Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells

Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Ritter, U., Scharff, P., Prylutska, S.V., Matyshevska, O.P., Burlaka, A.P., Golub, A.А., Potebnya br, G.P., Prylutskyy, Y.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України 2006
Назва видання:Experimental Oncology
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/138177
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska, A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-138177
record_format dspace
spelling irk-123456789-1381772018-06-19T03:02:57Z Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells Ritter, U. Scharff, P. Prylutska, S.V. Matyshevska, O.P. Burlaka, A.P. Golub, A.А. Potebnya br, G.P. Prylutskyy, Y.I. Short communications Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy. Цель: изучить влияние фуллеренсодержащих композитов, облученных видимым светом, на генерирование радикальных форм кислорода (РФК) в клетках тимоцитов, асцитного рака Эрлиха и лейкоза L1210. Исследовать жизнеспособность этих клеток в присутствии облученных фуллеренсодержащих композитов. Методы: жизнеспособность клеток определяли с использованием 0,4 % раствора трипанового синего; РФК регистрировали методом ЭПР- спектроскопии и спиновых ловушек; облучение водных раcтворов фуллеренсодержащих композитов в видимом диапазоне осуществляли с помощью ртутной лампы. Результаты: показано, что фуллеренсодержащие композиты при облучении повышают скорость генерирования РФК и уменьшают количество жизнеспособных опухолевых клеток. Выводы: полученные результаты позволяют рассматривать фуллеренсодержащие композиты как потенциальные препараты для фотодинамической терапии. 2006 Article Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska, A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ. 1812-9269 http://dspace.nbuv.gov.ua/handle/123456789/138177 en Experimental Oncology Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Short communications
Short communications
spellingShingle Short communications
Short communications
Ritter, U.
Scharff, P.
Prylutska, S.V.
Matyshevska, O.P.
Burlaka, A.P.
Golub, A.А.
Potebnya br, G.P.
Prylutskyy, Y.I.
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
Experimental Oncology
description Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy.
format Article
author Ritter, U.
Scharff, P.
Prylutska, S.V.
Matyshevska, O.P.
Burlaka, A.P.
Golub, A.А.
Potebnya br, G.P.
Prylutskyy, Y.I.
author_facet Ritter, U.
Scharff, P.
Prylutska, S.V.
Matyshevska, O.P.
Burlaka, A.P.
Golub, A.А.
Potebnya br, G.P.
Prylutskyy, Y.I.
author_sort Ritter, U.
title Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
title_short Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
title_full Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
title_fullStr Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
title_full_unstemmed Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
title_sort effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
publisher Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
publishDate 2006
topic_facet Short communications
url http://dspace.nbuv.gov.ua/handle/123456789/138177
citation_txt Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska, A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ.
series Experimental Oncology
work_keys_str_mv AT ritteru effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT scharffp effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT prylutskasv effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT matyshevskaop effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT burlakaap effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT golubaa effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT potebnyabrgp effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
AT prylutskyyyi effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells
first_indexed 2025-07-10T02:47:45Z
last_indexed 2025-07-10T02:47:45Z
_version_ 1837226438117294080
fulltext 160 Experimental Oncology 28, 160–162, 2006 (June) The search of new substances, which have high biological activity and can be used in bionanotechnol- ogy and medicine, was in a focus during last years. This is why representatives of novel allotropic carbon form — fullerenes, which have unique physical-chemi- cal properties, are actively investigated [1]. In particu- lar, the molecule of С60-fullerene has a shape of almost symmetrical sphere with the surface composed from hexagonal and pentagonal units, in junctions of which 60 conjugated atoms of carbon are located. Because of small sizes and hydrophobic properties, fullerenes are able to be inserted in biological membranes [2–3]. They possess the reduction ability and significant an- tioxidative potential, compared with other molecules such as quinone and vitamin E [4]. From other side, fullerenes possess unique photophysical properties: under the influence of UV or visible light irradiation, С60 molecule is able to shift to the exitation triplet state and generate singlet and other active forms of oxygen [4–5]. Such characteristics of fullerenes evidence on their potential use in regulation of free-radical peroxi- dation processes. The low solubility of fullerenes in the water limits their use in biological studies. This problem can be solved by few ways: by formation of fullerene-cyclodextrane or fullerene-calixarene complexes, solubilization by poly- vinilpyrrolidone, or covalent modification of fullerene surface with different functional groups [6–7]. To optimize solubilization of С60 fullerenes in water, increase the contact area with substrate, provide С60 fullerenes distribution in the contact zone and the in- teraction specificity, we have established immobilized С60 fullerenes localized on spherical particles of the silicon dioxide (aerosyl) — highly dispersed chemically inactive and non-toxic substance. Other components can be added to such composites (in particular, structures that entrape the visible light (porphyrine, antracenalimin) and increase photosensibilizing effect of the fullerens). The main goal of the study was to investigate the effect of С60-containing composites irradiated by visible light on the rate of ROS accumulation in thy- mocytes, ascitic cells from Erlich’s carcinoma and L1210 leukemia cells, and to evaluate the viability of these cells in the presence of irradiated С60-containing composites. In experiments Wistar rats (with body weight of 120–150 g) and outbreed rats (with body weight of 20 g), maintained on standard chow diet, were used. All experiments were carried out according to the rules of local Ethic Committeeᾬ. On day 8–12th after intraperitoneal transplantation of ascitic Erlich’s carcinoma and leukemia L1210 to experimental animals, tumor cells were obtained. Thy- mocytes were obtained by grinding rat thymus in RPMI 1640 medium. Cells (2–4 × 106/ml) were incubated in RPMI 1640 medium with 8 mМ NaHCO3, 20 mМ HEPES, 5% serum, streptomycin and penicillin (100 �g and 100 units per 1 ml of the medium, respectively) with and without С60-containing composites. The number of viable cells was counted in Goryaev’s chamber after staining with 0.4% trypan blue solution. Composites were established on the basis of ami- nopropylaerosyl (ApA) — silicon dioxide, in the surface layer of which aminopropyl groups (0.8 mM/g) were EffEct of thE visiblE light irradiation of fullErEnE‑containing compositEs on thE ros gEnEration and thE viability of tumor cElls S.V. Prylutska1, *, A.P. Burlaka2, O.P. Matyshevska1, A.А. Golub1, G.P. Potebnya2, Y.I. Prylutskyy1, U.Ritter3, P. Scharff3 1Kyiv National Shevchenko University, Kyiv, Ukraine 2R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine 3Chemical Laboratory, Technical University of Ilmenau, Ilmenau, Germany Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) genera- tion in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy. Key Words: fullerene-containing composites, visible light irradiation, thymocytes, ascitic cells from Erlich’s tumor, leukemia cells L1210, ROS, spin traps, EPR spectroscopy. Received: January 12, 2006. *Correspondence: Fax: +38 (044) 522-08-27 E-mail: prylut@biocc.univ.kiev.ua Abbreviation used: ApA — aminopropylaerosyl; С60-АntrІpА — fullerene-antracenaliminopropylaerosyl; С60-АpА — fullerene-ami- nopropylaerosyl; EPR – electron paramagnetic resonance; ROS — reactive oxygen species Exp Oncol 2006 28, 2, 160–162 short communications Experimental Oncology 28, 160–162, 2006 (June) 16128, 160–162, 2006 (June) 161June) 161) 161 161 introduced; consequently, total negative charge of the composite was lowered. С60-containing composites of two types were synthesized: 1) fullerene-aminopro- pylaerosyl (С60-АpА), that consists from 0.12 mM/g of С60 fullerene, immobilized by “stitching” to amino groups on the surface [8]; 2) Fullerene-antracenalimi- nopropylaerosyl (С60-АntrІpА) composite includes also antracinalimin (0.2 mM/g), introduced by azometine condensation of the aldehyde group of antracenal and amino group of the surface. Upon addition of composites to incubation medium, the concentration of the silicon dioxide in the sample was 0.02%, and С60 fullerene — 2.4 × 10-5 М. For detection of the ROS EPR spectroscopy and spin trap technique were used [9]. Spin trap (1-hydroxo- 2,2,6,6-tetramethyl-4-oxopiperidine) at the concen- tration of 2 × 10-3 М possesses high level of affinity to singlet oxygen and superoxide radical, which have been detected by EPR method at room temperature. EPR spectra of this radical represents the triplet with follow- ing characteristics: g = 2.005, AN = 16 Hz, ∆Hpp = 0.4 Hz. Irradiated С60-containing composite solution was imme- diately added to studied cell suspension (3 × 106cells/ ml) to final concentration of С60-containing composites of 10-5 М, and then EPR spectra was recorded in special quartz cuvette (V = 200 µl). С60 containing composites were irradiated in glass tube with mercury-vapor lamp (power 24 W) for 2 min. As one may see from Table 1, irradiation of 10-5 М С60-АpА or С60-АntrІpА solutions was followed by ROS formation with the rate of 6.3 and 11.0 nM/ml per min as well as ROS generation in cell suspensions. Thymo- cytes accumulated ROS more intensively compared with other cells, possibly, due to normal functioning of the antioxidant defense system. The rate of ROS for- mation in thymocytes in the presence of 10-5 М С60-АpА or С60-АntrІpА increased by 2.6 times and by 3.4 times compared with thymocytes, incubated without com- posites. In the presence of С60-АpА or С60-АntrІpА the rate of ROS formation increased by 4-fold and 5-fold in Erlich’s carcinoma and by 4.6-fold and 6–fold in leukemia L1210 cells, respectively, compared to the cells, incubated without composites. The obtained results showed that modification of fullerenes, in particular with antracenal, promotes the photosensi- bilizing effect of fullerene, that increases the rate of ROS generation [10]. Table 1. The rate of ROS accumulation in the presence of irradiated С60-containing composites in the suspension of thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210 Cells/treatment The rate of ROS accumula- tion (nM/ml per min) 10-5М С60-АpА 6.3 ± 0.2 10-5М С60-АntrІpА 11.0 ± 0.4 Thymocytes + 10-5М С60-АpА + 10-5М С60-АntrІpА 2.1 ± 0.2 5.4 ± 0.3 7.8 ± 0.3 Ascitic cells from Erlich’s tumor + 10-5М С60-АpА + 10-5М С60-АntrІpА 1.4 ± 0.1 6.1 ± 0.4 7.2 ± 0.2 Leukemia cells L1210 + 10-5М С60-АpА + 10-5М С60-АntrІpА 1.2 ± 0.1 5.5 ± 0.3 6.8 ± 0.4 The influence of the irradiated С60-containing com- posites on cells viability was studied upon 4 h or 24 h of incubation (Table 2); upon 4 h of incubation, we did not observe significant changes in the number of thy- mocytes, ascite Erlich’s tumor cells and leukemia cells L1210 as well as in those in thymocytes incubated for 24 h. However, upon 24 h of incubation with irradiated С60-АpА, the number of Erlich’s tumor cells decreased by 19%, and with С60-АntrІpА — by 34% compared with the control, whilst the number of L1210 — by 20%, and with С60-АntrІpА — by 23% compared with the control. Table 2. The number of viable cells in the presence of С60-containing composites Cells/treatment The duration of the incubation (h) 4 24 Thymocytes + С60-АpА + С60- АntrІpА 98 ± 2 98 ± 2 94 ± 3 97 ± 3 90 ± 5 88 ± 3 Ascitic cells from Erlich’s tumor + С60-АpА + С60-АntrІpА 98 ± 2 95 ± 3 95 ± 3 97 ± 3 71 ± 5 66 ± 7 Leukemia cells L1210 + С60-АpА + С60-АntrІpА 98 ± 2 98 ± 2 96 ± 3 98 ± 2 80 ± 6 77 ± 4 We hypothesize that the possible mechanism of ROS accumulation in biosystem in the presence of irradiated С60-containing composites is as follow: upon irradia- tion with visible light, where С60 fullerenes demonstrate strong absorption (450 nm) [11], С60 molecule is able to change its state from basic to exited triplet state (3С60). In the presence of oxygen in biosystem, С60 fullerene can change from triplet state into the basic state, transfer- ring its energy to oxygen, which in turn changes to the singlet molecule of the oxygen (1О2). From other side, С60 fullerene, existing in triplet exited state, is the accep- tor of electrons. This is why in the presence of electron donor (for example, NADH+), its state can be reduced due to electron transfer and the changing to the anion radical (С60 •–). In the presence of oxygen in biosystem, this anion radical can transfer one electron to О2 mol- ecule, transforming it to the superoxide anion radical (О2 •–). Exactly this ROS (singlet oxygen and superoxide anion radical) were detected in experiment by EPR method and spin trap technique. In conclusion, it was demonstrated that synthesized С60-containing composites, irradiated by visible light, increase the rate of ROS generation and decrease the number of viable tumor cells in vitro. Such effect may be potentially useful for photodynamic therapy of tumors. acknowlEdgmEnts This work was partly supported by the BMBF grant (Ukr 04-008). S.V.P. is grateful to the INTAS (N 05-109- 4328) for the support. rEfErEncEs 1. Dresselhaus MS, Dresselhaus G, Eklund PC. Science  of Fullerenes and Carbon Nanotubes. New York: Academic  Press, 1996. 255 p. 2. Martin N, Sanchez L, Illescas B, Perez I. C60-based  electroactive organofullerenes. Chem Rev 1998; 98: 2527–48. 3. Hwang KC, Mauzerall D. Photoinduced  electron  transport across a lipid bilayer mediated by C70. Nature 1993;  361: 138–40. 162 Experimental Oncology 28, 160–162, 2006 (June) 4. Wilson SR. Biological aspects of fullerenes. Fullerenes:  Chemistry, Physics, and Technology. New York: John Wiley &  Sons, 2000; 437–65 p. 5.. Guldi DM, Asmus KD. Activity of water-soluble fullere- nes  towards  OH-radicals  and  molecular  oxygen.  Rad  Phys  Chem 1999; 56: 449–56. 6. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H. Reactive oxygen species mediated membrane damage induced  by fullerene derivatives and its possible biological implications.  Toxicology 2000; 155: 55–61.  7. Da Ros T, Prato M. Medicinal chemistry with fullerenes  and fullerene derivatives. Chem Commun 1999; 1: 663–9. 8. Golub A, Matyshevska O, Prylutska S, Sysoyev V, Ped L, Kudrenko V, Radchenco E, Prylutskyy Yu, Scharff P, Braun T. Fullerenes immobilized at silica surface: topology, structure  and bioactivity. J Mol Liq 2003; 105: 141–7. 9. Burlaka AP, Danko MY, Sidorik YP. Kinetic patterns of  the rate of generation and content of oxygen radicals in EPR  membranes upon chemical carcinogenesis of liver and breast.  DAN Ukr 1994; 10: 141–5 (in Ukrainian). 10. Burlaka AP, Sidorik YP, Prylutska SV, Matyshevs- ka OP, Golub OA, Prylutskyy YuI, Scharff P. Catalytic system  of the reactive oxygen species on the C60 fullerene basis. Exp  Oncol 2004; 26: 326–7. 11. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub AA, Khavryuchenko AV, Buzaneva EE, Ak- senov VL, Avdeev MV, Prylutskyy YuI, Durov SS. Structure  of C60  fullerene  in water:  spectroscopic data. Carbon 2004; 42: 1203–06. Влияние облученных Видимым сВетом фуллеренсодержащих композитоВ на генерироВание радикальных форм кислорода и жизнеспособность опухолеВых клеток Цель: изучить влияние фуллеренсодержащих композитов, облученных видимым светом, на генерирование радикальных форм кислорода (РФК) в клетках тимоцитов, асцитного рака Эрлиха и лейкоза L1210. Исследовать жизнеспособность этих клеток в присутствии облученных фуллеренсодержащих композитов. Методы: жизнеспособность клеток определяли с использованием 0,4 % раствора трипанового синего; РФК регистрировали методом ЭПР- спектроскопии и спиновых ловушек; облучение водных раcтворов фуллеренсодержащих композитов в видимом диапазоне осуществляли с помощью ртутной лампы. Результаты: показано, что фуллеренсодержащие композиты при облучении повышают скорость генерирования РФК и уменьшают количество жизнеспособных опухолевых клеток. Выводы: полученные результаты позволяют рассматривать фуллеренсодержащие композиты как потенциальные препараты для фотодинамической терапии. Ключевые слова: фуллеренсодержащие композиты, облучение видимым светом, тимоциты, клетки асцитного рака Эрлиха, лейкоз L1210, РФК, спиновые ловушки, ЭПР-спектроскопия. Copyright © Experimental Oncology, 2006