The important role of retrofitting in agricultural machinery: a case study for techniques and applications
The article provides a comparative analysis of important role of retrofitting in agricultural machinery. Over the last fifteen years, many new technologies have been developed for, or adapted to, agricultural use. Examples of these include: low-cost positioning systems, such as the Global Positio...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут геотехнічної механіки імені М.С. Полякова НАН України
2017
|
Назва видання: | Геотехнічна механіка |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/138780 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The important role of retrofitting in agricultural machinery: a case study for techniques and applications / B. Pişkin, R. Sağlam // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2017. — Вип. 133. — С. 114-122. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-138780 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1387802018-06-20T03:10:35Z The important role of retrofitting in agricultural machinery: a case study for techniques and applications Pişkin, В. Sağlam, R. The article provides a comparative analysis of important role of retrofitting in agricultural machinery. Over the last fifteen years, many new technologies have been developed for, or adapted to, agricultural use. Examples of these include: low-cost positioning systems, such as the Global Positioning System, proximal biomass and Leaf Area Index (LAI) sensors mounted on-board agricultural machinery, geophysical sensors to measure soil properties and low-cost, reliable devices to store and exchange/share the information. Combined, these new technologies produce a large amount of affordable high resolution information and have lead to the development of fine-scale or site-specific agricultural management that is often termed Precision Agriculture. Farming moves into the 21st century with tractors carrying satellite navigation receivers, radar guns, and computers. socioagricultural systems and, as a consequence, adopters are currently becoming more and more complex in current economies and it might prove difficult to analyse patterns and forecast trends. The conclusions of this study are of course tentative. Hence, there is need for much more detailed research and analysis concerning the attitudes of adopters of innovations in agricultural tractors, in particular in the presence of fast-changing scenarios due to a more and more acceleration of technological change. У статті наведено результати порівняльного аналізу щодо важливої ролі модернізації сільськогосподарської техніки. За останні п’ятнадцять років багато нових технологій були розроблені або адаптовані для сільськогосподарського використання. Зокрема, системи глобального позиціонування (GPS), датчики біомаси та аналізатори листкової поверхні (LAI), встановлені на борту сільгосптехніки, геофізичні датчики для вимірювання властивостей ґрунту, а також недорогі, але надійні пристрої для зберігання і обміну інформацією. У сукупності ці нові технології виробляють велику кількість доступної інформації з високою роздільною здатністю і приводять до розвитку точного землеробства. Сільське господарство переходить в 21-му столітті на трактори з пристроями супутникової навігації, радарами і комп’ютерами, і, як наслідок, соціо-аграрні системи стають все більш і більш складними для аналізу структурних змін та прогнозування тенденцій. Дослідження за вказаним напрямком розвиваються, отже, існує необхідність в більш детальних дослідженнях і аналізі, що стосується впровадження інновацій для сільськогосподарських тракторів, зокрема, в умовах швидко мінливих сценаріїв, через все більше прискорення технологічних змін. Існує необхідність в набагато більш детальних дослідженнях і аналізі в умовах поточної ринкової турбулентності і швидко мінливих технологій. Є ще одна проблема – потреба в освічених фахівцях для модернізації сільськогосподарської техніки. Крім того, експертно-консультаційні послуги теж повинні бути пристосовані до потреб і завдань переобладнання сільськогосподарської техніки. В статье приведены результаты сравнительного анализа по поводу важной роли модернизации сельскохозяйственной техники. За последние 15 лет было разработано и адаптировано много новых технологий для использования в сельском хозяйстве. К примеру, системы глобального позиционирования (GPS), датчики биомассы и анализаторы лиственной поверхности (LAI), установленные на борту сельхозтехники, геофизические датчики для измерения свойств грунта, а также недорогие, но надёжные устройства для хранения и обмена информацией. В совокупности эти новые технологии производят большое количество доступной информации с высоким разрешением и приводят к развитию точного земледелия. Сельское хозяйство переходит в 21-м веке на тракторы с устройствами спутниковой навигации, радарами и компьютерами, и, как следствие, социо-аграрные системы становятся всё более и более сложными для анализа структурных изменений и прогнозирования тенденций. Исследования в указанном направлении развиваются, следовательно, существует необходимость в более детальных исследованиях и анализе, который касается внедрения инноваций для сельскохозяйственных тракторов, в частности, в условиях быстро изменяющихся сценариев, из-за всё большего ускорения технологических изменений. Существует необходимость в намного более детальных исследованиях и анализе в условиях текущей рыночной турбулентности и быстро изменяющихся технологий. Есть ещё одна проблема – потребность в образованных специалистах для модернизации сельскохозяйственной техники. Кроме того, экспертно-консультационные услуги тоже должны быть приспособлены к потребностям и задачам переоборудования сельскохозяйственной техники. 2017 Article The important role of retrofitting in agricultural machinery: a case study for techniques and applications / B. Pişkin, R. Sağlam // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2017. — Вип. 133. — С. 114-122. — Бібліогр.: 25 назв. — англ. 1607-4556 http://dspace.nbuv.gov.ua/handle/123456789/138780 631.171 en Геотехнічна механіка Інститут геотехнічної механіки імені М.С. Полякова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The article provides a comparative analysis of important role of retrofitting in agricultural
machinery. Over the last fifteen years, many new technologies have been developed for, or
adapted to, agricultural use. Examples of these include: low-cost positioning systems, such as the
Global Positioning System, proximal biomass and Leaf Area Index (LAI) sensors mounted on-board
agricultural machinery, geophysical sensors to measure soil properties and low-cost, reliable devices
to store and exchange/share the information. Combined, these new technologies produce a large
amount of affordable high resolution information and have lead to the development of fine-scale or
site-specific agricultural management that is often termed Precision Agriculture. Farming moves into
the 21st century with tractors carrying satellite navigation receivers, radar guns, and computers. socioagricultural
systems and, as a consequence, adopters are currently becoming more and more complex
in current economies and it might prove difficult to analyse patterns and forecast trends. The conclusions
of this study are of course tentative. Hence, there is need for much more detailed research and
analysis concerning the attitudes of adopters of innovations in agricultural tractors, in particular in
the presence of fast-changing scenarios due to a more and more acceleration of technological change. |
format |
Article |
author |
Pişkin, В. Sağlam, R. |
spellingShingle |
Pişkin, В. Sağlam, R. The important role of retrofitting in agricultural machinery: a case study for techniques and applications Геотехнічна механіка |
author_facet |
Pişkin, В. Sağlam, R. |
author_sort |
Pişkin, В. |
title |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications |
title_short |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications |
title_full |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications |
title_fullStr |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications |
title_full_unstemmed |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications |
title_sort |
important role of retrofitting in agricultural machinery: a case study for techniques and applications |
publisher |
Інститут геотехнічної механіки імені М.С. Полякова НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/138780 |
citation_txt |
The important role of retrofitting in agricultural machinery: a case study for techniques and applications / B. Pişkin, R. Sağlam // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпропетровск: ІГТМ НАНУ, 2017. — Вип. 133. — С. 114-122. — Бібліогр.: 25 назв. — англ. |
series |
Геотехнічна механіка |
work_keys_str_mv |
AT piskinv theimportantroleofretrofittinginagriculturalmachineryacasestudyfortechniquesandapplications AT saglamr theimportantroleofretrofittinginagriculturalmachineryacasestudyfortechniquesandapplications AT piskinv importantroleofretrofittinginagriculturalmachineryacasestudyfortechniquesandapplications AT saglamr importantroleofretrofittinginagriculturalmachineryacasestudyfortechniquesandapplications |
first_indexed |
2025-07-10T06:33:54Z |
last_indexed |
2025-07-10T06:33:54Z |
_version_ |
1837240668610625536 |
fulltext |
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
Статья посвящена 95-летию со дня основания Днепровского государственного аграрно-экономического уни-
верситета
114
УДК 631.171
Pişkin B., Asst. Prof.,
Sağlam R., Prof.
(Harran University of Turkey)
THE IMPORTANT ROLE OF RETROFITTING IN
AGRICULTURAL MACHINERY: A CASE STUDY FOR
TECHNIQUES AND APPLICATIONS*
Пишкин Б., ассистент профессора,
Саглам Р., профессор
(Университет Харран)
ВАЖНОСТЬ МОДЕРНИЗАЦИИ В СЕЛЬСКОХОЗЯЙСТВЕННОМ
МАШИНОСТРОЕНИИ: ТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ
ТЕХНИКИ И ПРИЛОЖЕНИЙ
Пішкін Б., асистент професора,
Саглам Р., професор
(Університет Харран)
ВАЖЛИВІСТЬ МОДЕРНІЗАЦІЇ У СІЛЬСКО-
ГОСПОДАРСЬКОМУ МАШИНОБУДУВАННІ: ТЕМАТИЧНЕ
ДОСЛІДЖЕННЯ ТЕХНІКИ ТА ВИКОРИСТАНЬ
Abstract. The article provides a comparative analysis of important role of retrofitting in agricul-
tural machinery. Over the last fifteen years, many new technologies have been developed for, or
adapted to, agricultural use. Examples of these include: low-cost positioning systems, such as the
Global Positioning System, proximal biomass and Leaf Area Index (LAI) sensors mounted on-board
agricultural machinery, geophysical sensors to measure soil properties and low-cost, reliable devices
to store and exchange/share the information. Combined, these new technologies produce a large
amount of affordable high resolution information and have lead to the development of fine-scale or
site-specific agricultural management that is often termed Precision Agriculture. Farming moves into
the 21st century with tractors carrying satellite navigation receivers, radar guns, and computers. socio-
agricultural systems and, as a consequence, adopters are currently becoming more and more complex
in current economies and it might prove difficult to analyse patterns and forecast trends. The conclu-
sions of this study are of course tentative. Hence, there is need for much more detailed research and
analysis concerning the attitudes of adopters of innovations in agricultural tractors, in particular in
the presence of fast-changing scenarios due to a more and more acceleration of technological change.
Keywords: precision agriculture, retrofitting of agricultural machinery, retrofitting, innovation
in agricultural machinery.
Introduction
Technological innovation plays a major role in agricultural systems. In particu-
lar, agriculture industry has had exceptional advances and application of new technol-
ogies, revolutionising the farming [4, 20]. Technological innovations are largely ap-
plied to agricultural tractors, enabling more efficient production and use of energetic
resources, associated to both lower environmental impact and improvement of drivers’
working conditions [13]. In fact, the tractor has a central role in farm operations and
remains the most important and widespread path-breaking machine in agriculture [12].
It pulls, lifts, powers, supports and is often the main status symbol of the agricultural
* © Pişkin B., Sağlam R., 2017
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
115
enterprise. Moreover, it is common to find individual farmers faithful to one particular
brand. Of course the technology incorporated in a tractor has a considerable influence
on production costs and, as a consequence, on retailer price [24]. The demand for ag-
ricultural machinery strongly depends on farm income, which is influenced by external
variables such as agricultural policy, socio-economic environment, people’s attitudes,
weather and public policies [23].
As farming moves into the 21st century with tractors carrying satellite navigation
receivers, radar guns, and computers, the urge of farmers to retrofit existing equipment
to save money and perhaps do the job better is infectious. It spreads to private industry
and government representatives who work with farmers. From this interchange, new
farm equipment is born. Precision agriculture means farming with on-the-go monitor-
ing of yields and soil types, as well as of chemical and manure applications. Global
Positioning System (GPS) satellites are used to spatially locate tractors and other farm
equipment in a field.
Over the last fifteen years, many new technologies have been developed for, or
adapted to, agricultural use. Examples of these include: low-cost positioning systems,
such as the Global Positioning System, proximal biomass and Leaf Area Index (LAI)
sensors mounted on-board agricultural machinery, geophysical sensors to measure soil
properties and low-cost, reliable devices to store and exchange/share the information.
Combined, these new technologies produce a large amount of affordable high resolu-
tion information and have lead to the development of fine-scale or site-specific agri-
cultural management that is often termed Precision Agriculture (PA) [2, 3].
The four PA technologies include location determination (via the Global Posi-
tioning System, GPS), computerized geographic information systems (GIS), computer-
guided controllers for variable rate application (VRA) of crop inputs, and sensing tech-
nologies for automated data collection and mapping. The GPS and GIS technologies
underpin both of the major PA practices that farmers have begun to adopt [12].
Several generations ago farmers relied on tools such as almanacs and the phases
of the moon to estimate when to begin planting. Today these tools are supplemented
with space age technologies that allow the farmer to raise their crop in more precise
and efficient ways. Some of these technologies include global positioning systems, ge-
ographic information systems, yield mapping, variable-rate technology, and remote
sensors. Precision farming (the art of using these technologies to increase yields and
profits while protecting the environment) is becoming more prevalent in farming oper-
ations. There is a need in the farming community for tools that provide the farmer easy
access to these technologies while avoiding cumbersome data gathering systems, in-
formation overload, or burdensome application equipment.
The economic theory of induced innovation predicts that new technologies will
be developed and adopted where they make more efficient use of the scarcest produc-
tive resources. Indeed, adoption of precision agriculture technologies has been fastest
where labor is costly but land and capital are relatively less costly. Where precision
agriculture is being adopted, the uneven adoption rate is tied to normal cycles for re-
placing the expensive machinery in which many precision agriculture technologies are
embodied. Equipment replacement decisions are affected by many factors exogenous
to the farm, such as bank interest rates and commodity prices. Adoption is likely to
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
116
continue in labor-scarce, landabundant countries, with rates of adoption accelerating
when commodity prices are high and interest rates low [12].
Previous studies
Don Comis et al. made the tractor typifies space-age agricultural tools: It sports
a roof antenna for satellite signals, a GPS receiver in the cab, and a radar gun below
the cab’s floor, to monitor ground speed. Shirley heads a team of eight who form the
land operations branch for the east section of the 7,000-acre research farm. They are
essentially the farmers who see that the crops get planted and the machines work.
Shirley and other crew members use the equipment to make the center’s farming more
sustainable economically and environmentally. The gear is also used in BARC’s pre-
cision farming projects, The center has a variable-rate liquid manure applicator thanks
primarily to crew member John Bouma, nicknamed “The Fabricator”. Bouma also de-
vised one of the few silage harvesters in the world with on-the-go yield monitoring.
Rockwell International gave Bouma a GPS receiver and computer and a pair of light-
beam sensors. [5].
Bruno Tisseyre et al. made a brief review of sensing systems, methods and tools
dedicated to
PV. In a relatively short time, technologies and methodologies to collect and
analyse high resolution data on vine characteristics, soil and environment properties,
grape yield and grape quality have become a reality. These information sources provide
accurate spatial information about variability in viticulture production systems. They
will allow growers and viticulturists to consider new management methods, more effi-
cient experimental designs and provide a better understanding of the vine production
system [21].
Zhang et al. provided an overview of worldwide development and current status
of precision-agriculture technologies based on literatures generated mainly during the
2000-2002 years. The topics include natural-resource variability; variability manage-
ment; management zone; impact of precision-agriculture technologies on farm profit-
ability and environment; engineering innovations in sensors, controls, and remote sens-
ing; information management; worldwide applications and adoption trend of precision-
agriculture technologies; and potentials of the technologies in modernizing the agricul-
ture in China [23].
Rude D. et al. initiated a project in Canada with the primary goal of conducting
two engineering initiatives to improve the safety of used agricultural equipment. They
implement that injuries from agricultural machinery occur at a very high rate, and most
of these injuries are caused by used equipment and despite engineering of safer equip-
ment being one of the preferred means to reduce injuries, there currently is limited
engineering effort applied to the safety of used machinery [19].
Birkeland Janis stated that as all environmental problems are caused by human
systems of design, sustainability can be seen as a design problem. Given the massive
energy and material flows through the built environment, sustainability simply cannot
be achieved without the re-design of our urban areas.
“Eco-retrofitting” means modifying buildings and/or urban areas to create net
positive social and environmental impacts – both on site and off site [1].
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
117
Matthew O. Anderson et al. developed a team of autonomous robotic vehicles
applicable to precision agriculture in The Idaho National Engineering and Environ-
mental Laboratory (INEEL) and Utah State University’s Center for Self-Organizing
and Intelligent Systems (CSOIS). They have generated a unique technique to plan, co-
ordinate, and optimize missions in large structured environments for these autonomous
vehicles in real-time. Two generic tasks are supported: 1) Driving to a precise location,
and 2) Sweeping an area while activating on-board equipment. Sensor data and task
achievement data is shared among the vehicles enabling them to cooperatively adapt
to changing environmental, vehicle, and task conditions [14].
Ferrari E. et al. have analysed the attitude and opinion of a sample of Italian users
of agricultural tractors, concerning some innovations, to outline different profiles of
behaviour in three separate groups of adopters of agricultural tractors by their attitude
towards technological innovations in these vital machines: the “Unwilling” users, nei-
ther use innovative tractors, nor would like to have tractors equipped with new techno-
logical innovations, the “Willing-Cultural” users have traditional machines but would
like to have innovative tractors in the future, and the “Innovative-Owner” adopters
have and use ground-breaking tractors [8].
Capacci E. et al. evaluated the applicability of the tractor OECD ROPS Codes 4
and 8 to rollover protective structures retrofitted on in-use grape harvester was per-
formed and the strength test results are presented and discussed according to fatalities
and serious injuries resulting from rollover accidents involving tractors and self-pro-
pelled agricultural machinery [10].
Mahalik N.G.P.C and friends presents work on retrofitting of high-tech systems
(HTS) in land-based aquaculture system for improving production efficiency [11].
Baker W. et al. identifies individual and machine characteristics that are associ-
ated with an increased risk of a serious farm work related injury. A comprehensive
analysis of a series of farm machinery events is reported, and through the application
of a human factors and systems approach, recommendations are made in relation to
improving machinery design to reduce the potential for injury events to occur, and to
reduce the severity of resulting injury when such events do occur [13].
Drenjanac D et al. different localization techniques for a human operator and an
autonomous tractor in a field environment were tested. First, we compared the locali-
zation performances of two global navigation satellite systems (GNSS) receivers car-
ried by the human operator: (1) an internal GNSS receiver built into a handheld device;
and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate
autonomous tractor localization, a real-time kinematic (RTK)-based localization sys-
tem installed on autonomous tractor developed for agricultural applications was eval-
uated. Finally, a hybrid localization approach, which combines distance estimates ob-
tained using a wireless scheme with the position of an autonomous tractor obtained
using an RTK-GNSS system, is proposed [14].
Agricultural sector
The agricultural sector is characterized by heterogeneous machinery, large num-
bers of process partners as well as high machine operating costs. Inefficiencies in ag-
ricultural processes arise from idle times, e.g. when transport vehicles are waiting for
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
118
operation or when the processes halt because of improper planning. Other causes for
inefficiencies are non-optimal allocations of machinery. These process inefficiencies
may cause high, but avoidable costs.
The placement of fleet automated technology in the agroforestry sector may pro-
vide a number of benefits, including; 1) reducing environmental contamination from
excessive agrochemical applications by adopting Global Navigation Satellite System
(GNSS) based site-specific application techniques, 2) increasing yields by optimizing
site-specific input application levels and 3) decreasing necessity of skilled farm labor-
ers required to perform agricultural tasks. An autonomous agricultural vehicle requires
a combination of several techniques (sensors, machine vision techniques, etc.) includ-
ing GNSS. For real-time applications that require on-the-go corrections, a differential
GNSS technique (DGNSS) is preferred to achieve very high location accuracy. As the
resolution at which the geoposition improves, it increases the number of plant-specific
management tasks suited for automation. A straightforward method to achieve accurate
geopositioning is to use two GNSS receivers (a rover and a base) that track the same
satellites. In this case, the position of the base (a stationary unit) can be accurately
determined using satellite signals. The location information from the base can be used
to correct the location of the rover, and this correction information can be communi-
cated to the field GNSS receiver by a radio link [11, 17]. This method allows for min-
imization of error and higher real-time accuracy [13]. In today’s agricultural processes,
RTK-DGNSS (Real Time Kinematic-Differential GNSS) based auto steering provides
substantial savings in agro-chemicals and reduced hand-weeding requirements, with
the associated environmental and economic advantages [10, 2, 9]. Although the use of
two GNSS receivers requires a significant financial investment, RTK-GNSS systems
are becoming increasingly common among commercial farming operations for auto-
matic steering of tractors and other types of field equipment. One disadvantage of using
RTK-GNSS solutions in agriculture is the requirement that a base station be located
within 10 km at all times, and this results in high capital cost. Multiple reference station
RTK trials have been ongoing since the late 1990’s [16].
Conclusion and discussion
The past decade has led to the development of sophisticated technology based
on electronics across all fields of agricultural machinery. The analysis of technological
innovations of tractor is paramount to those agricultural machinery stakeholders who
are looking for new market opportunities to increase their turnover and expand their
business in competitive markets, as well as to those who are responsible for the agri-
cultural policy regulations of countries.
Comfort and safety of agricultural tractors are the two technological features that
have received much attention from users and where manufacturers should direct their
efforts in developing fruitful technological trajectories in a not-too-distant future.
There is a need for much more detailed research and analysis, in the presence of
current market turbulence and fast-changing technology, to detect evolutionary fruitful
technological trajectories of agricultural tractors to increase efficiency and safety in the
agricultural systems, adopting, at the same time, the principles of precision agriculture.
[15].
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
119
The other important problem for agricultural machinery is the finance of retro-
fitting and high technological systems for precision farming or another high level sys-
tem for farming. The ratio of using technology will be determined by farmer’s financial
opportunities and bank rates.
Every new attempt on upgrading technology on farming will be faced on re-
sistance in people mind. “While traditional or present technologies gives a certain
amount of profit why need for give extra money for new technologies?” This question
is frequently asking today. In contribution to farmer resistance, governments and uni-
versities should be continued to force farmers to upgrade their farming techniques and
machinery. Because, agriculture is not a local application in a certain place or not a
personal application for continue life today. Farmer choices will affect the future of
whole country and also whole earth policy on agriculture. Therefore, countries making
arrangements on agriculture and related industries for achieve more gain per unit area.
There is another problem is educated personal needing in retrofitting agricultural
machinery. In addition to expert person requirement, services should be upgraded for
new technological retrofitting operations on old fashioned agricultural machinery. That
chain effect will improve other related industries in time and agriculture will determine
the new demands on industry as always.
Against all problems technological developments will affect the agricultural ma-
chinery technology and precision agriculture and remote control systems will be play
a role in the future agriculture.
СПИСОК ЛИТЕРАТУРЫ
1. Birkeland, J. Eco Retrofitting from Managerialism to Design / J. Birkeland // Proceedings of Global
Forum “Business as an Agent of World Benefit”. – Cleveland, Ohio, 2009. – Pp. 1-15.
2. Robotic agriculture / S.B. Blackmore, B. Stout, M. Wang, B. Runov // Proc. of the 5th European
Conference on Precision Agriculture. – Uppsala, Sweden: Wageningen Academic Publisher.
3. Capacci, E. Evaluation of Testing Procedures for ROPS Fitted on Self-propelled Agricultural Machin-
ery / E. Capacci, V. Rondelli // International Conference Ragusa SHWA 2010 – Work Safety and Risk Pre-
vention in Agro-food and Forest System, September 16-18, 2010, Ragusa Ibla Campus – Italy. – 2010 –
P. 202-209.
4. Coccia, M., Measuring intensity of technological change: the seismic approach / M. Coccia //, Technol.
Forecasting Soc. – 2005. № 72(2). – P. 117-144.
5. Comis, D. High-Tech retrofitting of farm machinery / D. Comis // Agricultural Research Journal. –
1998. – V. 46. – № 11. – P. 20.
6. Daberkow, S.G. Adoption of Precision Agriculture Technologies by U.S. Farmers / S.G. Daberkow,
W.D. McBride // 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA, July
16-19, 2000. ASA-CSSA-SSSA, Madison WI. – P. 1821-1831.
7. Technological Innovations in Agricultural Tractors: Adopters’ behaviour towards new technological
trajectories and future directions / E. Ferrari, L. Bollani, M. Coccia, E. Cavallo // Working paper Ceris-CNR
15 (5), 2013. – 33 p.
8. Ferrari, E. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A
case study in Italian agricultural system / E. Ferrari, L. Bollani, M. Coccia // Agricultural System. Torino:
Elsevier, – 2014. – P. 44-54.
9. Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce /
S.A. Fennimore, L.J. Tourte, J.S. Rachuy, R.F. Smith, C. George // Weed Tech., 2010. Vol. 24. – № 1. –
P. 33-38.
10. Robotic weeding / H.W. Griepentrog, S. Christensen, S. Søgaard, H.T. Nørremark, M. Lund,
E. Graglia // AgEng 2004 – Engineering the Future, Leuven, Belgium, 12 – 16 September 2004. – Technolo-
gisch Instituut vzw, 2004. – 8 p.
11. Agricultural automatic vehicle guidance from horses to GPS: How we got here, and where we are
going / J.A. Heraud, A.F. Lange // Proceedings Agricultural Equipment Technology Conference, Louisville,
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
120
Kentucky, February 8-11, 2009. – Vol. 33. – P. 1-67.
12. Iftikhar, N. Flexible exchange of farming device data / N. Iftikhar, T.B. Pedersen // Comput. Electron.
Agric, 2011. – № 75(1). – P. 52-63.
13. Korsching, P.F. New technologies for rural America: boon or bane? / P.F. Korsching // Technol. Soc.,
2001. – № 23(1). – P. 73-77.
14. Introduction to GPS (Global Positioning System). – Heerbrugg, Switzerland: Leica Geosystems AG,
1999.
15. Mobile Robotic Teams Applied to Precision Agriculture / M.O. Anderson, R.A. Kinoshita,
M.D. McKay, W.D. Willis, R.W. Gunderson, N.S. Flann // 8th International Topical Meeting on Robotics and
Remote Systems, April 25-29, 1999, Pittsburgh Pennsylvania, U.S.A. – La Grange Park, III: American Nuclear
Society. – Log no. 34, – 11 p.
16. Future directions of precision agriculture / A. McBratney, B. Whelan, T. Ancev, J. Bouma // Precision
Agriculture, 2005. – Vol. 6. – № 1. – P. 7-23.
17. Ong Kim Sun, G. How well does the virtual reference station (VRS) system of GPS base station per-
form in comparison to conventional RTK? / G. Ong Kim Sun, P. Gibbings // Journal of Spatial Science, 2005.
– Vol. 50, № 1. – P. 59-73.
18. Perez-Ruiz, M. GNSS in Precision Agricultural Operations / M. Perez-Ruiz, S.K. Upadhyaya // New
Approach of Indoor and Outdoor Localization Systems. In F. Elbahhar (ed.). InTech, 2012. – 26 p.
19. Reece, J.D. From simple crops to complex ecosystems: agricultural research and the environmental
imperative / J.D. Reece // Technovation, 1999. – № 19(6-7). – P. 423-432.
20. Rude, D. Final Report of Safe agricultural Machinery Devices Project / D. Rude, M. Ingram, J. Was-
sermann // Prairie Agricultural Machinery Institute Proje, 2003. – № 5003E, Canada.
21. Technology, complexity and change in agricultural production systems / G.F. Sassenrath, P. Heilman,
E. Luschei, E. Bennette, G. Fitzgerald, P. Klesius, W. Tracy, J.R. Williford, P.V. Zimba, // Renewable Agri-
culture and Food Systems, 2008. – Vol. 23(4). – P. 285-295.
22. Tisseyre, B., An overview of methodologies and technologies for implementing precision agriculture
in viticulture / B. Tisseyre, J. Taylor // XII Congresso Brasileiro de Viticultura e Enologia – Anais, 22 a 24 de
setembro de 2008, Bento Gonçalves, RS, 2008. – P. 45-54.
23. An introduction to mechanical engineering: study on the competitiveness of EU mechanical engineer-
ing industry / H.G. Vieweg (ed.) // European Commission, 2012. Available at: http://ec.europa.eu/enter-
prise/sectors/mechanical/files/competitiveness/comp-mech-eng-2012-frep_en.pdf (accessed January 2013).
24. Von Pentz, M. On our way to a global company / M. Von Pentz // In: Plenary Lecture of the 69th
Conference Land Technik-AgEng, Hannover, Germany, 11-12 November, 2011.
25. Zhang, N. Precision agriculture – a worldwide overview / N. Zhang, M.-H. Wang, N. Wang // Com-
puter and Electronics in Agriculture Journal, 2002. – Vol. 36, № 2-3. – P. 113-132.
REFERENCES
1. Birkeland Janis, (2009), “Eco Retrofitting from Managerialism to Design”, Proceedings of Global Fo-
rum – Business as an Agent of World Benefit, United States of America, Cleveland, Ohio, 2-5 June 2009,
Cleveland, pp. 1-15.
2. Blackmore, S.B., Stout, B., Wang, M. and Runov, B. (2005). “Robotic agriculture”, In: J. Stafford (Ed.),
Proc. of the 5th European Conference on Precision Agriculture, Uppsala, Sweden: Wageningen Academic
Publisher.
3. Capacci, E. and Rondelli, V., (2010), “Evaluation of Testing Procedures for ROPS Fitted on Self-pro-
pelled Agricultural Machinery” International Conference Ragusa SHWA 2010 – Work Safety and Risk Pre-
vention in Agro-food and Forest System, Ragusa Ibla Campus, Italy, pp. 202-209.
4. Coccia, M., (2005), “Measuring intensity of technological change: the seismic approach”, Technol.
Forecasting Soc, no. 72 (2), pp 117-144.
5. Comis, D., (1998), “High-Tech retrofitting of farm machinery”, Agricultural Research Journal, No-
vember, Vol. 46, Issue 11, p 20.
6. Daberkow, S.G. and McBride, W.D. (2000), “Adoption of Precision Agriculture Technologies by U.S.
Farmers”, 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA, pp. 1821-
1831.
7. Ferrari, E., Bollani, L., Coccia, M. and Cavallo, E., (2013), “Technological Innovations in Agricultural
Tractors: Adopters’ behaviour towards new technological trajectories and future directions”, Working paper
Ceris-CNR 15 (5). Torino, Italy.
8. Ferrari, E., Bollani, L. and Coccia, M. (2014), “Attitudes and behaviour of adopters of technological
innovations in agricultural tractors: A case study in Italian agricultural system”, Agricultural System, vol. 130,
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
121
pp. 44-54.
9. Fennimore, S.A., Tourte, L., Rachuy, J.S., Smith, R.F. and George, C. (2010), “Evaluation and eco-
nomics of a machine-vision guided cultivation program in broccoli and lettuce”, Weed Tech., vol. 24(1), pp.
33-38.
10. Griepentrog, H.W., Christensen, S., Søgaard, S., Nørremark, H.T., Lund, M. and Graglia, E. (2004).
“Robotic weeding”, AgEng 2004 Engineering the Future, Leuven, Belgium, 12 – 16 September 2004.
11. Heraud, J.A. and Lange, A.F. (2009), “Agricultural automatic vehicle guidance from horses to GPS:
How we got here, and where we are going”, Agricultural Equipment Technology Conference, Louisville, Ken-
tucky, USA, February 8-11 2009, no. 33. pp. 1-67.
12. Iftikhar, N. and Pedersen, T.B. (2011), “Flexible exchange of farming device data”, Comput. Electron.
Agric, no. 75 (1), pp. 52-63.
13. Korsching, P.F. (2001), “New technologies for rural America: boon or bane?”, Technol. Soc., no. 23
(1), pp. 73-77.
14. Leica Geosystems AG. (1999). “Introduction to GPS (Global Positioning System)”, Heerbrugg, Swit-
zerland: Leica Geosystems AG.
15. Anderson, M.O., Kinoshita R.A., McKay M.D., Willis W.D., Gunderson R.W. and Flann N.S. (1999),
“Mobile Robotic Teams Applied to Precision Agriculture”, 8th International Topical Meeting on Robotics and
Remote Systems, Pittsburgh Pennsylvania, U.S.A., April 25-29 1999, Log no. 34 pp. 1-11.
16. McBratney, A., Whelan, B., Ancev, T. and Bouma, J. (2005) “Future directions of precision agricul-
ture”, Precision Agriculture, vol. 6, no. 1, pp. 7-23.
17. Ong Kim Sun, G. and Gibbings, P. (2005), “How well does the virtual reference station (VRS) system
of GPS base station perform in comparison to conventional RTK?”, Journal of Spatial Science, 2005, vol. 50,
no. 1, pp. 59-73.
18. Pérez-Ruiz, M. and Upadhyaya, S.K. (2012), “GNSS in precision agricultural operation”. In F. El-
bahhar (ed.), New Approach of Indoor and Outdoor Localization Systems, InTech, pp. 1-26.
19. Reece, J.D. (1999), “From simple crops to complex ecosystems: agricultural research and the envi-
ronmental imperative”, Technovation, no. 19 (6-7), pp. 423-432.
20. Rude, D., Ingram, M. and Wassermann, J. (2003), “Final Report of Safe agricultural Machinery De-
vices Project”, Prairie Agricultural Machinery Institute Proje, no. 5003E, Canada.
21. Sassenrath, G.F., Heilman, P., Luschei, E., Bennette, E., Fitzgerald, G., Klesius, P., Tracy, W., Willi-
ford, J.R. and Zimba, P.V. (2008), “Technology, complexity and change in agricultural production systems”,
Renewable Agriculture and Food Systems, vol. 23, no. 4, pp. 285-295.
22. Tisseyre, B., Taylor, J. (2006), “An overview of methodologies and technologies for implementing
precision agriculture in viticulture”, XII Congresso Brasileiro de Viticultura e Enologia – Anais, 22 a 24 de
setembro de 2008, Bento Gonçalves, RS, pp. 45-54.
23. Vieweg, H.G. (ed.), (2012), “An introduction to mechanical engineering: study on the competitiveness
of EU mechanical engineering industry”, European Commission. available at: http://ec.europa.eu/enter-
prise/sectors/mechanical/files/competitiveness/comp-mech-eng-2012-frep_en.pdf (accessed January 2013).
24. Von Pentz, M. (2011), “On our way to a global company”, In: Plenary Lecture of the 69th Conference
Land Technik-AgEng, Hannover, Germany, 11–12th November.
25. Zhang N., Wang, M.-H., Wang N., (2002), “Precision Agriculture – A World Overview”, Computer
and Electronics in Agriculture Journal, vol. 36, no. 2-3, pp. 113-132.
Об авторах
Пишкин Бюлент, ассистент профессора, Инженерно-технологический факультет сельскохозяй-
ственного машиностроения университета Харран, Шанлыурфа, Турция, bpiskin@harran.edu.tr
Саглам Рамазан, профессор, Инженерно-технологический факультет сельскохозяйственного ма-
шиностроения университета Харран, Шанлыурфа, Турция
About the authors
Pişkin Bülent, Asst. Prof. in Agricultural Machinery Technology and Engineering dept. Harran University
of Turkey, bpiskin@harran.edu.tr
Sağlam Ramazan, Prof. in Agricultural Machinery Technology and Engineering dept. Harran University
of Turkey
Аннотация. В статье приведены результаты сравнительного анализа по поводу важной роли мо-
дернизации сельскохозяйственной техники. За последние 15 лет было разработано и адаптировано
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online), Геотехнічна механіка. 2017. № 133
122
много новых технологий для использования в сельском хозяйстве. К примеру, системы глобального
позиционирования (GPS), датчики биомассы и анализаторы лиственной поверхности (LAI), установ-
ленные на борту сельхозтехники, геофизические датчики для измерения свойств грунта, а также недо-
рогие, но надёжные устройства для хранения и обмена информацией. В совокупности эти новые тех-
нологии производят большое количество доступной информации с высоким разрешением и приводят
к развитию точного земледелия. Сельское хозяйство переходит в 21-м веке на тракторы с устройствами
спутниковой навигации, радарами и компьютерами, и, как следствие, социо-аграрные системы стано-
вятся всё более и более сложными для анализа структурных изменений и прогнозирования тенденций.
Исследования в указанном направлении развиваются, следовательно, существует необходимость в бо-
лее детальных исследованиях и анализе, который касается внедрения инноваций для сельскохозяй-
ственных тракторов, в частности, в условиях быстро изменяющихся сценариев, из-за всё большего
ускорения технологических изменений. Существует необходимость в намного более детальных иссле-
дованиях и анализе в условиях текущей рыночной турбулентности и быстро изменяющихся техноло-
гий. Есть ещё одна проблема – потребность в образованных специалистах для модернизации сельско-
хозяйственной техники. Кроме того, экспертно-консультационные услуги тоже должны быть приспо-
соблены к потребностям и задачам переоборудования сельскохозяйственной техники.
Ключевые слова: точное земледелие, модернизация сельскохозяйственной техники, модерниза-
ция, инновации в сельскохозяйственной технике
Анотація. У статті наведено результати порівняльного аналізу щодо важливої ролі модернізації
сільськогосподарської техніки. За останні п’ятнадцять років багато нових технологій були розроблені
або адаптовані для сільськогосподарського використання. Зокрема, системи глобального позиціону-
вання (GPS), датчики біомаси та аналізатори листкової поверхні (LAI), встановлені на борту сільгосп-
техніки, геофізичні датчики для вимірювання властивостей ґрунту, а також недорогі, але надійні при-
строї для зберігання і обміну інформацією. У сукупності ці нові технології виробляють велику кількість
доступної інформації з високою роздільною здатністю і приводять до розвитку точного землеробства.
Сільське господарство переходить в 21-му столітті на трактори з пристроями супутникової навігації,
радарами і комп’ютерами, і, як наслідок, соціо-аграрні системи стають все більш і більш складними
для аналізу структурних змін та прогнозування тенденцій. Дослідження за вказаним напрямком розви-
ваються, отже, існує необхідність в більш детальних дослідженнях і аналізі, що стосується впрова-
дження інновацій для сільськогосподарських тракторів, зокрема, в умовах швидко мінливих сценаріїв,
через все більше прискорення технологічних змін. Існує необхідність в набагато більш детальних дос-
лідженнях і аналізі в умовах поточної ринкової турбулентності і швидко мінливих технологій. Є ще
одна проблема – потреба в освічених фахівцях для модернізації сільськогосподарської техніки. Крім
того, експертно-консультаційні послуги теж повинні бути пристосовані до потреб і завдань переобла-
днання сільськогосподарської техніки.
Ключові слова: точне землеробство, модернізація сільськогосподарської техніки, модернізація,
інновації в сільськогосподарській техніці
Статья поступила в редакцию 31.05.2017
Рекомендовано к печати д-ром техн. наук, проф. В.И. Дырдой
|