. Danesh Manesh and K. Janghorban (2009), «Mechanism of warm and cold roll bond- ing of aluminum alloy strips», Materials and Design, Vol.30, pp. 4156–4161, available at: http://www.sciencedirect.com/science/article/pii/S0261306909001848 6. Xiaolin Sun, Jingyi Wu, Yanjun Dai and Ruzhu Wang (2014), «Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating http://www.sciencedirect.com/science/article/pii/S0921509304009062 http://www.sciencedirect.com/science/article/pii/S0266353809001298 http://www.sciencedirect.com/science/article/pii/S0261306910002335 http://www.sciencedirect.com/science/article/pii/S0261306909001848 ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 156 system», Applied Thermal Engineering, Vol. 66, pp. 571 -579, available at:http://www.sciencedirect.com/science/article/pii/S1359431114001525 СПИСОК ЛИТЕРАТУРЫ 1. Yan, H. A study of warm and cold roll-bonding of an aluminium alloy / H. Yan, J.G. Lenard // Mate- rials Science and Engineering. – 2004. – Vol. 385. – P. 419-428. Режим доступа: http://www.sciencedirect.com/science/article/pii/S0921509304009062 2. Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot rolling / Z.J. Wang, L. Zhai, M. Ma, H. Yuan, W.C. Liu // Materials Science and Engineering. – 2015. – Vol. 644. – P. 194–203. Режим доступа: http://www.sciencedirect.com/science/article/pii/S0921509315301878 3. Gajanan, P. Chaudhari. Cold roll bonding of multi-layered bi-metal laminate composites/ G. P. Chaudhari, V.Acoff // Composites Science and Technology. – 2009. – Vol. 69. – P. 1667-1675. Режим до- ступа: http://www.sciencedirect.com/science/article/pii/S0266353809001298 4. Jamaati, R. Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process / R.Jamaati, M. R.Toroghinejad // Materials and Design. – 2010. – Vol. 31. – P. 4508-4513. Режим доступа: http://www.sciencedirect.com/science/article/pii/S0261306910002335 5. Eizadjou, M.. Mechanism of warm and cold roll bonding of aluminum alloy strips / M. Eizadjou, H. Danesh Manesh, K. Janghorban // Materials and Design. – 2009. – Vol. 30. – P. 4156–4161. Режим доступа: http://www.sciencedirect.com/science/article/pii/S0261306909001848 6. Sun, X. Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system / Xiaolin Sun, Jingyi Wu, Yanjun Dai, Ruzhu Wang // Applied Thermal Engineering. – 2014. .- Vol. 66. – P. 571 -579. Режим доступа: http://www.sciencedirect.com/science/article/pii/S1359431114001525 ____________________________________________ About the authors Makeeva Anna Sergeevna, Doctoral Student in Metal forming Department named by Acad. A.P. Che- kmaryov, National Metallurgical academy of Ukraine (NMetAU), Dnepropetrovsk, Ukraine, makeeva@metal-forming.org Kuzmenko Aleksandr Sergeevich, Student in Metal forming Department named by Acad. A.P. Che- kmaryov, National Metallurgical academy of Ukraine (NMetAU), Dnepropetrovsk, Ukraine, resaesh@gmail.com Remez Oleg Anatoliyevich, Candidate of Technical Sciences (Ph.D), Associate Professor, Associate Professor of Metal forming Department named by Acad. A.P. Chekmaryov, National Metallurgical academy of Ukraine (NMetAU), Dnipropetrovsk, Ukraine, remez@metal-forming.org Frolov Yaroslav Viktorovich, Doctor of Technical Sciences (D.Sc.), Professor, Head of Metal forming Department named by Acad. A.P. Chekmaryov, National Metallurgical academy of Ukraine (NMetAU), Dnepropetrovsk, Ukraine, frolov@metal-forming.org Uwarow Igor, Student in Materials Science Department, Mechanical Engineering faculty, University of Paderborn, Paderborn, Germany, igoruwarow@email.de Gridin Aleksandr Yurievich, Doctor of Technical Science (D.Sc.), Professor, Chief Engineer in Materi- als Science Department, Mechanical Engineering faculty, University of Paderborn, Paderborn, Germany, grydin@lwk.upb.de Об авторах Макеева Анна Сергеевна, аспирант кафедры обработки металлов давлением им. акад. А.П.Чекмарева, Национальная металлургическая академия Украины (НМетАУ), Днепропетровск, Украина, makeeva@metal-forming.org Кузьменко Александр Сергеевич, студент кафедры обработки металлов давлением им. акад. А.П.Чекмарева, Национальная металлургическая академия Украины (НМетАУ), Днепропетровск, Украина, resaesh@gmail.com Ремез Олег Анатольевич, кандидат технических наук, доцент, доцент на кафедре обработки ме- таллов давлением им. акад. А.П.Чекмарева, Национальная металлургическая академия Украины (НМетАУ), Днепропетровск, Украина, remez@metal-forming.org Фролов Ярослав Викторович, доктор технических наук, профессор, заведующий кафедрой об- работки металлов давлением им. акад. А.П.Чекмарева, Национальная металлургическая академия Украины (НМетАУ), Днепропетровск, Украина, frolov@metal-forming.org http://www.sciencedirect.com/science/article/pii/S1359431114001525 http://www.sciencedirect.com/science/article/pii/S0921509304009062 http://www.sciencedirect.com/science/article/pii/S0266353809001298 http://www.sciencedirect.com/science/article/pii/S0261306910002335 http://www.sciencedirect.com/science/article/pii/S0261306909001848 http://www.sciencedirect.com/science/article/pii/S1359431114001525 mailto:makeeva@metal-forming.org mailto:resaesh@gmail.com https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ mailto:grydin@lwk.upb.de mailto:makeeva@metal-forming.org mailto:resaesh@gmail.com https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ https://mail.ukr.net/classic#sendmsg,to=JW8eF2L79u8NtuReFWVX9ucwFXi5JWJ ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2016. № 128 157 Уваров Игорь, студент кафедры материаловедения, факультет машиностроения, Университет г. Падерборн, Падерборн, Федеративная Республика Германия, igoruwarow@email.de Гридин Александр Юрьевич, доктор технических наук, профессор, главный инженер кафедры материаловедения, факультет машиностроения, Университет г. Падерборн, Падерборн, Федеративная Республика Германия, grydin@lwk.upb.de ––––––––––––––––––––––––––––––– Анотація. Стаття присвячена дослідженню технологічного процесу прокатки алюмініє- вих штаб з алюмінієвою проволокою всередині для отримання деталей сонячного колектору. Зачинення вугільних шахт, постійне зростання вартості нафтопродуктів та газу змушує звер- татися до способів отримання відновлюваної (альтернативної) енергії. Актуальної є пробле- ма вдосконалення технології виготовлення сонячних колекторів з метою покращення якості та зменшення вартості виробу. У статті наведені результати експериментальних та теоретич- них досліджень процесу гарячої прокатки алюмінієвих штаб с алюмінієвою проволокою між ними для отримання внутрішніх каналів колектору. Досліджено поле швидкостей, отримані залежності зміни сили прокатки для різних ступеней деформації. Встановлено, що для отри- мання якісного зварювання штаб з проволокою між ними, ступінь деформації повинна бути не менше 35%. Виконано порівняння залежностей, отриманих експериментально, з теорети- чними розрахунками, що показали високий ступінь збіжності результатів. Наукова новизна досліджень полягає в обґрунтуванні параметрів процесу гарячої прокатки двох алюмінієвих полос з алюмінієвою проволокою всередині для парціального, часткового зварювання алю- мінієвих штаб. Представлені результати можуть біти використані в технологічних процесах отримання деталей сонячних колекторів в альтернативній енергетиці. Дослідження, резуль- тати яких приведені в даній статті, виконані в межах сучасного спільного німецько- українського проекту «Praxispartnershaft Metalurgie», який фінансується німецьким товарист- вом академічних обмінів DAAD. Ключові слова: гаряча прокатка, алюмінієва пластина, внутрішні канали, ступінь дефо- рмації. Аннотация. Статья посвящена исследованию технологического процесса прокатки алю- миниевых полос с алюминиевой проволокой внутри для получения деталей солнечного кол- лектора. Закрытие угольных шахт, постоянный рост стоимости нефтепродуктов и газа вы- нуждает обращаться к способам получения возобновляемой (альтернативной) энергии. Акту- альной является проблема совершенствования технологий изготовления солнечных коллек- торов с целью улучшения качества и уменьшения стоимости изделий. В статье приведены результаты экспериментальных и теоретических исследований процесса горячей прокатки алюминиевых полос с алюминиевой проволокой между ними для получения внутренних ка- налов коллектора. Исследовано поле скоростей, получены зависимости изменения силы про- катки для различных степеней деформации. Установлено, что для получения качественного сваривания полос с проволокой между ними степень деформации должна быть не менее 35 %. Выполнено сравнение зависимостей, полученных экспериментально, с теоретическими расчетами, показавшее высокую степень сходимости результатов. Научная новизна исследо- ваний заключается в обосновании параметров процесса горячей прокатки двух алюминиевых полос с алюминиевой проволокой внутри для парциального, частичного сваривания алюми- ниевых полос. Приведенные результаты могут быть использованы в технологических про- цессах получения деталей солнечных коллекторов в альтернативной энергетике. Исследова- ния, результаты которых приведены в данной статье, выполнены в рамках совместного немецко-украинского проекта «Praxispartnershaft Metalurgie», финансируемого немецким обществом академических обменов DAAD. Ключевые слова: горячая прокатка, алюминиевая пластина, внутренние каналы, степень деформации. Статья поступила в редакцию 29.06.2016 Рекомендовано к печати д-ром техн. наук К.К. Софийским mailto:grydin@lwk.upb.de