Analysis of low-temperature relaxation resonances in materials containing defects
A theory has been advanced providing an adequate description of thermal-activated relaxation resonances of various physical origins in defect-containing materials. The algorithm has been proposed for processing the temperature spectra of absorption and suscep -tibility defect to determine the relaxa...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
НТК «Інститут монокристалів» НАН України
2004
|
Назва видання: | Functional Materials |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/138820 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analysis of low-temperature relaxation resonances in materials containing defects / V.D. Natsik, Yu.A. Semerenko // Functional Materials. — 2004. — Т. 11, № 2. — С. 327-333. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-138820 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1388202018-06-20T03:06:40Z Analysis of low-temperature relaxation resonances in materials containing defects Natsik, V.D. Semerenko, Yu.A. A theory has been advanced providing an adequate description of thermal-activated relaxation resonances of various physical origins in defect-containing materials. The algorithm has been proposed for processing the temperature spectra of absorption and suscep -tibility defect to determine the relaxation process activation parameters. Предложена теория, позволяющая адекватно описывать низкотемпературные термически активируемые релаксационные резонансы различной физической природы в материалах с дефектами. Описан алгоритм определения активационных параметров соответствующего процесса, основанный на анализе температурных спектров поглощения и дефекта восприимчивости. Запропоновано тєорію, що дозволяє адекватно описувати релаксаційні резонанси різної фізичної природи у матеріалах з дефектами. Описано метод визначення активаційних параметрів відповідного процесу, що базується на аналізі температурних спектрів поглинання та сприйнятливості. 2004 Article Analysis of low-temperature relaxation resonances in materials containing defects / V.D. Natsik, Yu.A. Semerenko // Functional Materials. — 2004. — Т. 11, № 2. — С. 327-333. — Бібліогр.: 6 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/138820 en Functional Materials НТК «Інститут монокристалів» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A theory has been advanced providing an adequate description of thermal-activated relaxation resonances of various physical origins in defect-containing materials. The algorithm has been proposed for processing the temperature spectra of absorption and suscep -tibility defect to determine the relaxation process activation parameters. |
format |
Article |
author |
Natsik, V.D. Semerenko, Yu.A. |
spellingShingle |
Natsik, V.D. Semerenko, Yu.A. Analysis of low-temperature relaxation resonances in materials containing defects Functional Materials |
author_facet |
Natsik, V.D. Semerenko, Yu.A. |
author_sort |
Natsik, V.D. |
title |
Analysis of low-temperature relaxation resonances in materials containing defects |
title_short |
Analysis of low-temperature relaxation resonances in materials containing defects |
title_full |
Analysis of low-temperature relaxation resonances in materials containing defects |
title_fullStr |
Analysis of low-temperature relaxation resonances in materials containing defects |
title_full_unstemmed |
Analysis of low-temperature relaxation resonances in materials containing defects |
title_sort |
analysis of low-temperature relaxation resonances in materials containing defects |
publisher |
НТК «Інститут монокристалів» НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/138820 |
citation_txt |
Analysis of low-temperature relaxation resonances in materials containing defects / V.D. Natsik, Yu.A. Semerenko // Functional Materials. — 2004. — Т. 11, № 2. — С. 327-333. — Бібліогр.: 6 назв. — англ. |
series |
Functional Materials |
work_keys_str_mv |
AT natsikvd analysisoflowtemperaturerelaxationresonancesinmaterialscontainingdefects AT semerenkoyua analysisoflowtemperaturerelaxationresonancesinmaterialscontainingdefects |
first_indexed |
2025-07-10T06:37:11Z |
last_indexed |
2025-07-10T06:37:11Z |
_version_ |
1837240875333189632 |
fulltext |
$QDO\VLV�RI�ORZ�WHPSHUDWXUH�UHOD[DWLRQUHVRQDQFHV�LQ�PDWHULDOV�FRQWDLQLQJ�GHIHFWV
9�'�1DWVLN��<X�$�6HPHUHQNR
%�9HUNLQ�,QVWLWXWH�IRU�/RZ�7HPSHUDWXUH�3K\VLFV�DQG�(QJLQHHULQJ�1DWLRQDO�$FDGHP\�RI�6FLHQFHV�RI�8NUDLQH�����/HQLQ�$YH��������.KDUNLY��8NUDLQH
$� WKHRU\� KDV� EHHQ� DGYDQFHG� SURYLGLQJ� DQ� DGHTXDWH� GHVFULSWLRQ� RI� WKHUPDO�DFWLYDWHGUHOD[DWLRQ�UHVRQDQFHV�RI�YDULRXV�SK\VLFDO�RULJLQV�LQ�GHIHFW�FRQWDLQLQJ�PDWHULDOV��7KH�DO JR�ULWKP�KDV�EHHQ�SURSRVHG�IRU�SURFHVVLQJ�WKH�WHPSHUDWXUH�VSHFWUD�RI�DEVRUSWLRQ�DQG�VXVFHS �WLELOLW\�GHIHFW�WR�GHWHUPLQH�WKH�UHOD[DWLRQ�SURFHVV�DFWLYDWLRQ�SDUDPHWHUV�
Íénlsv ntj�znvéq¹��wvokvs¹í�j¹�jlnrkjztv�vwqx�kjz��tqorvznuwnéjzyét�n�znéuq�·nxrq�jrzqkqéynu�n�énsjrxj|qvtt�n�énovtjtx��éjosq·tvp�{qoq·nxrvp�wéqévl��k�uj�znéqjsj}�x�ln{nrzjuq��Ìwqxjt�jsmvéqzu�vwénlnsntq¹�jrzqkj|qvtt�}�wjéjunzévk�xvvz�knzxzkyí�nmv�wév|nxxj��vxtvkjtt�p�tj�jtjsqon�znuwnéjzyét�}�xwnrzévk�wvmsv�ntq¹�qln{nrzj�kvxwéqqu·qkvxzq�
:KHQ� D� VROLG� LV� H[FLWHG� E\� H[WHUQDOILHOGV�� WKH�GLVWRUWHG�HTXLOLEULXP�LV�UHVWRUHGVSRQWDQHRXVO\��WKH�UHOD[DWLRQ�SURFHVV�H[KLE �LWV�D�WLPH�ODJ�IURP�WKH�FKDQJH�RI�SDUDPHWHUFKDUDFWHUL]LQJ� WKH� H[WHUQDO� DFWLRQ�� 7KHSURFHVV�GXUDWLRQ�LV�FKDUDFWHUL]HG�LQ�WKH�VLP �SOHVW� FDVHV� E\� D� FHUWDLQ� UHOD[DWLRQ� WLPH�� τ�ZKLOH� LQ� PRUH� FRPSOH[� RQHV�� E\� D� VHW� RIUHOD[DWLRQ� WLPHV�7KH� H[FLWDWLRQ� FDQ� EH� GXHWR�D�PHFKDQLFDO� VWUHVV��PDJQHWLF�RU�HOHFWULFILHOG��VR�WKH�UHOD[DWLRQ�LV�UHIHUUHG�WR�DV�WKHPHFKDQLFDO��PDJQHWLF��RU�GLHOHFWULF�RQH��UH �VSHFWLYHO\��7R�REWDLQ�GDWD�RQ�WKH�UHOD[DWLRQSK\VLFDO�PHFKDQLVPV�LQ�VROLGV��LW�LV�FRQYHQ �LHQW�WR�DSSO\�G\QDPLF�VSHFWURVFRS\�PHWKRGVPDNLQJ� XVH� RI� ORZ�DPSOLWXGH� KDUPRQLF� DF �WLRQV�ZLWK� D� SHULRG� RI� WKH� RUGHU� RI� WKH� UH �OD[DWLRQ� WLPH� τ�� ,Q� VXFK� H[SHULPHQWV�� WKHERG\� WR� EH� VWXGLHG� LV� VXEMHFWHG� WR� D� SHU �WXUEDWLRQ� α �α�H[S�LωW�� ZLWK� WKH� DPSOL�WXGH� α� DQG� FLUFXODU� IUHTXHQF\� ω DQG� LWVUHVSRQVH� β �β�H[S�L(ωW−ϕ)�� LV� UHJLVWHUHG�KHUH� β� �β��ω� LV� WKH� UHVSRQVH� DPSOLWXGHDQG� ϕ �ϕ�ω��� WKH� SKDVH� VKLIW� RI� WKH� UH�VSRQVH� ZLWK� UHVSHFW� WR� WKH� H[WHUQDO� DFWLRQ�7KH� UHVSRQVH� OLQHDULW\� DQG� SHULRGLFLW\� DWWKH� IUHTXHQF\� ω DUH� SURYLGHG� E\� WKH� VPDOODPSOLWXGH� α��� 7KH� UDWLR� β�α �0
�ω��
0��ω��L0��ω�� LV� UHIHUUHG� WRS� DV� WKH� PDWH�ULDO� FRPSOH[� VXVFHSWLELOLW\�� )RU� YLEUDWLRQVRI� D� VSHFLILF� SK\VLFDO� W\SH�� 0��ω�� KDV� WKHVHQVH� RI� G\QDPLFDO� HODVWLFLW\�PRGXOH��PDJ �QHWLF� VXVFHSWLELOLW\�� RU� GLHOHFWULF� RQH�� 7KHUDWLR� 0��ω��0��ω�� �WJϕ�ω�� FKDUDFWHUL]HVWKH� HQHUJ\� GLVVLSDWLRQ� RI� WKH� UHVSHFWLYH� YL �EUDWLRQ�SURFHVV�GXH�WR�UHOD[DWLRQ�$Q� DFFHSWDEOH� PRGHO� WR� GHVFULEH� WKH� G\ �QDPLF� H[FLWDWLRQ� RI� PRVW� UHDO� PDWHULDOV� LVEDVHG� RQ� D� VWDQGDUG� OLQHDU� ERG\� IRU� ZKLFKWKH� VXVFHSWLELOLW\� �PRGXOH�� GHIHFW
∆0�ω��0∞ DQG� UHYHUVH� TXDOLW\� 4���ω�� DUHXVHG� DV� WKH� UHOD[DWLRQ� PDFURVFRSLF� FKDUDF �WHULVWLFV�
∆0(ω)0∞
=
0∞ − 0�(ω)0∞
=
∆U� + ω�τ��
4−�(ω) =
0�(ω)0∞
= ∆U ωτ� + ω�τ���
���
ZKHUH� 0∞ LV� WKH� XQUHOD[HG� VXVFHSWLELOLW\�
∆U �&U∆��� WKH� UHOD[DWLRQ� IRUFH�� ∆��� WKHFKDUDFWHULVWLF�GLPHQVLRQOHVV�HOHPHQWDU\�FRQ �WULEXWLRQ�WR�WKH�PDWHULDO�G\QDPLF�UHVSRQVH�&U�� WKH� UHODWLYH� GLPHQVLRQOHVV� YROXPH� FRQ �FHQWUDWLRQ� RI� HOHPHQWDU\� UHOD[DWLRQ� RVFLOOD �
)XQFWLRQDO�0DWHULDOV�����1R��������� �������²�,QVWLWXWH�IRU�6LQJOH�&U\VWDOV
)XQFWLRQDO�PDWHULDOV������������� ���
WRUV� LQWHUDFWLQJ� ZLWK� WKH� VDPSOH� YLEUDWLRQPRGH�EHLQJ�FRQVLGHUHG�,Q� PDQ\� FDVHV�� WKH� UHOD[DWLRQ� SURFHVVHVDW� WKH�PLFURVFRSLF� OHYHO� DUH�GXH� WR� HOHPHQ �WDU\� WKHUPDO�DFWLYDWHG� VWUXFWXUH� UHDUUDQJH �PHQWV� DQG� WKH� UHOD[DWLRQ� WLPH� τ�7�� LV� GH�VFULEHG�E\�WKH�$UUKHQLXV�ODZ�
τ(7) = τ�H[S(8� ⁄ N7)�� ���
ZKHUH� τ� DQG� 8� DUH� WKH� WU\� SHULRG� DQGDFWLYDWLRQ� HQHUJ\�� UHVSHFWLYHO\�� RI� WKH� HOH �PHQWDU\� UHOD[DWRUV�� N�� WKH� %ROW]PDQQ� FRQ�VWDQW��7��WHPSHUDWXUH��:KHQ�VXFK�SURFHVVHVDUH�VWXGLHG�XVLQJ�WKH�G\QDPLF�PHWKRGV��WKH'HE\H�UHOD[DWLRQ�SHDN�DQG�D�EOXUUHG��VWHS�FRUUHVSRQGLQJ� WKHUHWR� DUH� REVHUYHG� LQ� WHP �SHUDWXUH� GHSHQGHQFHV� RI� 4�� DQG� ∆0�0∞REWDLQHG� DW� D� IL[HG� IUHTXHQF\� ω �FRQVW RULQ� IUHTXHQF\� GHSHQGHQFHV� RI� 4�� DQG
∆0�0∞ REWDLQHG�DW�D�IL[HG�WHPSHUDWXUH�7 FRQVW�� 7KH� UHVRQDQFH� FRQGLWLRQ� LV� GHILQHG� E\WKH�UHODWLRQVKLS�ωτ ��� WKHUHIRUH��LQ�WHPSHUD�WXUH�VSHFWUD�RI�UHOD[DWLRQ�DW�D�IL[HG�IUHTXHQF\�WKH�UHVRQDQFH�LV�ORFDOL]HG�QHDU�WKH�WHPSHUDWXUH7S(�) ��8��NOQωτ� DQG�WKH�FRUUHVSRQGLQJ�DE�VRUSWLRQ� SHDN� KDV� D� FKDUDFWHULVWLF�ZLGWK� DWWKH�KDOI�PD[LPXP�DPSOLWXGH
7K(�) =
�8�N ⋅ OQ(� + √� )
(OQωτ�)� − (OQ(� + √� ))
���
,Q�IUHTXHQF\�VSHFWUD�RI�UHOD[DWLRQ�DW�D�IL[HGWHPSHUDWXUH��WKH�UHVRQDQFH�LV�ORFDOL]HG�QHDUWKH� IUHTXHQF\� ωS(�) ��τ�H[S�8��N7���� DQGWKH� FRUUHVSRQGLQJ� DEVRUSWLRQ� SHDN� KDV� DFKDUDFWHULVWLF� ZLGWK� DW� WKH� KDOI�PD[LPXPDPSOLWXGH�ωK(�) ��√� ⋅ �τ�H[S�8��N7������7KHPDLQ� WDVN� WR� EH� VROYHG� XVLQJ� WKH� G\QDPLFVSHFWURVFRS\�PHWKRGV�LV�WR�UHYHDO�VXFK�UHVR �QDQFHV� DQG� WR� FRQVLGHU� WKRVH� LQ� RUGHU� WRGHWHUPLQH�WKH�SDUDPHWHUV�RI�HOHPHQWDU\�UH �OD[DWRUV��τ� DQG�8��5HDO�PDWHULDOV� FRQWDLQ�UDQGRPO\�GLVWULE �XWHG� VWUXFWXUH� GLVWRUWLRQV� DQG� LPSHU �IHGWLRQV� DULVLQJ� ERWK� GXULQJ� WKH� PDQXIDF �WXULQJ� SURFHVV� DQG� DW� VXEVHTXHQW� WUHDW �PHQWV�� ,Q� WKLV� FDVH�� WKH� HOHPHQWDU\UHOD[DWRUV� SDUDPHWHUV� 8��� τ��� DQG� ∆� WDNHUDQGRP� DGGLWLRQV� LQ� GLIIHUHQW� UHJLRQV� RI� DFU\VWDO�� VR�� LQVWHDG� RI� WKRVH� SDUDPHWHUV�UDQGRP� TXDQWLWLHV� DQG� GLVWULEXWLRQ� IXQF �WLRQV� FRUUHVSRQGLQJ� WKHUHWR� DUH� WR� EH� FRQ �VLGHUHG��7KH�UHVSRQVH�IXQFWLRQV�RI�D�PDFUR �VFRSLF� VDPSOH� ∆0�7�ω��0∞ DQG� 4���7�ω�
DUH� WUDQVIRUPHG� LQWR� FRPSOLFDWHG� IXQFWLRQV
∆0___�7�ω��0∞ DQG 4__���7�ω�� REWDLQHG� E\� VWD�WLVWLFDO�DYHUDJLQJ�RI�����>�@�$� FKDQJH� LQ� WKH� PDWHULDO� GHIHFW� VWUXF �WXUH�PD\� FKDQJH�ERWK� WKH� ORFDOL]DWLRQ� WHP �SHUDWXUH�DQG�ZLGWK��7S ≠ 7S(�) DQG�7K ≠ 7K(�)�RI� WKH� UHOD[DWLRQ� UHVRQDQFHV�� 7KH� LQWHUSUH �WDWLRQ�RI� VXFK� FKDQJHV� LV� DPRQJ� LPSRUWDQWSUREOHPV�LQ�WKH�G\QDPLF�UHOD[DWLRQ�WKHRU\�,W� LV� REYLRXV� WKDW� WKH� WHPSHUDWXUH� DQGIUHTXHQF\� GHSHQGHQFHV� ∆0___�7�ω��0∞ DQG4__���7�ω��PXVW�EH� LQIOXHQFHG�DW� WKH�KLJKHVWH[WHQW� E\� WKH� DYHUDJLQJ� RYHU� WKH� GLVWULEX �WLRQ�RI�WKH�DFWLYDWLRQ�HQHUJ\�DQG�WU\�SHULRG�,Q� WKH� FDVH� RI� ORZ� WHPSHUDWXUHV�� N7 ��8��RQO\� WKH� VWDWLVWLFDO� FKDUDFWHU� RI� DFWLYDWLRQHQHUJ\�FDQ�EH� WDNHQ� LQWR�DFFRXQW�ZKLOH�WKHGLVSHUVLRQ�RI�∆���DQG�τ� FDQ�EH�QHJOHFWHG�DWDQ� H[SRQHQWLDO� DFFXUDF\�� WKDW� LV�� WKH� LQIOX �HQFH� RI� WKH� VWUXFWXUH� GHIHFWV� FDQ� EH� GH �VFULEHG� WDNLQJ� LQWR� DFFRXQW� WKH� VFDWWHU� RIDFWLYDWLRQ�HQHUJ\�8 ORFDO�YDOXHV�$� FKDQJH� LQ� WKH� PDWHULDO� GHIHFW� VWUXF �WXUH�PD\� UHVXOW� LQ�D�VKLIW�RI� WKH� UHVRQDQFHWHPSHUDWXUH� 7S ERWK� WRZDUGV� KLJKHU� DQGORZHU� WHPSHUDWXUHV�� 7KDW� LV�� WKH� VWUXFWXUHFKDQJHV� LQFUHDVLQJ� WKH� DFWLYDWLRQ� HQHUJ\VFDWWHU�ZLWK� UHVSHFW� WR� WKH� LQLWLDO� YDOXH� 8�PD\� HQULFK� ERWK� KLJK�HQHUJ\� �8__ !�8��� DQGORZ�HQHUJ\��8__ ��8���VWDWHV�RI�UHOD[DWLRQ�RV�FLOODWRUV��%RWK� WKHVH� FDVHV� FDQ� EH�GHVFULEHGXVLQJ� WKH�TXDVL�*DXVVLDQ�GLVWULEXWLRQ� IXQF �WLRQ�3�8��DW�D�VPDOO�GLVSHUVLRQ�' ��8���WKHSDUDPHWHU� ν EHLQJ� VHOHFWHG� LQ� D� VXLWDEOHPDQQHU� 3(8�8��'�ν) =
=
1ν
√�π' �8�ν−�88�ν + 8ν
H[S
−
8 − 8�
√�'
�
�
1ν =
�8�� + ν'��8�� ��
���
ZKHUH� 1ν LV� WKH� QRUPDOL]DWLRQ� FRHIILFLHQWPHHWLQJ�WKH�QRUPDOL]DWLRQ�FRQGLWLRQ
∫�
∞ 3(8�8��'�ν)G8 = ��
$W� D� VWDWLVWLFDO� GLVWULEXWLRQ� RI� WKH� DFWL �YDWLRQ�HQHUJ\�� WKH� UHVSRQVH�IXQFWLRQV�DYHU �DJHG� RYHU� ���� VKRXOG� EH� FRQVLGHUHG� LQVWHDGRI�WKH�'HE\H�UHOD[DWLRQ�VSHFWUXP�����
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
��� )XQFWLRQDO�PDWHULDOV�������������
∆0___0∞
= ∆U ⋅ µ(�)(7�ω�τ��8��'�ν) DQG
4__−� = ∆U ⋅ µ(�)(7�ω�τ��8��'�ν)�
���
µ(�) = ∫ �� + ω�τ��H[S(�8 ⁄ N7)�
∞ 3(8�8��'�ν)G8 DQG
µ(�) = ∫
ωτ�H[S(8 ⁄ N7)� + ω�τ��H[S(�8 ⁄ N7)�
∞ 3(8�8��'�ν)G8�
,Q�ZKDW� IROORZV�� WKH�IUHTXHQF\�DQG�WHP �SHUDWXUH� UHOD[DWLRQ� VSHFWUD� DUH� FRQVLGHUHGVHSDUDWHO\�)UHTXHQF\� UHOD[DWLRQ� VSHFWUXP�� /HW� QHZSUREOHP� SDUDPHWHUV� EH� LQWURGXFHG�� θω >H[S�8��N7�@���� GLPHQVLRQOHVV� WHPSHUDWXUH�
Ωω = ω ⁄ ωS(�) = ωτ� ⋅ H[S(8�⁄N7) = ωτ� ⁄ θω�� GL�PHQVLRQOHVV� IUHTXHQF\�� Gω �√�'�8��� GL�PHQVLRQOHVV� GLVSHUVLRQ� FKDUDFWHULVWLF�� [ H[S�8�N7��� WKH� QHZ� LQWHJUDWLRQ� YDULDEOH�7KHQ�
µω
(�) = 1ω
(ν) ⋅ χω ⋅ ∫�
∞ G[[ ⋅ Iω([�θω�Ωω�Gω�ν)�
µω
(�) = 1ω
(ν) ⋅ χω ⋅ θωΩω ⋅ ∫�
∞ G[ ⋅ Iω([�θω�Ωω�Gω�ν)�
���
Iω([�θω�Ωω�Gω�ν) =
= �
(−OQθω)ν + (OQ[)ν
⋅ OQ[
θω
�Ωω
�[� + � ×
× H[S
−
OQ[ + OQθωG ⋅ OQθω
�
�
χω =
�(−OQθω)ν−�
√πGω
�
1ω
(ν) =
� + νGω
�� �
7KH�IUHTXHQF\�GHSHQGHQFHV�RI�QRUPDOL]HGG\QDPLF� UHVSRQVH� IXQFWLRQ� µω
(�) DQG�µω
(�) DUHSUHVHQWHG�LQ�)LJ����7KH�IROORZLQJ�FKDUDFWHULVWLFV�RI�D�UHOD[D �WLRQ� UHVRQDQFH� DUH� PHDVXUDEOH� LQ� H[SHUL �PHQW�� ωS RU� ΩS�θω�� Gω�� ν�� �ωS�ωS����� WKHSRVLWLRQV� RI� DEVRUSWLRQ� SHDN� DQG� LQIOHFWLRQSRLQW� RI� �VWHS�� RI� WKH� VXVFHSWLELOLW\� GHIHFWVWHS�DW�WKH�IUHTXHQF\�D[LV�GHWHUPLQHG�IURP
WKH� FRQGLWLRQ� ∂µω
(�)
∂ω
= � RU� ∂�µω
(�)
∂ω� = � DQG
ωK = ωK(+) − ωK(−) RU� ΩK(θω�Gω�ν) = ωK ⁄ ωS(�)�� WKHDEVRUSWLRQ� SHDN� ZLGWK� ZKHUH� ωK(+�−) PHDQVWKH�IUHTXHQF\�YDOXHV�ZKHUH�
µω
(�)(7�ωK(+�−)�τ��8��'�ν) =
= (� ⁄ �) ⋅ PD[ µω
(�)(7�ω�τ��8��'�ν) =
= (� ⁄ �) ⋅ µω
(�)(7�ωS�τ��8��'�ν)�$W�Gω ���WR���DQG�θω ��⋅���� WR��⋅�����WKH�UHOD[DWLRQ�UHVRQDQFH�SDUDPHWHUV�DUH�UH �ODWHG� WR� WKRVH� RI� HOHPHQWDU\� UHOD[DWRUV� E\WKH�IROORZLQJ�UHODWLRQV�
ΩS = � + &ω
(ν) ⋅ (GωOQθω)��&ω
(ν) = ν − ��� RU ωS = ωS(�) ⋅
� + &ω
(ν) ⋅ �'�N�7�
��
���
ΩK = ΩK(�) ⋅
� + %ω
( ν) ⋅ (GωOQθω)�
�
%ω
(ν) = � + ν�� RU ωK = ωK(�) ⋅ (� + %ω
(ν) ⋅ �'�N�7�)��
���
ZKHUH� ΩK(�) = �√� LV� WKH� 'HE\H� DEVRUSWLRQSHDN�ZLGWK�7KH�YDOXHV�ν ����DQVZHU�WR�WKH�UHVRQDQFHVKLIW� WRZDUGV� ORZHU� IUHTXHQFLHV� �ωS < ωS(�)�ZKLOH�ν !����WR�WKDW�WRZDUGV�KLJKHU�IUHTXHQ �FLHV��ωS > ωS(�)��7KH� DFWLYDWLRQ� HQHUJ\� 8� DQG� LWV� GLVSHU�VLRQ�' FDQ�EH�HVWLPDWHG�SURFHHGLQJ�IURP�WKHNQRZQ�WHPSHUDWXUH�YDOXH�7 DQG�H[SHULPHQWDOYDOXHV�RI�WKH�UHVRQDQFH�ORFDOL]DWLRQ�IUHTXHQF\
ωS DQG�WKH�DEVRUSWLRQ�SHDN�ZLGWK�ωK�
8� = N7 ⋅ OQ
�√� (%ω
(ν) − &ω
(ν)
τ�(�√� ⋅ %ω
(ν) ⋅ ωS − ωK)
�
' = N7 ⋅ √�√� ⋅ ωS − ωK�
&ω
(ν) ⋅ ωK − �√� ⋅ %ω
(ν) ⋅ ωS
�
���
7KH� UHOD[DWLRQ� IRUFH� ∆U FDQ� EH� IRXQGIURP�WKH�FRQGLWLRQ
∆
__0(ω)0∞
ω<<ωS
H[SHULPHQW
= µω
(�)
ω<<ωS ⋅ ∆U = ∆U�
7HPSHUDWXUH� UHOD[DWLRQ� VSHFWUXP�� /HWQHZ�SUREOHP�SDUDPHWHUV�EH� LQWURGXFHG�>���@�
θ7 = 7 ⁄ 7S(�) = −N7OQ(ωτ�) ⁄ 8��� GLPHQVLRQOHVVWHPSHUDWXUH�� Ω7 = ωτ��� GLPHQVLRQOHVV� IUH�TXHQF\�� G7 = √�' ⁄ N7S(�) = −√�'OQ(ωτ�)8��
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
)XQFWLRQDO�PDWHULDOV������������� ���
GLPHQVLRQOHVV� GLVSHUVLRQ� FKDUDFWHULVWLF� [ H[S�8�N7���WKH�QHZ�LQWHJUDWLRQ�YDULDEOH��7KHQ�
µ7(�) = 17(ν) ⋅ χ7 ⋅ ∫�
∞ G[[ ⋅ I7([�θ7�Ω7�G7�ν)�
µ7(�) = 17(ν) ⋅ χ7 ⋅ Ω7 ⋅ ∫�
∞ G[ ⋅ I7([�θ7�Ω7�G7�ν)�
���
I7([�θ7�Ω7�G7�ν) = �
(−OQΩ7)ν + (θ7OQ[)ν
×
× OQ[
Ω7�[� + � ⋅ H[S
−
θ7OQ[ + OQΩ7G7
�
�
χ7 =
�θ7�
√πG7(−OQΩ7)ν−���
1ω
(ν) =
�(OQΩ7)� + νG7��OQΩ7)� �
7KH�WHPSHUDWXUH�GHSHQGHQFHV�RI�QRUPDO �L]HG�G\QDPLF�UHVSRQVH�IXQFWLRQ� µ7(�) DQG�µ7(�)DUH�SUHVHQWHG�LQ�)LJ����7KH� IROORZLQJ� FKDUDFWHULVWLFV� RI� D� UHVR �QDQFH� DUH�PHDVXUDEOH� LQ� H[SHULPHQW�� 7S RU
θS�Ω7�G7�ν�� �7S�7S(�)�� WKH� SRVLWLRQV� RI� WKHSHDN� DQG� WKH��VWHS�� LQIOHFWLRQ� SRLQW�DW� WKHWHPSHUDWXUH� D[LV� GHWHUPLQHG� IURP� WKH� FRQ �GLWLRQ� ∂µ7(�) ⁄ ∂7 ��� RU� ∂�µ7(�) ⁄ ∂7� ���� WKHLUZLGWK�DQG�DPSOLWXGH�$V� WKH� DEVRUSWLRQ� SHDN� ZLGWK� FKDUDF �WHULVWLF�� WKH� SDUDPHWHU� 7K = 7K(+) − 7K(−) RU
θK�Ω7�G7�ν�� �7K�7S(�) LV� XVHG� DV� D� UXOH�7K(+�−) PHDQV�WKH�WHPSHUDWXUH�YDOXHV�ZKHUH
µ7(�)
7K(+�−)�ω�τ��8��'�ν
=
= (� ⁄ �) ⋅ PD[ µ7(�)(7�ω�τ��8��'�ν) =
= (� ⁄ �) ⋅ µ7(�)(7S�ω�τ��8��'�ν)�
:KHQ� H[SHULPHQWDO� GDWD� DUH� SURFHVVHG�RQH� KDV� WR� GR� ZLWK� UHOD[DWLRQ� SHDNV� RE �VHUYHG� DJDLQVW� WKH� EDFNJURXQG� DEVRUSWLRQ
)LJ�����7UDQVIRUPDWLRQ�RI�IUHTXHQF\�GHSHQGHQFHV�RI�QRUPDOL]HG�G\QDPLF�UHVSRQVH�IXQFWLRQV� µω
(�)�DQG
µω
(�)�DW�IL[HG�SDUDPHWHU�YDOXH� θω ��⋅���� DQG�GLIIHUHQW�YDOXHV�RI�SDUDPHWHU�ν��ν ����D���ν ����E��
ν ����F���Gω �����������������������������������������
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
��� )XQFWLRQDO�PDWHULDOV�������������
QRLVH��VR�WKH�XVH�RI�7K UHTXLUHV�WKH�FRUUHFWEDFNJURXQG� VXEWUDFWLRQ�� ,I� WKH� EDFNJURXQGGHSHQGV� �HYHQ� VOLJKWO\�� RQ� WKH� WHPSHUDWXUHDW�WKH�SHDN�ZLGWK��LW� LV�GLIILFXOW� WR�EH�VXE �WUDFWHG��0RUH�FRQYHQLHQW�LV�WR�XVH�WKH�SDUDPH �WHU�7N = 7N(+) − 7N(−) RU�θN�G��Ω��ν�� �7N�7S(�) DVWKH� SHDN� ZLGWK� FKDUDFWHULVWLF� DOPRVW� LQGH �SHQGHQW� RI� WKH� EDFNJURXQG� DEVRUSWLRQ�7N(+�−) PHDQV� WKH� LQIOHFWLRQ� SRLQWV� DW� WKHWHPSHUDWXUH� GHSHQGHQFH� RI� DEVRUSWLRQZKHUH�∂�µ7(�) ⁄ ∂7� ���DW�7 �7N��
7R� FKDUDFWHUL]H� WKH� ZLGWK� RI� �VWHS�� RIWKH�VXVFHSWLELOLW\�GHIHFW� VWHS�ZLGWK�� OHW� WKHSDUDPHWHU 7V = 7V(+) − 7V(−) =
=
∂µ7(�)(7�ω�τ��8��'�ν)
∂7
7=7S
−�RU
θV(Ω7�G7�ν) = 7V ⁄ 7S(�)�
����
EH� LQWURGXFHG�ZKHUH�7V����� DUH� WHPSHUDWXUHYDOXHV� DW� ZKLFK� WDQJHQWV� WR� WKH� �VWHS�� LQWKH� LQIOHFWLRQ� SRLQW� 7S LQWHUVHFW� WKH� KLJK�
)LJ�����7UDQVIRUPDWLRQ�RI�WHPSHUDWXUH�GHSHQGHQFHV�RI�QRUPDOL]HG�G\QDPLF�UHVSRQVH�IXQFWLR QV�µ7(�)DQG�µ7(�) DW�IL[HG�SDUDPHWHU�YDOXH�Ω7 ��⋅���� DQG�GLIIHUHQW�YDOXHV�RI�SDUDPHWHU� ν��ν ����D���ν ���E���ν ����F���G7 ���������������������
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
)XQFWLRQDO�PDWHULDOV������������� ���
WHPSHUDWXUH� DQG� ORZ�WHPSHUDWXUH� DV\PS �WRWHV� RI� WKH� �VWHS�� �H[SHULPHQWDO� GHSHQG �HQFHV� RI� WKH� VXVFHSWLELOLW\� GHIHFW� DUH� WR� EHQRUPDOL]HG� WR� &U∆� VR� WKDW� WKH� KLJK�WHP�SHUDWXUH� DV\PSWRWH� RI� WKH�H[SHULPHQWDO�GH �SHQGHQFH�VKRXOG�EH�HTXDO�WR����7KH� UHOD[DWLRQ� UHVRQDQFH�SDUDPHWHUV�DUHUHODWHG�WR�WKRVH�RI�HOHPHQWDU\�UHOD[DWRUV�E\WKH�IROORZLQJ�UHODWLRQV�
θS = �+&7(ν) ⋅
G7�
(OQΩ7)��&7(ν) = � − ν� RU
7S = 7S(�) ⋅
� + &7(ν) ⋅ �'�8��
�
����
7KH�YDOXHV�ν ����DQVZHU�WR�WKH�UHVRQDQFHVKLIW�WRZDUGV�KLJKHU�WHPSHUDWXUHV��7S !�7S(�)�ZKLOH� ν !���� WR� WKDW� WRZDUGV� ORZHU� RQHV�7S ��7S(�)��
θL = θL(�) ⋅ (� + %L(ν) ⋅ G7) RU7L = 7L(�) ⋅ (� − %L(ν) ⋅ √�'8� OQωτ�)� ����
ZKHUH� θL = θK�θN�θV DQG� θL(�) = θK(�)�θN(�)�θV(�) DUHWKH� SDUDPHWHU� YDOXHV� FRUUHVSRQGLQJ� WR� WKH'HE\H�UHVRQDQFH�
θL(�) = ζL ⋅ OQΩ�
ζK = � ⋅ OQ(� + √� )
(OQΩ)� − (OQ(� + √� ))
� ≈ ����
(OQΩ)�
ZLWKLQ� WKH� UDQJH� EHLQJ� RI� LPSRUWDQFH� IRUH[SHULPHQWV�
Ω = � ⋅ ��−� ² � ⋅ ��−���ζN = √� ⁄ (OQ(Ω))
��
ζV = � ⁄ (OQ(Ω))
���%K(ν) = (�� − ν) ⁄ ���%N(ν) = (�� − ν) ⁄ ����%K(ν) = (�� − ν) ⁄ ���
,W� IROORZV� IURP� ����� WKDW� τ� FDQ� EH� HVWL�PDWHG� IURP� WKH� DFWLYDWLRQ� SORW�OQω = OQτ�−� −
8�� + �&7(ν)'�8� ⋅ �N7S�� 7KH� IRUPX�ODV� SURYLGLQJ� GHWHUPLQDWLRQ� RI� 8� DQG� 'SURFHHGLQJ� IURP� WKH� NQRZQ� ωτ� YDOXH� DQGH[SHULPHQWDO� YDOXHV� RI� WKH� UHVRQDQFH� ORFDO �L]DWLRQ� WHPSHUDWXUH� 7S DQG� LWV� ZLGWK� FKDU�DFWHULVWLF�7L KDYH�WKH�IROORZLQJ�IRUP�
8� = N(OQωτ�)� ⁄ �ζL&7(ν) +
%L(ν) ⋅ (OQωτ�)
�
×
×
−ζL%L(ν)
� 7S +
�&7(ν)7K
(OQωτ�)� −
−
ζL�
%L(ν)
� 7S� − �ζL%L(ν)
� &7(ν)7S7K
(OQωτ�)� −
−
�(%L(ν))�&7(ν)7K�
(OQωτ�)�
� ⁄ �
��
����
' = √�N(OQωτ�)� ⁄ �ζL&7(ν) +
%L(ν) ⋅ (OQωτ�)
�
×
×
−ζL%L(ν)7S −
�%L(ν)7KOQωτ� −
ζL%L(ν)7S
�
−
−
�ζL&7(ν)7S7K
(OQωτ�)� −
�ζL&7(ν)7K�
(OQωτ�)�
� ⁄ �
��
����
7KH� UHOD[DWLRQ� IRUFH� ∆U FDQ� EH� IRXQGIURP�WKH�FRQGLWLRQ
∆
__0(7)0∞
7>>7S
(H[SHULPHQW)
= µ7(�)
7>>7S⋅ ∆U = ∆U�
$W� ν ���� WKH� UDWLR� RI� GHULYDWLYHV� ZLWKUHVSHFW� WR� WHPSHUDWXUH� LQ� WKH� LQIOHFWLRQSRLQWV�RI� IXQFWLRQV� µ7(�)(θ7�Ω7�G7�ν)
ν=� KDVWKH�VDPH�YDOXH�.=−PD[[∂µ7(�) ⁄ ∂θ7] � PLQ[∂µ7(�) ⁄ ∂θ7]�WKDW� GHSHQGV� RQ� WKH� SDUDPHWHU� Ω7 EXW� LVLQGHSHQGHQW�RI�WKH�GLVSHUVLRQ�SDUDPHWHU� G7DQG�PDNHV�LW�SRVVLEOH�WR�DSSUR[LPDWH�LW�DQD �O\WLFDOO\� DV� .(Ω7) = �+�� � (−OQΩ7)√� WKDWSURYLGHV� WKH� GHWHUPLQDWLRQ� RI� τ� E\� FRQ�VLGHULQJ� RQO\� WKH� SHDN� VKDSH� ZLWKRXW� UH �VRUW� WR� H[SHULPHQWV� ZLWK� YDU\LQJ� IUH �TXHQF\�ω�,Q� FRQFOXVLRQ�� WKH� HIIHFW� RI� D� PDWHULDOGHIHFW� VWUXFWXUH�RQ�WKH�SDUDPHWHUV�RI�IUH �TXHQF\� DQG� WHPSHUDWXUH� VSHFWUD� RI� G\ �QDPLF�UHOD[DWLRQ�KDV�EHHQ�FRQVLGHUHG�WKHR �UHWLFDOO\�� $W� ORZ� WHPSHUDWXUHV�� WKH� VWUXF �WXUH� GHIHFW� LQIOXHQFH� RQ� SDUDPHWHUV� RI� DWKHUPDOO\� DFWLYDWHG� UHOD[DWLRQ� UHVRQDQFHFDQ�EH�H[SODLQHG�SURFHHGLQJ�IURP�WKH�VXS �SRVHG� VWDWLVWLFDO� VFDWWHU�RI�WKH�SURFHVV�DF �WLYDWLRQ� HQHUJ\� DQG� WKH� GHSHQGHQFH� RIWKDW� VWDWLVWLFDO� GLVWULEXWLRQ� RQ� WKH� PDWH �ULDO� VWUXFWXUH� SHUIHFWLRQ�� 7KH� LQFUHDVH� RI
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
��� )XQFWLRQDO�PDWHULDOV�������������
WKH� DFWLYDWLRQ� HQHUJ\� GLVSHUVLRQ� KDV� EHHQIRXQG� WR� UHVXOW� LQ� EURDGHQLQJ� RI� ERWK� IUH �TXHQF\�DQG�WHPSHUDWXUH� UHOD[DWLRQ�VSHFWUD�,W� KDV� EHHQ� HVWDEOLVKHG� DOVR� WKDW� WKH� UHVR �QDQFH� SRVLWLRQ� DW� WKH� IUHTXHQF\� DQG� WHP �SHUDWXUH�D[HV�GHSHQGV�RQ�WKH�DFWLYDWLRQ�HQ �HUJ\� GLVSHUVLRQ�� WKH� FKDUDFWHU� RI� WKDW� GH �SHQGHQFH� EHLQJ� GHILQHG� XQLTXHO\� E\� WKHIRUP� RI� WKH� DFWLYDWLRQ� HQHUJ\� GLVWULEXWLRQIXQFWLRQ��7KH�WKHRU\�SURSRVHG�PDGH� LW�SRV �VLEOH� WR�GHVFULEH� DGHTXDWHO\� WKH� IHDWXUHV�RIDFRXVWLF� UHOD[DWLRQ� VSHFWUD� LQ� QLRELXP� DQGLURQ�>����������@�
5HIHUHQFHV���$�6�1RZLFN�� %�&�%HUU\�� $QHODVWLF� 5HOD[DWLRQLQ� &U\VWDOOLQH� 6ROLGV�� $FDGHPLF� 3UHVV�� 1HZ<RUN��/RQGRQ�����������9�'�1DWVLN��3�3�3DO�9DO��/�1�3DO�9DO��<X�$�6H�PHUHQNR��/RZ�7HPS��3K\V���������������������9�'�1DWVLN��3�3�3DO�9DO��/�1�3DO�9DO��<X�$�6H�PHUHQNR��/RZ�7HPS��3K\V���������������������<X�$�6HPHUHQNR�� 9�'�1DWVLN�� 3�3�3DO�9DO�/�1�3DO�9DO�� .RQGHQV��6UHG\� L� 0H]KID]Q�*UDQ��������������������9�'�1DWVLN��3�3�3DO�9DO��/�1�3DO�9DO��<X�$�6H�PHUHQNR��/RZ�7HPS��3K\V���������������������<X�$�6HPHUHQNR�� 9�'�1DWVLN�� 3�3�3DO�9DO�/�1�3DO�9DO��0HWDO� 6FLHQFH� DQG� +HDW� 7UHDW�PHQW�����������������
¬tjsLo�tqo�rvznuwnéjzyétq}�énsjrxj|Lptq}énovtjtxLk�y�ujznéLjsj}�o�ln{nrzjuq
{�i�sÈ�Ò}����|�vËä˯ËÓ}º�
djwévwvtvkjtv� znvéLí�� �v� lvokvs¹�� jlnrkjztv� vwqxykjzq� énsjrxj|LptL� énovtjtxqéLotv¢� {Loq·tv¢� wéqévlq� y� ujznéLjsj}� o� ln{nrzjuq�� Ìwqxjtv� unzvl� kqotj·ntt¹� jrzq�kj|Lptq}� wjéjunzéLk� kLlwvkLltvmv� wév|nxy�� �v� ijoy�z�x¹� tj� jtjsLoL� znuwnéjzyétq}xwnrzéLk�wvmsqtjtt¹�zj�xwéqpt¹zsqkvxzL�
9�'�1DWVLN��<X�$�6HPHUHQNR���$QDO\VLV�RI�����
)XQFWLRQDO�PDWHULDOV������������� ���
|