Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells
Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composit...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
2006
|
Назва видання: | Experimental Oncology |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/138177 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska, A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-138177 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1381772018-06-19T03:02:57Z Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells Ritter, U. Scharff, P. Prylutska, S.V. Matyshevska, O.P. Burlaka, A.P. Golub, A.А. Potebnya br, G.P. Prylutskyy, Y.I. Short communications Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy. Цель: изучить влияние фуллеренсодержащих композитов, облученных видимым светом, на генерирование радикальных форм кислорода (РФК) в клетках тимоцитов, асцитного рака Эрлиха и лейкоза L1210. Исследовать жизнеспособность этих клеток в присутствии облученных фуллеренсодержащих композитов. Методы: жизнеспособность клеток определяли с использованием 0,4 % раствора трипанового синего; РФК регистрировали методом ЭПР- спектроскопии и спиновых ловушек; облучение водных раcтворов фуллеренсодержащих композитов в видимом диапазоне осуществляли с помощью ртутной лампы. Результаты: показано, что фуллеренсодержащие композиты при облучении повышают скорость генерирования РФК и уменьшают количество жизнеспособных опухолевых клеток. Выводы: полученные результаты позволяют рассматривать фуллеренсодержащие композиты как потенциальные препараты для фотодинамической терапии. 2006 Article Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska, A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ. 1812-9269 http://dspace.nbuv.gov.ua/handle/123456789/138177 en Experimental Oncology Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Short communications Short communications |
spellingShingle |
Short communications Short communications Ritter, U. Scharff, P. Prylutska, S.V. Matyshevska, O.P. Burlaka, A.P. Golub, A.А. Potebnya br, G.P. Prylutskyy, Y.I. Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells Experimental Oncology |
description |
Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy. |
format |
Article |
author |
Ritter, U. Scharff, P. Prylutska, S.V. Matyshevska, O.P. Burlaka, A.P. Golub, A.А. Potebnya br, G.P. Prylutskyy, Y.I. |
author_facet |
Ritter, U. Scharff, P. Prylutska, S.V. Matyshevska, O.P. Burlaka, A.P. Golub, A.А. Potebnya br, G.P. Prylutskyy, Y.I. |
author_sort |
Ritter, U. |
title |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
title_short |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
title_full |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
title_fullStr |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
title_full_unstemmed |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
title_sort |
effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells |
publisher |
Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України |
publishDate |
2006 |
topic_facet |
Short communications |
url |
http://dspace.nbuv.gov.ua/handle/123456789/138177 |
citation_txt |
Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells / U. Ritter, P. Scharff, S.V. Prylutska, O.P. Matyshevska,
A.P. Burlaka, A.А. Golub, G.P. Potebnya br, Y.I. Prylutskyy // Experimental Oncology. — 2006. — Т. 28, № 2. — С. 160-162. — Бібліогр.: 11 назв. — англ. |
series |
Experimental Oncology |
work_keys_str_mv |
AT ritteru effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT scharffp effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT prylutskasv effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT matyshevskaop effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT burlakaap effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT golubaa effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT potebnyabrgp effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells AT prylutskyyyi effectofthevisiblelightirradiationoffullerenecontainingcompositesontherosgenerationandtheviabilityoftumorcells |
first_indexed |
2025-07-10T02:47:45Z |
last_indexed |
2025-07-10T02:47:45Z |
_version_ |
1837226438117294080 |
fulltext |
160 Experimental Oncology 28, 160–162, 2006 (June)
The search of new substances, which have high
biological activity and can be used in bionanotechnol-
ogy and medicine, was in a focus during last years.
This is why representatives of novel allotropic carbon
form — fullerenes, which have unique physical-chemi-
cal properties, are actively investigated [1]. In particu-
lar, the molecule of С60-fullerene has a shape of almost
symmetrical sphere with the surface composed from
hexagonal and pentagonal units, in junctions of which
60 conjugated atoms of carbon are located. Because
of small sizes and hydrophobic properties, fullerenes
are able to be inserted in biological membranes [2–3].
They possess the reduction ability and significant an-
tioxidative potential, compared with other molecules
such as quinone and vitamin E [4]. From other side,
fullerenes possess unique photophysical properties:
under the influence of UV or visible light irradiation,
С60 molecule is able to shift to the exitation triplet state
and generate singlet and other active forms of oxygen
[4–5]. Such characteristics of fullerenes evidence on
their potential use in regulation of free-radical peroxi-
dation processes.
The low solubility of fullerenes in the water limits their
use in biological studies. This problem can be solved
by few ways: by formation of fullerene-cyclodextrane or
fullerene-calixarene complexes, solubilization by poly-
vinilpyrrolidone, or covalent modification of fullerene
surface with different functional groups [6–7].
To optimize solubilization of С60 fullerenes in water,
increase the contact area with substrate, provide С60
fullerenes distribution in the contact zone and the in-
teraction specificity, we have established immobilized
С60 fullerenes localized on spherical particles of the
silicon dioxide (aerosyl) — highly dispersed chemically
inactive and non-toxic substance. Other components
can be added to such composites (in particular,
structures that entrape the visible light (porphyrine,
antracenalimin) and increase photosensibilizing effect
of the fullerens).
The main goal of the study was to investigate the
effect of С60-containing composites irradiated by
visible light on the rate of ROS accumulation in thy-
mocytes, ascitic cells from Erlich’s carcinoma and
L1210 leukemia cells, and to evaluate the viability of
these cells in the presence of irradiated С60-containing
composites.
In experiments Wistar rats (with body weight of
120–150 g) and outbreed rats (with body weight of
20 g), maintained on standard chow diet, were used.
All experiments were carried out according to the rules
of local Ethic Committeeᾬ.
On day 8–12th after intraperitoneal transplantation
of ascitic Erlich’s carcinoma and leukemia L1210 to
experimental animals, tumor cells were obtained. Thy-
mocytes were obtained by grinding rat thymus in RPMI
1640 medium. Cells (2–4 × 106/ml) were incubated
in RPMI 1640 medium with 8 mМ NaHCO3, 20 mМ
HEPES, 5% serum, streptomycin and penicillin (100 �g
and 100 units per 1 ml of the medium, respectively) with
and without С60-containing composites. The number
of viable cells was counted in Goryaev’s chamber after
staining with 0.4% trypan blue solution.
Composites were established on the basis of ami-
nopropylaerosyl (ApA) — silicon dioxide, in the surface
layer of which aminopropyl groups (0.8 mM/g) were
EffEct of thE visiblE light irradiation
of fullErEnE‑containing compositEs on thE ros
gEnEration and thE viability of tumor cElls
S.V. Prylutska1, *, A.P. Burlaka2, O.P. Matyshevska1, A.А. Golub1,
G.P. Potebnya2, Y.I. Prylutskyy1, U.Ritter3, P. Scharff3
1Kyiv National Shevchenko University, Kyiv, Ukraine
2R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
3Chemical Laboratory, Technical University of Ilmenau, Ilmenau, Germany
Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) genera-
tion in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of
fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining
with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and
spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under
irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells.
Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy.
Key Words: fullerene-containing composites, visible light irradiation, thymocytes, ascitic cells from Erlich’s tumor, leukemia cells
L1210, ROS, spin traps, EPR spectroscopy.
Received: January 12, 2006.
*Correspondence: Fax: +38 (044) 522-08-27
E-mail: prylut@biocc.univ.kiev.ua
Abbreviation used: ApA — aminopropylaerosyl; С60-АntrІpА —
fullerene-antracenaliminopropylaerosyl; С60-АpА — fullerene-ami-
nopropylaerosyl; EPR – electron paramagnetic resonance;
ROS — reactive oxygen species
Exp Oncol 2006
28, 2, 160–162
short communications
Experimental Oncology 28, 160–162, 2006 (June) 16128, 160–162, 2006 (June) 161June) 161) 161 161
introduced; consequently, total negative charge of the
composite was lowered. С60-containing composites of
two types were synthesized: 1) fullerene-aminopro-
pylaerosyl (С60-АpА), that consists from 0.12 mM/g
of С60 fullerene, immobilized by “stitching” to amino
groups on the surface [8]; 2) Fullerene-antracenalimi-
nopropylaerosyl (С60-АntrІpА) composite includes also
antracinalimin (0.2 mM/g), introduced by azometine
condensation of the aldehyde group of antracenal
and amino group of the surface. Upon addition of
composites to incubation medium, the concentration
of the silicon dioxide in the sample was 0.02%, and С60
fullerene — 2.4 × 10-5 М.
For detection of the ROS EPR spectroscopy and spin
trap technique were used [9]. Spin trap (1-hydroxo-
2,2,6,6-tetramethyl-4-oxopiperidine) at the concen-
tration of 2 × 10-3 М possesses high level of affinity to
singlet oxygen and superoxide radical, which have been
detected by EPR method at room temperature. EPR
spectra of this radical represents the triplet with follow-
ing characteristics: g = 2.005, AN = 16 Hz, ∆Hpp = 0.4 Hz.
Irradiated С60-containing composite solution was imme-
diately added to studied cell suspension (3 × 106cells/
ml) to final concentration of С60-containing composites
of 10-5 М, and then EPR spectra was recorded in special
quartz cuvette (V = 200 µl). С60 containing composites
were irradiated in glass tube with mercury-vapor lamp
(power 24 W) for 2 min.
As one may see from Table 1, irradiation of 10-5 М
С60-АpА or С60-АntrІpА solutions was followed by ROS
formation with the rate of 6.3 and 11.0 nM/ml per min
as well as ROS generation in cell suspensions. Thymo-
cytes accumulated ROS more intensively compared
with other cells, possibly, due to normal functioning of
the antioxidant defense system. The rate of ROS for-
mation in thymocytes in the presence of 10-5 М С60-АpА
or С60-АntrІpА increased by 2.6 times and by 3.4 times
compared with thymocytes, incubated without com-
posites. In the presence of С60-АpА or С60-АntrІpА the
rate of ROS formation increased by 4-fold and 5-fold
in Erlich’s carcinoma and by 4.6-fold and 6–fold in
leukemia L1210 cells, respectively, compared to the
cells, incubated without composites. The obtained
results showed that modification of fullerenes, in
particular with antracenal, promotes the photosensi-
bilizing effect of fullerene, that increases the rate of
ROS generation [10].
Table 1. The rate of ROS accumulation in the presence of irradiated
С60-containing composites in the suspension of thymocytes, ascitic cells
from Erlich’s tumor and leukemia cells L1210
Cells/treatment The rate of ROS accumula-
tion (nM/ml per min)
10-5М С60-АpА 6.3 ± 0.2
10-5М С60-АntrІpА 11.0 ± 0.4
Thymocytes
+ 10-5М С60-АpА
+ 10-5М С60-АntrІpА
2.1 ± 0.2
5.4 ± 0.3
7.8 ± 0.3
Ascitic cells from Erlich’s tumor
+ 10-5М С60-АpА
+ 10-5М С60-АntrІpА
1.4 ± 0.1
6.1 ± 0.4
7.2 ± 0.2
Leukemia cells L1210
+ 10-5М С60-АpА
+ 10-5М С60-АntrІpА
1.2 ± 0.1
5.5 ± 0.3
6.8 ± 0.4
The influence of the irradiated С60-containing com-
posites on cells viability was studied upon 4 h or 24 h
of incubation (Table 2); upon 4 h of incubation, we did
not observe significant changes in the number of thy-
mocytes, ascite Erlich’s tumor cells and leukemia cells
L1210 as well as in those in thymocytes incubated for
24 h. However, upon 24 h of incubation with irradiated
С60-АpА, the number of Erlich’s tumor cells decreased by
19%, and with С60-АntrІpА — by 34% compared with the
control, whilst the number of L1210 — by 20%, and with
С60-АntrІpА — by 23% compared with the control.
Table 2. The number of viable cells in the presence of С60-containing
composites
Cells/treatment The duration of the incubation (h)
4 24
Thymocytes
+ С60-АpА
+ С60- АntrІpА
98 ± 2
98 ± 2
94 ± 3
97 ± 3
90 ± 5
88 ± 3
Ascitic cells from Erlich’s tumor
+ С60-АpА
+ С60-АntrІpА
98 ± 2
95 ± 3
95 ± 3
97 ± 3
71 ± 5
66 ± 7
Leukemia cells L1210
+ С60-АpА
+ С60-АntrІpА
98 ± 2
98 ± 2
96 ± 3
98 ± 2
80 ± 6
77 ± 4
We hypothesize that the possible mechanism of ROS
accumulation in biosystem in the presence of irradiated
С60-containing composites is as follow: upon irradia-
tion with visible light, where С60 fullerenes demonstrate
strong absorption (450 nm) [11], С60 molecule is able to
change its state from basic to exited triplet state (3С60).
In the presence of oxygen in biosystem, С60 fullerene can
change from triplet state into the basic state, transfer-
ring its energy to oxygen, which in turn changes to the
singlet molecule of the oxygen (1О2). From other side,
С60 fullerene, existing in triplet exited state, is the accep-
tor of electrons. This is why in the presence of electron
donor (for example, NADH+), its state can be reduced
due to electron transfer and the changing to the anion
radical (С60
•–). In the presence of oxygen in biosystem,
this anion radical can transfer one electron to О2 mol-
ecule, transforming it to the superoxide anion radical
(О2
•–). Exactly this ROS (singlet oxygen and superoxide
anion radical) were detected in experiment by EPR
method and spin trap technique.
In conclusion, it was demonstrated that synthesized
С60-containing composites, irradiated by visible light,
increase the rate of ROS generation and decrease the
number of viable tumor cells in vitro. Such effect may be
potentially useful for photodynamic therapy of tumors.
acknowlEdgmEnts
This work was partly supported by the BMBF grant
(Ukr 04-008). S.V.P. is grateful to the INTAS (N 05-109-
4328) for the support.
rEfErEncEs
1. Dresselhaus MS, Dresselhaus G, Eklund PC. Science
of Fullerenes and Carbon Nanotubes. New York: Academic
Press, 1996. 255 p.
2. Martin N, Sanchez L, Illescas B, Perez I. C60-based
electroactive organofullerenes. Chem Rev 1998; 98: 2527–48.
3. Hwang KC, Mauzerall D. Photoinduced electron
transport across a lipid bilayer mediated by C70. Nature 1993;
361: 138–40.
162 Experimental Oncology 28, 160–162, 2006 (June)
4. Wilson SR. Biological aspects of fullerenes. Fullerenes:
Chemistry, Physics, and Technology. New York: John Wiley &
Sons, 2000; 437–65 p.
5.. Guldi DM, Asmus KD. Activity of water-soluble fullere-
nes towards OH-radicals and molecular oxygen. Rad Phys
Chem 1999; 56: 449–56.
6. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H.
Reactive oxygen species mediated membrane damage induced
by fullerene derivatives and its possible biological implications.
Toxicology 2000; 155: 55–61.
7. Da Ros T, Prato M. Medicinal chemistry with fullerenes
and fullerene derivatives. Chem Commun 1999; 1: 663–9.
8. Golub A, Matyshevska O, Prylutska S, Sysoyev V, Ped L,
Kudrenko V, Radchenco E, Prylutskyy Yu, Scharff P, Braun T.
Fullerenes immobilized at silica surface: topology, structure
and bioactivity. J Mol Liq 2003; 105: 141–7.
9. Burlaka AP, Danko MY, Sidorik YP. Kinetic patterns of
the rate of generation and content of oxygen radicals in EPR
membranes upon chemical carcinogenesis of liver and breast.
DAN Ukr 1994; 10: 141–5 (in Ukrainian).
10. Burlaka AP, Sidorik YP, Prylutska SV, Matyshevs-
ka OP, Golub OA, Prylutskyy YuI, Scharff P. Catalytic system
of the reactive oxygen species on the C60 fullerene basis. Exp
Oncol 2004; 26: 326–7.
11. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM,
Bilyi MM, Golub AA, Khavryuchenko AV, Buzaneva EE, Ak-
senov VL, Avdeev MV, Prylutskyy YuI, Durov SS. Structure
of C60 fullerene in water: spectroscopic data. Carbon 2004;
42: 1203–06.
Влияние облученных Видимым сВетом
фуллеренсодержащих композитоВ на генерироВание
радикальных форм кислорода и жизнеспособность
опухолеВых клеток
Цель: изучить влияние фуллеренсодержащих композитов, облученных видимым светом, на генерирование радикальных
форм кислорода (РФК) в клетках тимоцитов, асцитного рака Эрлиха и лейкоза L1210. Исследовать жизнеспособность
этих клеток в присутствии облученных фуллеренсодержащих композитов. Методы: жизнеспособность клеток определяли с
использованием 0,4 % раствора трипанового синего; РФК регистрировали методом ЭПР- спектроскопии и спиновых ловушек;
облучение водных раcтворов фуллеренсодержащих композитов в видимом диапазоне осуществляли с помощью ртутной
лампы. Результаты: показано, что фуллеренсодержащие композиты при облучении повышают скорость генерирования РФК
и уменьшают количество жизнеспособных опухолевых клеток. Выводы: полученные результаты позволяют рассматривать
фуллеренсодержащие композиты как потенциальные препараты для фотодинамической терапии.
Ключевые слова: фуллеренсодержащие композиты, облучение видимым светом, тимоциты, клетки асцитного рака Эрлиха,
лейкоз L1210, РФК, спиновые ловушки, ЭПР-спектроскопия.
Copyright © Experimental Oncology, 2006
|