Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion

In this paper we consider an initial boundary value problem for the timefractional diffusion equation with mixed boundary conditions. We prove a theorem of existence and uniqueness of solution to this problem in Hölder spaces.

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Krasnoschok, M.V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/140547
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion / M.V. Krasnoschok // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 1. — С. 48-77. — Бібліогр.: 24 назв. — англ. .

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-140547
record_format dspace
spelling irk-123456789-1405472018-07-11T01:23:01Z Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion Krasnoschok, M.V. In this paper we consider an initial boundary value problem for the timefractional diffusion equation with mixed boundary conditions. We prove a theorem of existence and uniqueness of solution to this problem in Hölder spaces. Рассмотрена начально-краевая задача для уравнения диффузии с дробной производной по времени со смешанными граничными условиями. Доказана теорема существования и единственности решения этой задачи в пространствах Гёльдера. 2016 Article Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion / M.V. Krasnoschok // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 1. — С. 48-77. — Бібліогр.: 24 назв. — англ. . 1812-9471 DOI: doi.org/10.15407/mag12.01.048 Mathematics Subject Classification 2000: 35B65 (primary); 26A33 (secondary) http://dspace.nbuv.gov.ua/handle/123456789/140547 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we consider an initial boundary value problem for the timefractional diffusion equation with mixed boundary conditions. We prove a theorem of existence and uniqueness of solution to this problem in Hölder spaces.
format Article
author Krasnoschok, M.V.
spellingShingle Krasnoschok, M.V.
Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
Журнал математической физики, анализа, геометрии
author_facet Krasnoschok, M.V.
author_sort Krasnoschok, M.V.
title Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
title_short Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
title_full Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
title_fullStr Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
title_full_unstemmed Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion
title_sort solvability in holder space of an initial boundary value problem for the time-fractional diffusion
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/140547
citation_txt Solvability in Holder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion / M.V. Krasnoschok // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 1. — С. 48-77. — Бібліогр.: 24 назв. — англ. .
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT krasnoschokmv solvabilityinholderspaceofaninitialboundaryvalueproblemforthetimefractionaldiffusion
first_indexed 2025-07-10T10:42:09Z
last_indexed 2025-07-10T10:42:09Z
_version_ 1837256286684577792
fulltext Journal of Mathematical Physics, Analysis, Geometry 2016, vol. 12, No. 1, pp. 48–77 Solvability in Hölder Space of an Initial Boundary Value Problem for the Time-Fractional Diffusion Equation M.V. Krasnoschok Institute of Applied Mathematics and Mechanics National Academy of Sciences of Ukraine 1 Dobrovol’skogo Str., Slov’yansk 84100, Ukraine E-mail: iamm012@ukr.net Received October 13, 2014, revised April 20, 2015, published online December 4, 2015 In this paper we consider an initial boundary value problem for the time- fractional diffusion equation with mixed boundary conditions. We prove a theorem of existence and uniqueness of solution to this problem in Hölder spaces. Key words: fractional-order diffusion, Hölder spaces, Caputo derivative. Mathematics Subject Classification 2010: 35B65 (primary); 26A33 (se- condary). 1. Introduction Let ∂αt (0 < α < 1) be a regularized fractional derivative (the Caputo deriva- tive), that is, ∂αt u(x, t) = 1 Γ(1− α)  ∂ ∂t t∫ 0 (t− τ)−αu(x, τ)dτ − t−αu(x, 0)  . (1.1) Let Ω be a doubly connected bounded domain in Rn with the boundary ∂Ω = Σ1∪Σ2 (Σ1∩Σ2 = ∅). Denote ΩT = Ω× (0, T ), Σi T = Σi× (0, T ), i = 1, 2, T > 0. We need to find the function u(x, t) satisfying the equation L ( x, t, ∂ ∂x , ∂αt ) u = f(x, t), in ΩT , (1.2) c© M.V. Krasnoschok, 2016 Solvability in Hölder Space of an Initial Boundary Value Problem with the initial and boundary conditions u|t=0 = u0(x), x ∈ Ω, (1.3) u|Σ1 = ψ1(x, t), B ( x, t, ∂ ∂x ) u|Σ2 = ψ2(x, t), t ∈ (0, T ), (1.4) where L ( x, t, ∂ ∂x , ∂αt ) = ∂αt − n∑ i,j=1 aij(x, t) ∂2 ∂xi∂xj − n∑ i=1 ai(x, t) ∂ ∂xi − a0(x, t), (1.5) B ( x, t, ∂ ∂x ) = n∑ i=1 bi(x, t) ∂ ∂xi + b0(x, t). We assume νξ2 ≤ n∑ i,j=1 aij(x, t)ξiξj ≤ µξ2 for all (x, t) ∈ ΩT , (1.6) n∑ i=1 bi(x, t)ni(x) ≤ −δ < 0 for all (x, t) ∈ Σ2 T , (1.7) where n(x) is the unit outward normal to Σ2 at the point x. Fractional diffusion equations were applied to numerous problems in biology, chemistry, hydrology, etc. (see, for example, [1, 14, 23], Chapter 10 in [17] and Chapter 5 in [16]). In [9], Kochubei found the expression for the fundamental solution Γα(x, t) to the Cauchy problem ∂αt u−∆u = f(x, t), (x, t) ∈ Rn × (0, T ), (1.8) u(x, 0) = u0(x), x ∈ Rn, (1.9) in terms of Fox’s H-functions (see also [22]). In [19], Pskhu represented Γα(x, t) using Wright functions φ(−α, δ; z) = ∞∑ k=0 zk k!Γ(δ − αk) , β ∈ (0, 1). (1.10) Besides, some estimates of Γα(x, t) and its derivatives are derived in [9, 19]. The Cauchy problem for the operator L ( x, t, ∂∂x , ∂ α t ) (see (1.5)) and fractional order parabolic systems were studied in [3, 10]. Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 49 M.V. Krasnoschok The papers [4, 15, 21, 24] give the results on solvability of some initial bound- ary value problems for linear and quasilinear fractional diffusion equations in Sobolev spaces. H. Lopushans’ka and A. Lopushans’kyi [13] proved the theorem on the exis- tence and uniqueness of the solution to the space-time fractional Cauchy problem in spaces of generalized functions. Kemppainen used in [6] the boundary integral approach to prove the existence of the solution for a time-fractional diffusion equation with Robin boundary con- dition in the space of continuous up to the boundary functions. Clément, Londen, Simonett obtained in [2] the existence, uniqueness, and continuaty on quasilinear parabolic equation with time-fractional derivative. They considered this derivative in spaces of continuous functions having a prescribed singularity as t→ 0. In [18], R. Ponce described the well-posedness (or maximal regularity) of the abstract fractional differential equation (β > 0), ∂βt u(t) = Au(t) + t∫ −∞ a(t− s)Au(s)ds+ f(t), t ∈ R, in Cγ(R;X), γ ∈ (0, 1), where A is a closed linear operator defined on a Banach space X. The aim of this paper is to extend classical theory [12] to the case of the problem of fractional order and to prove solvability of problem (1.2)–(1.4) in Hölder spaces. We consider the case n ≥ 2. The one-dimensional case was studied in [11]. The paper is organized as follows. In Sec. 2, we define the functional spaces and state the main result. The estimates of solutions of model problems are given in Sec. 3. In Sec. 4 we prove the main result. Appendix contains the proof of some auxiliary assertions used in Sec. 3. 2. Hölder Spaces and the Main Result Let us define the Hölder spaces used in this paper. Let Q be a domain in Rn, QT = Q× (0, T ), θ ∈ (0, 1). By Cθα(QT ), we mean the set of functions defined in QT and having a finite norm |w|(θ)α,QT = |w|QT + 〈w〉(θ)α,QT , where |w|QT = sup (x,t)∈QT |w(x, t)|, 〈w〉(θ)α,QT = 〈w〉(θ)x,QT + 〈w〉( θα 2 ) t,QT , 50 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem 〈w〉(θ)x,QT = sup x,y∈Q sup t∈(0,T ) |w(x, t)− w(y, t)||x− y|−θ, 〈w〉(θ)t,QT = sup x∈Q sup t,τ∈(0,T ) |w(x, t)− w(x, τ)||t− τ |−θ. Let Dl x = ∂|l| ∂x l1 1 ...∂x ln n , l = (l1, . . . , ln), |l| = l1 + . . . + ln. By Ck+θ α (QT ), (k = 1, 2), we mean the set of functions w(x, t) with a finite norm (m = 0, 1), |w|(k+θ) α,QT = ∑ |l|+2m≤k |∂αmt Dl xw|QT + 〈w〉(k+θ) α,QT , 〈w〉(k+θ) α,QT = ∑ |l|+2m=k 〈∂αmt Dl xw〉θα,QT + ∑ |l|=k−1 〈Dl xw〉 k−1+θ 2 α t,QT . By the symbol Ck+θ α,0 (QT ), we denote the subspace of Ck+θ α (QT ), (k = 0, 1, 2) consisting of functions w(x, t) such that ∂αmt u|t=0 = 0, where m = 0 for k = 0, 1 and m = 0, 1 for k = 2. With the help of local coordinates and partition of unity, all these spaces can be introduced on manifolds Σ1 T , Σ2 T . If α = 1, then the spaces Ck+θ α (QT ) coincide with the classical Hölder spaces Hk+θ, k+θ 2 (QT ) (see Chapter I in [12]). Now we assume that the compatibility conditions ψ1(x, 0) = u0(x), ∂αt ψ1(x, 0) = n∑ i,j=1 aij(x, 0) ∂2u0(x) ∂xi∂xj + n∑ i=1 ai(x, 0) ∂u0(x) ∂xi +a0(x, 0)u0(x), x ∈ Σ1, B ( x, 0, ∂ ∂x ) u0(x) = ψ2(x, 0), x ∈ Σ2 (2.1) hold. The main result of this paper is the following. Theorem 2.1. Suppose that Σ1, Σ2 ∈ C2+θ, aij , ai, a0 ∈ Cθα(ΩT ), bi, b0 ∈ C1+θ α (Σ1 T ) i, j = 1, . . . , n, (2.2) and assumptions (1.6), (1.7), (2.1) hold. Then for every function u0 ∈ C2+θ(Ω), f ∈ Cθα(ΩT ), ψ1 ∈ C2+θ α (Σ1 T ), ψ2 ∈ C1+θ α (Σ2 T ), problem (1.2)–(1.4) has a unique solution u ∈ C2+θ α (ΩT ) satisfying the estimate |u|(2+θ) α,ΩT ≤ C ( |u0|(2+θ) Ω + |f |(θ)α,QT + |ψ1|(2+θ) α,Σ1 T + |ψ2|(1+θ) α,Σ2 T ) . (2.3) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 51 M.V. Krasnoschok Further, let us recall that Iγt v(x, t) = 1 Γ(γ) t∫ 0 v(x, τ) (t− τ)1−γ dτ (2.4) is the Riemann–Liouville fractional integral of order γ > 0, and Dγ t v(x, t) = ∂k ∂tk Ik−γt v(x, t), k − 1 < γ ≤ k, k ∈ N, (2.5) is the Riemann–Liouville fractional derivative of order γ (see Chapter 2 in [8]). We put I0 t v(x, t) = v(x, t), Dζ t v(x, t) = I−ζt v(x, t) if ζ < 0. (2.6) It can easily be checked that ∂αt v(x, t) = Dα t (v(x, t)− v(x, 0)). (2.7) The properties of Wright functions φ(−α, δ, z) are described in detail, for example, in [19, 20, 7]. We put conventionally in (1.10) that 1 Γ(−k) = 0 if k ∈ N ⋃ 0. Lemma 3.3.1 in [20] implies φ(−α, δ,−z) > 0 if z > 0, δ ≥ 0. (2.8) To this end, we prove the following auxiliary result. Lemma 2.1. Let δ ∈ R. The Wright function φ(−α, δ,−z) with z > 0 satisfies the inequalities |φ(−α,−δ,−z)| ≤ c exp(−σz 1 1−α )  1 , if δ /∈ N ⋃ 0, z, if δ ∈ N ⋃ 0. (2.9) P r o o f. The estimate |φ(−α, ν,−z)| ≤ c exp(−σz 1 1−α ) for all ν ∈ R (2.10) follows immediately from Lemmas 2, 3 in [19], and thus inequality (2.9) for δ /∈ N ⋃ 0 is proved. For δ ∈ N ⋃ 0, we use the formula (see (2.2.5) in [20]) φ(−α,−k,−z) = αzφ(−α,−k + 1− α,−z)− kφ(−α,−k + 1,−z). (2.11) By using this formula and the method of induction, one can easily prove φ(−α,−k,−z) = αz k∑ m=0 (−1)k−m k! m! φ(−α,−m+ 1− α,−z). (2.12) Combining (2.10), (2.12), we obtain (2.9) for δ ∈ N ⋃ 0. The proof is finished. 52 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem 3. Model Problems An important role in the proof of Theorem 2.1 is played by the estimates of the solutions to the following three model problems. Firstly, we determine the function u(x, t) as the solution to the Cauchy problem (1.8), (1.9). Secondly, we find the function v(x, t) as the solution of the first boundary value problem in the half-space Rn + = {x ∈ Rn : xn > 0}: ∂αt v −∆v = 0, (x, t) ∈ Rn +,T = Rn + × (0, T ), v(x, 0) = 0, x ∈ Rn, v → 0 with |x| → ∞, v(x′, 0, t) = Φ(x′, t), x′ = (x1, · · · , xn−1) ∈ Rn−1. (3.1) Thirdly, we find the function w(x, t) as the solution of the oblique derivative boundary value problem ∂αt w −∆w = 0, (x, t) ∈ Rn +,T = Rn + × (0, T ), w(x, 0) = 0, x ∈ Rn, w → 0 with |x| → ∞, n∑ i=1 hi ∂w xi (x′, 0, t) = Ψ(x′, t), x′ = (x1, · · · , xn−1) ∈ Rn−1. (3.2) Here h = (h1, . . . , hn) is a constant vector. We assume that u0 ∈ C2+θ(Rn), f ∈ Cθα(Rn T ); u0(x), f(x, t) = 0 for all |x| > R > 0, (3.3) Φ ∈ C2+θ α,0 (Rn−1 T ), Ψ ∈ C1+θ α,0 (Rn−1 T ); Φ(x′, t) = 0, Ψ(x′, t) = 0 for all |x′| > R > 0. (3.4) Owing to (3.4), we can take Φ(x′, t) = 0, Ψ(x′, t) = 0, t ≤ 0. (3.5) Lemma 3.1. Let assumptions (3.3) hold. Then the solution of (1.8), (1.9) is represented as u(x, t) = (Γα ∗ f) + (Dα−1 t Γα ∗1 u0) ≡ t∫ 0 ∫ Rn Γα(x− y, t− τ)f(y, τ)dy + ∫ Rn Dα−1 t Γα(x− y, t)u0(y)dy, where Γα(x, t) = (4π)− n 2 ∞∫ 0 λ− n 2 exp(−|x| 2 4λ )t−1φ(−α, 0,−λt−α)dλ. (3.6) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 53 M.V. Krasnoschok P r o o f. We take the Fourier transform in the spatial variables x and the Laplace transform in t, F [u] = ∫ Rn v(x, t) exp(−ix · ξ)dx, ξ = (ξ1, . . . , ξn), L[u] = ∞∫ 0 u(x, t) exp(−pt)dt. (3.7) Problem (1.8), (1.9) then reduces to the relation (see (2.253) in [17]): pαũ− pα−1F [u0] + |ξ|2ũ = f̃ , (3.8) here ũ = F [L[u]]. By (3.8), we have ũ = f̃ pα + |ξ|2 + pα−1 pα + |ξ|2 F [u0] = ∞∫ 0 exp(−(pα + |ξ|2)λ)dλ f̃ + ∞∫ 0 pα−1 exp(−(pα + |ξ|2)λ)dλ F [u0]. (3.9) Combining F−1[exp(−|ξ|2λ)] = (4πλ)− n 2 exp(−|x| 2 4λ ), (3.10) L−1[p−µ exp(−(pαλ)] = tµ−1φ(−α, µ,−λt−α) (3.11) (see (3.2.7) in [20]), Dν t (tµ−1φ(−α, µ,−λt−α)) = tµ−ν−1φ(−α, µ− ν,−λt−α) (3.12) (see (8) in [19]), and the convolution formula, we deduce (3.6) from (3.9). The lemma is proved. R e m a r k. Let us recall the fundamental solution to the Cauchy problem for the heat equation Γ1(x, t) = (4πt)−n/2 exp(−|x| 2 4t ). (3.13) We can rewrite Γα in a more convenient form Γα(x, t) = ∞∫ 0 Γ1(x, λ) t−1φ(−α, 0,−λt−α)d λ (3.14) 54 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem and use below the well-known estimate |Dl xΓ1(x, λ)| ≤ cλ− n+|l| 2 exp(−C |x| 2 λ ) (3.15) in analysis of Γα(x, t). We assume that hn ≤ −δ0 < 0, |h′| ≤M0. (3.16) Lemma 3.2. Let assumptions (3.4), (3.16) hold. Then the solutions of (3.1) and (3.2) are represented as v(x, t) = −2( ∂Γα ∂xn ∗2 Φ) ≡ −2 t∫ −∞ ∫ Rn ∂Γα ∂xn (x′ − y′, xn, t− τ)Φ(y′, τ)dy′, (3.17) w(x, t) = (G ∗2 Ψ), where G(x, t) = −2 ∞∫ 0 ∂Γα ∂xn (x− hλ, t)dλ. (3.18) The proof of this Lemma is given in Appendix 5.1. In our analysis we follow very closely the classical approach of V.A. Solonnikov (see Chapter IV in [12]). First, we derive the estimates of Dν tD l xΓα(x, t) (ν ∈ R, |l| ≥ 0). Then we establish some integral estimates of Γα, G and their derivatives. Finally, we estimate Hölder constants with respect to t and x of the potentials (Γα∗f), (Γα∗1 Φ) and (G∗2 Φ). Lemma 3.3. Let ν ∈ R, |l| ≥ 0. The function Γα(x, t), defined by (3.6), satisfies the following estimates (β = α 2 ): |Dν tD l xΓα(x, t)| ≤ ctβ(2−n−|l|)−ν−1γp(ν,l)(|x|t−β) exp(−σ(|x|t−β) 1 1−β ), (3.19) here (z > 0), γm(z) =  1, if m ≤ 3, | log z|+ 1, if m = 4, z4−n, if m ≥ 5, p(ν, l) =  n+ |l|, if ν ∈ N ∪ {0}, n+ |l|+ 2, if ν /∈ N ∪ {0}. The proof of this lemma is given in Appendix 5.2. Estimates (3.19) are estab- lished in [19] for the case 0 ≤ |l| ≤ 2. Estimates (3.19) allow us to deduce the integral estimates of Γα, G. Lemma 3.4. The following estimate holds: ∞∫ 0 |Dl xΓα(x, t)|dt ≤ C|x|−n+2−|l|, n+ |l| ≥ 3. (3.20) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 55 M.V. Krasnoschok Lemma 3.5. The function G, defined by formula (3.18), satisfies the following estimates: ∞∫ 0 |Dl xG(x, t)|dt ≤ C|x|−n+2−|l|, 0 ≤ |l| ≤ 2, (3.21) ∞∫ 0 tβ/2|Gxi(x, t)|dt ≤ C|x|−n+3/2, i = 1, . . . , n, (3.22) ∞∫ 0 tδβ|Dα t D l xG(x, t)|dt ≤ C|x|δ−n−|l|, |l| = 0, 1, δ > 0, (3.23) ∫ Rn−1 |Dα−1+ζ t G(x, t)|dx′ ≤ Ct−β−ζ , ζ ∈ R, (3.24) ∫ Rn−1 |Dk tGxi(x, t)|dx′ ≤ Ct−1−k, k = 0, 1, i = 1, . . . , n, (3.25) ∫ Rn−1 |Dl xG(x, t)|dx′ ≤ Ctβ−1−β|l|, 0 ≤ |l| ≤ 2. (3.26) P r o o f of Lemma 3.4. By (3.19), we get |Dl xΓα(x, t)| ≤ C ∞∫ 0 tβ(2−n−|l|)−1γn+|l|(|x|t−β) exp(−σ(|x|t−β) 1 1−β )dt. By the change of variable t→ λ = |x|t−β, we obtain |Dl xΓα(x, t)| ≤ c|x|−n+2−|l| ∞∫ 0 λn+|l|−3γn+|l|(λ) exp(−σλ 1 1−β )dλ ≤ c|x|−n+2−|l|, where we used the definition of γm and the assumption n+ |l| ≥ 3. The proof is finished. P r o o f of Lemma 3.5. Begin with considering the expression ∑n i=1(xi − hiλ)2. We claim that n∑ i=1 (xi − hiλ)2 ≥ C2 0 ( n−1∑ i=1 x2 i + λ2) + x2 n, C2 0 = δ2 0 2 min { 1, 1 δ2 0 +M2 0 } . (3.27) 56 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem It follows from (3.16) that for any a ∈ (0, 1), n∑ i=1 (xi − hiλ)2 ≥ n−1∑ i=1 (x2 i − 2axi hi a λ+ h2 iλ 2) + x2 n + h2 nλ 2 ≥ (1− a2) n−1∑ i=1 x2 i − ( 1 a2 − 1 ) M2 0λ 2 + δ2 0λ 2 + x2 n. Putting a2 = 1 2 ( 1 + M2 0 δ20+M2 0 ) , we derive (3.27). Let us establish (3.22), (3.26). The rest of estimates can be proved by the same arguments. Apply (3.18), (3.19) to see J = ∞∫ 0 tβ/2|Gxi(x, t)|dt ≤ C ∞∫ 0 dt ∞∫ 0 tβ/2−βn−1γn+2(|x− hλ|t−β) exp(−σ(|x− dλ|t−β) 1 1−β )dλ. Consider the cases n = 2 and n ≥ 3 separately. If n = 2, then from the inequality (| log z|+ 1) exp(−σ|z| 1 1−β ) ≤ C|z|−1/4 exp(−σ 2 |z| 1 1−β ) (3.28) and (3.27) it follows that J ≤ C ∞∫ 0 dt ∞∫ 0 tβ/2−2β−1( |x− hλ| tβ )−1/4 exp(−σ 2 ( |x− hλ| tβ ) 1 1−β )dλ ≤ C(C0) ∞∫ 0 dt ∞∫ 0 tβ/2−2β−1( |x′| tβ )− 1 4 exp(−σ0 4 ( |x′| tβ ) 1 1−β ) exp(−σ0 4 ( λ tβ ) 1 1−β )dλ, here and below σ0 depends on C0. By the change of variable t→ s = |x′|t−β, we deduce J ≤ C(C0) ∞∫ 0 ( |x′| s )− 1 2 s− 1 4 exp(−σ0 4 s 1 1−β ) ds s ≤ C(C0)|x′|− 1 2 ∞∫ 0 s− 3 4 exp(−σ0 4 s 1 1−β )ds ≤ C(C0)|x′|− 1 2 . (3.29) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 57 M.V. Krasnoschok Analogously, for n ≥ 3, we get J ≤ C ∞∫ 0 dt ∞∫ 0 tβ/2−βn−1( |x− hλ| tβ )2−n exp(−σ( |x− hλ| tβ ) 1 1−β )dλ ≤ C(C0) ∞∫ 0 dt ∞∫ 0 tβ/2−βn−1( |x′| tβ )2−n exp(−σ0 2 ( |x′| tβ ) 1 1−β ) exp(−σ0 2 ( λ tβ ) 1 1−β )dλ ≤ C(C0) ∞∫ 0 tβ/2−β(n−1)−1( |x′| tβ )2−n exp(−σ0 2 ( |x′| tβ ) 1 1−β )dt ≤ C(C0) ∞∫ 0 ( |x′| s ) 1 2 −(n−1)s2−n exp(−σ0 2 s 1 1−β ) ds s ≤ C(C0)|x′| 3 2 −n ∞∫ s− 1 2 exp(−σ0 2 s 1 1−β )ds ≤ C(C0)|x′| 3 2 −n. Use this inequality and (3.29) to obtain (3.22). By (3.18), (3.13), (3.14), we have Dl xG(x, t) = −2 ∞∫ 0 Dl x ∂Γα ∂xn (x− hµ, t)dµ = −2 ∞∫ 0 dλ ∞∫ 0 Dl x ∂Γ1 ∂xn (x− hµ, t)t−1φ(−α, 0,−λt−α)dµ. Using (3.15), (2.8) and the change of variable y′ = x′−hµ λ1/2 , we obtain J = ∫ Rn−1 |Dl xG(x, t)|dx′ ≤ C ∞∫ 0 dλ ∞∫ 0 λ− |l| 2 −1 exp(−C (xn − hnµ)2 λ t−1φ(−α, 0,−λt−α)dµ. The change of variable ζ = µ√ λ and assumption (3.16) give J ≤ C ∞∫ 0 λ− |l|+1 2 t−1φ(−α, 0,−λt−α)dλ ∞∫ 0 exp(−Cδ0ζ 2)dζ. 58 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem Estimate (2.9), formula (2.11) and the change of variable λ→ η = λ tβ imply J ≤ Ctβ−1−β|l| ∞∫ 0 η 1−|l| 2 exp(−ση 1 1−αdη ≤ Ctβ−1−β|l| if 0 ≤ |l| ≤ 2. The proof of (3.26) is finished. Now we estimate Hölder constants of the potentials derived in (3.6), (3.17), (3.18). Lemma 3.6. The following estimates hold:〈 ∂2(Γα ∗ f) ∂xi∂xj 〉(θ) α,RnT ≤ C〈f〉(θ)α,RnT , (3.30) 〈 ∂(Γα ∗ f) ∂xi 〉( 1+θ 2 α) t,RnT ≤ C〈f〉(θ)α,RnT , (3.31) 〈 (Dα−1 t Γα ∗1 u0) 〉(θ) x,RnT ≤ C〈u0〉(θ)x,Rn , (3.32)〈 (Dα−1 t Γα ∗1 u0) 〉( k+θ 2 α) t,RnT ≤ C〈u0〉(k+θ) x,Rn , k = 0, 1. (3.33) Lemma 3.7. The following estimates hold: 〈(Gxi ∗2 ψ)〉(θ)x,Rn+,T ≤ C〈ψ〉 (θ) α,Rn−1 T , (3.34) 〈∂αt (G ∗2 ψ)〉( θ 2 α) t,Rn+,T ≤ C〈ψ〉( 1+θ 2 α) t,Rn−1 T , (3.35) 〈∂αt (G ∗2 Ψ)〉(θ)x,Rn+,T ≤ C〈ψ〉 ( 1+θ 2 α) t,Rn−1 T , (3.36) 〈(Gxi ∗2 ψ)〉(θα) t,Rn+,T ≤ C〈ψ〉(2θ) α,Rn−1 T , (3.37) 〈(G ∗2 ψ)〉( 1+θ 2 α) t,Rn+,T ≤ C〈ψ〉(θ) α,Rn−1 T . (3.38) The proof of Lemma 3.6 follows the same line as the proof of (2.1), (2.2) in §2, Chapter IV [12] and is based on estimates (3.19), (3.20). Thus it is omitted. P r o o f of Lemma 3.7. Similarly to Chapter IV [12], we write the potential (Gxi ∗2 ψ) in the form (Gxi ∗2 ψ)(x, t) = ∞∫ 0 dτ ∫ Rn−1 Gxi(x ′ − y′, xn, τ)(ψ(y′, t− τ)− ψ(y′, t))dy′ Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 59 M.V. Krasnoschok + ∞∫ 0 dτ ∫ Rn−1 Gxi(x ′ − y′, xn, τ)(ψ(y′, t)− ψ(x′, t))dy′ +ψ(x′, t) ∞∫ 0 dτ ∫ Rn−1 Gxi(x ′ − y′, xn, τ)dy′. (3.39) Now we represent the difference (Gxi ∗2 ψ)(x, t) − (Gxi ∗2 ψ)(x, t) as the sum of seven integrals (Gxi ∗2 ψ)(x, t)− (Gxi ∗2 ψ)(x, t) = |x−x|1/β∫ 0 dτ ∫ Rn−1 Gxi(x ′ − y′, xn, τ)(ψ(y′, t− τ)− ψ(y′, t))dy′ − |x−x|1/β∫ 0 dτ ∫ Rn−1 Gxi(x ′ − y′, xn, τ)(ψ(y′, t− τ)− ψ(y′, t))dy′ + ∞∫ |x−x|1/β dτ ∫ Rn−1 (Gxi(x ′− y′, xn, τ)−Gxi(x′− y′, xn, τ)(ψ(y′, t− τ)−ψ(y′, t))dy′ + ∫ K (ψ(y′, t)− ψ(x′, t))dy′ ∞∫ 0 Gxi(x ′ − y′, xn, τ)dτ − ∫ K (ψ(y′, t)− ψ(x′, t))dy′ ∞∫ 0 Gxi(x ′ − y′, xn, τ)dτ + ∫ Rn−1\K dy′ ∞∫ 0 (Gxi(x ′ − y′, xn, τ)−Gxi(x′ − y′, xn, τ))(ψ(y′, t)− ψ(x′, t))dτ −(ψ(x′, t)− ψ(x′, t) ∞∫ 0 dτ ∫ K Gxi(x ′ − y′, xn, τ)dx′ = 7∑ i=1 Ii, (3.40) here we use the notation K = {y′ ∈ Rn−1 : |x′ − y′| ≤ 2|x− x|}. 60 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem Applying (3.25) to I1, I2, we obtain |I1|+ |I2| ≤ c〈ψ〉 ( θα 2 ) t,Rn−1 T |x−x|1/β∫ 0 τ θα 2 −1dτ ≤ c〈ψ〉( θα 2 ) t,Rn−1 T |x− x|θ. (3.41) As for I3, we represent it as I3 = n∑ k=1 ∞∫ |x−x|1/β dτ 1∫ 0 dλ ∫ Rn−1 Gηiηk(η′ − y′, ηn, τ)(xk − xk) ×(ψ(y′, t− τ)− ψ(y′, t))dy′, where η = x+ λ(x− x). By (3.26), we get |I3| ≤ c〈ψ〉 ( θα 2 ) t,Rn−1 T |x− x| ∞∫ |x−x|1/β τ θα 2 −1−βdτ ≤ c〈ψ〉( θα 2 ) t,Rn−1 T |x− x|θ. (3.42) With the help of (3.21) we derive |I4|+ |I5| ≤ c〈ψ〉θx,Rn−1 T (∫ K |x′ − y′|θ−(n−1)dy′ + ∫ |x′−y′|≤3|x−x| |x− y′|θ−(n−1)dy′ ) ≤ c〈ψ〉(θ) x,Rn−1 T |x− x|θ. (3.43) Now we have I6 = n∑ k=1,n ∫ Rn−1\K dy′ 1∫ 0 dλ ∞∫ 0 Gηiηk(η′ − y′, ηn, τ)(xk − xk)(ψ(y′, t)− ψ(x′, t))dτ, where η = x+ λ(x− x). One can easily check that |x− x| ≤ |η′ − y′|, |x′ − y′| ≤ 2|η′ − y′| for any η = x+ λ(x− x), y′ ∈ K, λ ∈ (0, 1). From this fact and estimate (3.21) it follows that |I6| ≤ c〈ψ〉(θ)x,Rn−1 T |x− x| 1∫ 0 dλ ∫ |η′−y′|≥|x−x| |η′ − y′|θ−ndy′ Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 61 M.V. Krasnoschok ≤ c〈ψ〉(θ) x,Rn−1 T |x− x|θ. (3.44) Then we decompose I7 into the sum I7 = (ψ(x′, t)− ψ(x′, t)) ( ∞∫ |x−x|1/β dτ ∫ K Gxi(x ′ − y′, xn, τ)dy′ + |x−x|1/β∫ 0 dτ ∫ K Gxi(x ′ − y′, xn, τ)dy′ ) = (ψ(x′, t)− ψ(x′, t)(J ′ + J ′′). (3.45) By (3.22), we obtain |J ′| ≤ |x− x|−1/2 ∞∫ |x−x|1/β dτ ∫ K τβ/2|Gxi(x′ − y′, xn, τ)|dy′ ≤ c|x− x|−1/2 ∫ K dy′ |x′ − y′|n−3/2 ≤ c. (3.46) Before proceeding to prove J ′′ ≤ c, (3.47) we establish the identity G(x, t) = − 2 hn Γα(x, t) + 2 hn n−1∑ i=1 ∞∫ 0 hi ∂Γα ∂xi (x− hλ, t)dλ = G1(x, t) +G2(x, t). (3.48) Since d dλ Γα(x− hλ, t) = − n−1∑ i=1 hi ∂Γα ∂xi (x− hλ, t)− hn ∂Γα ∂xi (x− hλ, t), we obtain −Γα(x, t) = − n−1∑ i=1 ∞∫ 0 hi ∂Γα ∂xi (x− hλ, t)dλ− hn ∞∫ 0 ∂Γα ∂xn (x− hλ, t)dλ. Hence (3.48) is true. 62 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem Now we consider the cases a) i 6= n and b) i = n. For the case a), we get J ′′ = |x−x|1/β∫ 0 dτ ∫ Σ G(x′ − y′, xn, τ)νidSy′ = |x−x|1/β∫ 0 dτ ∫ Σ G2(x′ − y′, xn, τ)νidSy′ , here Σ = {y′ : |x′ − y′| = 2|x − x|} and ν is the unit outward normal to Σ in Rn−1. By (3.19), we obtain |J ′′| ≤ |x−x|1/β∫ 0 dτ ∫ Σ |G2(x′ − y′, xn, τ)|dSy′ ≤ c |x−x|1/β∫ 0 dτ ∞∫ 0 dλ ∫ Σ τβ(1−n)−1γn+2(ξ) exp(−σξ 1 1−β )dSy′ , (3.49) where ξ = |x′ − y′ − hλ|τ−β. If n = 2, we use (3.28), (3.27) to get |J ′′| ≤ c |x−x|1/β∫ 0 dτ τ ∞∫ 0 z− 1 4 exp(−σ0 4 z 1 1−β ) ∣∣∣∣ z= |x−x| τβ exp(−σ0 4 ( λ τβ ) 1 1−β ) dλ τβ ≤ c |x−x|1/β∫ 0 z− 1 4 exp(−σ0 4 z 1 1−β ) ∣∣∣∣ z= |x−x| τβ dτ τ . By the change of variable z = |x− x|τ−β, we get |J ′′| ≤ c ∞∫ 1 z−5/4 exp(−σ0 4 z 1 1−β )dz ≤ c, n = 2, i 6= n. (3.50) In a similar way, we get (see (3.49)) for n ≥ 3 and i 6= n, |J ′′| ≤ c|x− x|n−2 ∞∫ 1 ( z |x− x| )n−2z2−n exp(−σ0 4 z 1 1−β ) dz z ≤ c. (3.51) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 63 M.V. Krasnoschok Here, let us recall that meas Σ = 2 π n−1 2 Γ(n−1)(2|x− x|)n−2. In the case b), by (3.48), (3.18) we have ∂G ∂xn = − 2 hn ∂Γα ∂xn (x, t)− 1 hn n−1∑ i=1 hi ∂G ∂xi (x, t). (3.52) The sum in the right-hand side of (3.52) is already estimated. In remains to prove I ′′ = |x−x|1/β∫ 0 dτ ∫ K |∂Γα ∂xn (x′ − y′, xn, τ)|dy′ ≤ c. (3.53) By (3.14), we get −2 ∂Γα ∂xn = 1 (4π)n/2 ∞∫ 0 xn λ λ−n/2 exp(−|x| 2 4λ )t−1φ(−α, 0,−λt−α)dλ. (3.54) In view of (2.8), we have −2 ∂Γα ∂xn (x, t) ≥ 0. We establish the identity I ≡ −2 ∞∫ 0 dt ∫ Rn−1 ∂Γα ∂xn (x′, xn, t)dx′ = 1. (3.55) Then (3.53) follows immediately from I ′′ ≤ c ∞∫ 0 dτ ∫ Rn−1 |∂Γα ∂xn (x′, xn, τ)|dx′ = c 2 . First, let us recall the identity (see (10) in [19]): ∞∫ 0 φ(−α, 1− α,−z)dz = 1. (3.56) We use (3.54) and (2.11) to rewrite the integral I in the form I = 1 (4π)n/2 ∞∫ 0 exp ( −x 2 n 4λ ) xndλ λ3/2 ∞∫ 0 φ(−α, 1−α,−λt−α) αλdt t1+α ∫ Rn−1 exp(−|x ′|2 4λ ) dx′ λ n−1 2 . 64 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem Then we change the variables x′ → y′ = x′√ λ , t→ η = λt−α, λ→ µ = xn√ λ to get I = 2 (4π)n/2 ∞∫ 0 exp ( −µ 2 4λ ) dµ ∞∫ 0 φ(−α, 1− α,−η)dη ∫ Rn−1 exp(−|y ′|2 4λ )dy′. We apply (3.56) and +∞∫ −∞ exp(−z 2 4 )dz = 2 √ π to obtain (3.55). Thus the proof of (3.47) is finished. Using (3.41), (3.42), (3.43), (3.44), (3.45), (3.46), we obtain (3.34). In Appendix 5.3, we derive ∂αt (G ∗2 ψ)(x, t) = ∞∫ 0 dτ ∫ Rn−1 Dα t G(x′ − y′, xn, τ) ×(ψ(y′, t− τ)− ψ(y′, τ))dy′. (3.57) In order to prove (3.35), we estimate the following difference (t > t): ∂αt (G ∗2 ψ)(x, t)− ∂αt (G ∗2 ψ)(x, t) = t∫ 2t−t dτ ∫ Rn−1 Dα t G(x′ − y′, xn, t− τ)(ψ(y′, τ)− ψ(y′, t))dy′ − t∫ 2t−t dτ ∫ Rn−1 Dα t G(x′ − y′, xn, t− τ)(ψ(y′, τ)− ψ(y′, t))dy′ + 2t−t∫ −∞ dτ ∫ Rn−1 (Dα t G(x′ − y′, xn, t− τ)−Dα t G(x′ − y′, xn, t− τ)) ×(ψ(y′, τ)− ψ(y′, t))dy′ + 2t−t∫ −∞ dτ ∫ Rn−1 (ψ(y′, t)− ψ(y′, t))Dα t G(x′ − y′, xn, t− τ)dy′ = 4∑ i=1 Ii. Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 65 M.V. Krasnoschok By (3.24), we obtain |I1|+ |I2| ≤ c〈ψ〉 ( 1+θ 2 α) t,Rn−1 T  t∫ 2t−t (t− τ) 1+θ 2 α−β−1dτ + t∫ 2t−t (t− τ) 1+θ 2 α−β−1dτ  ≤ c〈ψ〉( 1+θ 2 α) t,Rn−1 T |t− t| θ 2 α (3.58) and |I3| ≤ c〈ψ〉 ( 1+θ 2 α) t,Rn−1 T 2t−t∫ −∞ dτ t∫ t ∫ Rn−1 Dα+1 s G(x′ − y′, xn, s− τ)(t− τ) 1+θ 2 αdy′ ≤ c〈ψ〉( 1+θ 2 α) t,Rn−1 T 2t−t∫ −∞ dτ t∫ t (s− τ)β−2(t− τ) 1+θ 2 αds ≤ c〈ψ〉( 1+θ 2 α) t,Rn−1 T t∫ t ds 2t−t∫ −∞ (t− τ) θ 2 α−2dτ ≤ c〈ψ〉( 1+θ 2 α) t,Rn−1 T |t− t| θ 2 α. (3.59) To this end, we obtain from (3.24), integrating with respect to τ , |I4| = ∣∣∣∣∣∣ ∫ Rn−1 (ψ(y′, t)− ψ(y′, t))Dα−1 t G(x′ − y′, xn, 2(t− t))dy′ ∣∣∣∣∣∣ ≤ c〈ψ〉( 1+θ 2 α) t,Rn−1 T |t− t| 1+θ 2 α−β = c〈ψ〉( 1+θ 2 α) t,Rn−1 T |t− t| θ 2 α. (3.60) Inequalities (3.58)–(3.60) yield estimate (3.35). Estimates (3.36), (3.37), (3.38) are proved in a similar manner with the help of classical methods [12]. The proof of Lemma (3.5) is finished. Arguing as in §2, Chapter IV [12], from the results of Lemmas 3.4, 3.5 we can deduce the assertions of the following existence lemmas. Lemma 3.8. Assume that assumptions (3.3) hold. Then problem (1.8), (1.9) has a unique solution u ∈ C2+θ α (Rn T ), and 〈u〉2+θ α,RnT ≤ C ( 〈f〉θα,RnT + 〈u0〉2+θ Rn ) . (3.61) 66 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem Lemma 3.9. Assume that assumptions (3.4) hold. Then problem (3.1) has a unique solution v ∈ C2+θ α,0 (Rn +,T ), and 〈v〉2+θ α,RnT ≤ C〈Φ〉2+θ α,Rn−1 T . (3.62) Lemma 3.10. Assume that assumptions (3.4), (3.16) hold. Then problem (3.2) has a unique solution w ∈ C2+θ α,0 (Rn +,T ), and 〈w〉2+θ α,RnT ≤ C(δ0,M0)〈Ψ〉1+θ α,Rn−1 T . (3.63) 4. The Proof of Theorem 2.1 First we consider the case of zero initial data: Theorem 4.1. Let assumptions (1.6), (1.7), (2.2) hold. Suppose u0 = 0, f ∈ Cθα,0(ΩT ), ψ1 ∈ C2+θ α,0 (Σ1 T ), ψ2 ∈ C1+θ α,0 (Σ2 T ). (4.1) Then problem (1.2)–(1.4) for sufficiently small τ ∈ (0, T ) has a unique solution u ∈ C2+θ α,0 (Ωτ ) satisfying the estimate |u|(2+θ) α,Ωτ ≤ c(|f |(θ)α,Ωτ + |ψ1|(2+θ) α,Σ1 τ + |ψ2|(1+θ) α,Σ2 τ ). (4.2) We prove this theorem by constructing a regularizer. Since it is a standard procedure (see Chapter IV [12]), we give only a sketch of the proof. We cover the domain Ω with the balls K(k) λ and K (k) 2λ of radii λ and 2λ, respectively, with a common center ξ(k) for sufficiently small λ > 0. The index k belongs to one of the sets: k ∈ N(i) if K(k) λ ∩Σi 6= ∅, i = 1, 2 and k ∈M if K(k) λ ∩ ∂Ω = ∅. We take τ = κλ 2 α , where κ < 1. (4.3) Let ζ(k), η(k) be the sets of smooth functions subordinated to the indicated overlapping of Ω such that∑ k ζ(k)(x)η(k)(x) = 1, x ∈ Ω, |Dl xζ (k)|+ |Dl xη (k)| ≤ cλ−|l|, |l| ≥ 0. We suppose that the boundary Σi ∩K(k) 2λ (i = 1, 2) can be given by the equation yn = F (y′) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 67 M.V. Krasnoschok in some local coordinates {y} with origin at the point ξ(k), where the axis yn is oriented at the direction of the outward normal vector n(ξ(k)) to the surface Σi. We ”straighten” the boundary by the formulae z′ = y′, zn = yn − F (y′). Let z = Zk(x) be the transformation of the coordinates {x} into {z}. We denote L0(x, t, ∂ ∂x , ∂αt ) = ∂αt − n∑ i,j=1 aij(x, t) ∂2 ∂xi∂xj , B0(x, t, ∂ ∂x ) = n∑ i bi(x, t) ∂ ∂xi . Let L(k) 0 , B(k) 0 be the operators L0, B0 in local coordinates {y} at the point (ξ(k), 0): L(k) 0 (ξ(k), 0, ∂ ∂y , ∂αt ) = ∂αt − n∑ i,j=1 a (k) ij ∂2 ∂yi∂yj , B(k) 0 (ξ(k), 0, ∂ ∂y ) = n∑ i b (k) i ∂ ∂yi . We set g = (f, ψ1, ψ2) and define a regularizer R by the formulae Rg = ∑ k η(k)(x)uk(x, t), where the functions uk are found as follows. If k ∈M, we find the function uk(x, t) as the solution to the Cauchy problem L(k) 0 (ξ(k), 0, ∂ ∂y , ∂αt )uk(x, t) = fk(x, t), (x, t) ∈ Rn T , uk(x, 0) = 0, x ∈ Rn, (4.4) here fk(x, t) = ζk(x)f(x, t). If k ∈ N(1) ∪N(2), we set f ′k(z, t) = ζk(x)f(x, t)|x=Zk(z), ψ ′ i,k(z, t) = ζk(x)ψi(x, t)|x=Zk(z), i = 1, 2. If k ∈ N(1), we find the function u′k(x, t) as the solution to the first boundary value problem L(k) 0 (ξ(k), 0, ∂ ∂z , ∂αt )u′k(z, t) = f ′k(z, t), (x, t) ∈ Rn +,T , 68 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem u′k(z ′, 0, t) = ψ′1,k(z ′, t), (z′, t) ∈ Rn−1 T , u′k(z, 0) = 0, z ∈ Rn +. (4.5) If k ∈ N(2), we find the function u′k(x, t) as the solution to the oblique bound- ary value problem L(k) 0 (ξ(k), 0, ∂ ∂z , ∂αt )u′k(z, t) = f ′k(z, t), (x, t) ∈ Rn +,T , B(k) 0 (ξ(k), 0, ∂ ∂z )u′k(z ′, 0, t) = ψ′2,k(z ′, t), (z′, t) ∈ Rn−1 T , u′k(z, 0) = 0, z ∈ Rn +. (4.6) Now we set uk(x, t) = u′k(z, t)|z=Z−1 k (x), k ∈ N(1) ∪N(2). So we define uk(x, t) for all k. Due to § 6, Chapter IV in [12], we can reduce problems (4.4), (4.5), (4.6) to the case a(k) ij = δij . Moreover, we can repeat routine calculations of § 6, 7 Chapter IV in [12] in order to prove that the parameter δ0 in (3.16) depends only on δ and µ from (1.6), (1.7). For the sake of convenience, problem (1.2)–(1.4) (with zero initial data) can be conventionally written in the operator form Au = g, where Au is a linear operator determined by the expressions in the left-hand sides of (1.2), (1.4). Moreover, A : C2+θ α,0 (ΩT ) → H(ΩT ), where H(ΩT ) = Cθα,0(ΩT ) × C2+θ α,0 (Σ1 T )× C1+θ α,0 (Σ2 T ) represents the space of functions g = (f, ψ1, ψ2) with the norm |g|H(ΩT ) = |f |(θ)α,ΩT + |ψ1|(2+θ) α,Σ1 T + |ψ2|(1+θ) α,Σ2 T . On the base of estimates (3.61)–(3.63), we obtain |Rg|(2+θ) α,Ωτ ≤ c|g|H(Ωτ ), (4.7) where c does not depend on λ and τ , and for any h ∈ H(Ωτ ), u ∈ C(2+θ) α (ΩT ), |RAu− u|2+θ α,ΩT ) ≤ 1 2 |u|(2+θ) α,ΩT ), |ARg − g|H(ΩT ) ≤ 1 2 |g|H(Ωτ ) (4.8) if τ is sufficiently small and (4.3) is in force. The calculations are simple but tedious. Inequalities (4.7), (4.8) yield the assertion of Theorem 4.1. It should Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 69 M.V. Krasnoschok be emphasized that in our analysis we follow very closely the standard technique found in Chapter IV [12]. To remove the restrictions imposed on the initial data in (4.1) and then ex- tend the solution from [0, τ ] to [0, T ], we reduce problem (1.2)–(1.4) to the new unknowns with zero initial data a) at t = 0, b) at t = τ . In the case a), we set u1(x) = f(x, 0) + n∑ i,j=1 aij(x, 0) ∂2u0(x) ∂xi∂xj + n∑ i=1 ai(x, 0) ∂u0(x) ∂xi + a0(x, 0)u0(x), f1(x) = u1(x)−∆u0(x), x ∈ Ω. We observe that u1, f1 ∈ Cθ(Ω). By Hesten’s lemma, we construct û0 ∈ C2+θ(Rn), f̂1 ∈ Cθ(Rn T ) such that û0(x) = u0(x), f̂1(x) = f(x), x ∈ Ω. Then we determine the auxiliary function u(0)(x, t) under conditions u(0)(x, 0) = u0(x), ∂αt u (0)(x, 0) = u1(x), x ∈ Ω, (4.9) as a solution to the Cauchy problem ∂αt u (0)(x, t)−∆u(0)(x, t) = f̂(x), (x, t) ∈ Rn T , u(0)(x, 0) = û0(x), x ∈ Rn. (4.10) We employ Lemma 3.8 to deduce u(0) ∈ C2+θ α (Rn T ) and |u(0)|(2+θ) α,RnT ≤ c(|u0|(2+θ) Rn + |f(·, 0)|(θ)Rn). Now we look for the solution of (1.2)–(1.4) as u(x, t) = v(x, t) + u(0)(x, t), where v is found from the problem of the form (1.2)–(1.4) with zero initial data and recalculated right-hand terms. In the case b), we have to find the function u(τ)(x, t) ∈ C2+θ α (Ω2τ ) satisfying the condition u(τ)(x, t) = u(x, t), x ∈ Ω, t ∈ [0, τ ], (4.11) where u(x, t) is a local solution of problem (1.2)–(1.4) on [0, τ ]. We remark that (4.11) implies ∂αt u (τ)(x, t) = ∂αt u(x, t), x ∈ Ω, t ∈ [0, τ ]. It should be noticed that we need to know the function u(τ)(x, t) on the whole seg- ment [0, τ ]. This is connected with nonlocal property of the fractional derivative ∂αt . 70 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem By Hesten’s lemma, again we can continue u(x, t) to the set Rn τ : û ∈ C2+θ α (Rn τ ), |û|(2+θ) α,Rnτ ≤ c|u| (2+θ) α,Ωτ , û(x, t) = u(x, t), (x, t) ∈ Ωτ . Then we put ω(x, t) =  ∂αt û(x, t)− û(x, t), x ∈ Rn, t ∈ [0, τ ], ∂αt û(x, τ)− û(x, τ), x ∈ Rn, t ∈ [τ, 2τ ]. Obviously, ω ∈ Cθα(Rn 2τ ). We are now in position to determine u(τ) as a solution of the Cauchy problem ∂αt u (τ)(x, t)−∆u(τ)(x, t) = ω(x, t), (x, t) ∈ Rn 2τ , u(τ)(x, 0) = û0(x), x ∈ Rn. (4.12) After that we look for the solution of problem (1.2)–(1.4) in the form u(x, t) = v(x, t) + u(τ)(x, t), where v(x, t) satisfies (1.2), (1.4), and v(x, t) = 0, x ∈ Ω, t ∈ [0, τ ]. The boundary value problem of the form (1.2)–(1.4) for v is obtained by transla- tion in time: t→ t− τ (see also [11]). We can repeat this procedure in order to prove the solvability of problem (1.2)–(1.4) on segment [0, T ]. 5. Appendix 5.1. The proof of Lemma 3.2 We take the Fourier transform F ′ in the tangent space variables x′ F ′[v] = ∫ Rn−1 v(x, t) exp(−ix′ · ξ)dx′, ξ = (ξ1, . . . , ξn−1) and the Laplace transform in t (3.7). Problem (3.1) then reduces to the ordinary differential equation (ṽ = F [L[v]]) pαṽ(ξ, xn, p) + |ξ|2ṽ(ξ, xn, p)− ṽxnxn(ξ, xn, p) = 0 (5.1) with the boundary conditions ṽ → 0, xn →∞, ṽ(ξ, 0, p) = Φ̃(ξ, p). (5.2) Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 71 M.V. Krasnoschok We solve problem (5.1), (5.2) to obtain ṽ(ξ, xn, p) = exp(− √ pα + |ξ|2xn)Φ̃(ξ, p). (5.3) We need to prove that LF ′ [ −2 ∂Γα ∂xn ] = exp(− √ pα + |ξ|2xn). (5.4) Then identity (3.17) follows from (5.4) and the convolution formula. Since F ′[exp(−|x ′|2 4λ ] = exp(−|ξ|2λ)(4 √ πλ) n−1 2 and L[t−1φ(−α, 0,−λt−α)] = exp(−pαλ) (see (3.10), (3.11)), we obtain from (3.54) LF ′ [ −2 ∂Γα ∂xn ] = 1 2 √ π ∞∫ 0 xnλ −3/2 exp(−x 2 n 4λ − (pα + |ξ|2)λ)dλ. The change of variable λ→ z = xn√ λ and formula (3.325) in [5] give LF ′ [ −2 ∂Γα ∂xn ] = 1√ π ∞∫ 0 exp(−z 2 4 − (pα + |ξ|2)x2 n z2 )dλ = exp(− √ (pα + |ξ|2)x2 n). Thus identity (5.4) is proved. Then we apply the Laplace transform in t and the Fourier transform in x′ to problem (3.2) to obtain pαw̃(ξ, xn, p) + |ξ|2w̃(ξ, xn, p)− w̃xnxn(ξ, xn, p) = 0, (hnw̃xn + ih′ · ξw̃)|xn=0 = Ψ̃(ξ, p), w̃ → 0, xn →∞. Assumption (3.16) allows us to write w̃(ξ, xn, p) = exp(− √ pα + |ξ|2xn) −hn √ pα + |ξ|2 + ih′ · ξ Ψ̃(ξ, p) = ∞∫ 0 exp(− √ pα + |ξ|2(xn − hnλ)− ih′ · ξλ)dλ Ψ̃(ξ, p) ≡ G̃(ξ, xn, p)Ψ̃(ξ, p). Identity (5.4) implies L−1F ′−1[G̃] = −2 ∫∞ 0 ∂Γα ∂xn (x− hλ, t)dλ = G(x, t). 72 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem To this end, we need to prove that potentials (3.17), (3.18) satisfy the bound- ary conditions in (3.1), (3.2). As for (3.1), similarly to the classical case, we need the identity −2 ∞∫ 0 dt ∫ Rn−1 ∂Γα ∂xn (x′, xn, t)dx′ = 1, (5.5) derived above in Lemma 3.7 (see (3.55)). As for problem (3.3), we see n∑ i=1 hi ∂G ∂xi (x, t) = −2 ∞∫ 0 n∑ i=1 ∂2Γα ∂xn∂xi (x− hλ, t)dλ = 2 ∞∫ 0 d dλ ∂Γα ∂xn (x− hλ, t)dλ = −2 ∂Γα ∂xn (x, t). This fact implies that ∑n i=1 hi ∂ ∂xi (G ∗2 Ψ)|xn=0 = Ψ. 5.2. The proof of Lemma 3.3 By (3.14), (3.12), we obtain Dl xD ν t Γα(x, t) = ∞∫ 0 Dl xΓ1(x, λ) t−ν−1φ(−α,−ν,−λt−α)dλ. We prove (3.19) for ν ∈ N∪0. If ν /∈ N∪0, the proof is the same. Inequalities (3.15) and (2.9) give |Dl xD ν t Γα(x, t)| ≤ c ∞∫ 0 λ− n+|l| 2 exp(−C |x| 2 4λ )λ t−α−ν−1 exp(−σ(λt−α) 1 1−α )dλ. By the change of variable λ→ η = λt−α, we get |Dl xD ν t Γα(x, t)| ≤ ctβ(2−n−|l|)−ν−1 ∞∫ 0 η1−n+|l| 2 exp ( −A ( |x|2 tα 1 η + η 1 1−α )) dη. It is not hard to prove (z ≥ 0) z η + η 1 1−α ≥ σ∗(α)z 1 2−α for all η ∈ (0,∞). Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 73 M.V. Krasnoschok Then it follows that |Dl xD ν t Γα(x, t)| ≤ ctβ(2−n−|l|)−ν−1 exp(−σ∗ A 2 ( |x| tβ ) 1 1−β ) × ∞∫ 0 η1−n+|l| 2 exp ( −A 2 ( |x|2 tα 1 η + η 1 1−α )) dη. (5.6) We set (B > 0, z > 0), Jm(z) = ∞∫ 0 η1−m 2 exp ( −B ( z η + η 1 1−α )) dη and claim that Jm(z) ≤ c  1, m = 1, 2, 3; | log z|+ 1, m = 4; z2−m 2 , m ≥ 5. (5.7) If m = 1, 2, 3, one can easily see Jm(z) ≤ c ∞∫ 0 η1−m 2 exp ( −Bη 1 1−α ) dη ≤ c. (5.8) If m = 4, we get J4,1(z) = z∫ 0 exp ( −Bz η ) dη η = ∞∫ 1 exp (−Bs) ds s ≤ c, J4,2(z) = ∞∫ z exp ( −Bη 1 1−α ) dη η = log η exp ( −Bη 1 1−α ) ∣∣∣∣∞ z + B 1− α ∞∫ z log η η α 1−α exp ( −Bη 1 1−α ) dη ≤ c | log z|+ ∞∫ 0 log η η α 1−α exp ( −Bη 1 1−α ) dη  ≤ c(| log z|+ 1). Hence, it follows that J4(z) ≤ J4,1(z) + J4,2(z) ≤ c(| log z|+ 1). (5.9) 74 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem If m ≥ 5, we put ζ = η z and deduce Jm(z) = ∞∫ 0 (ζz)1−m 2 exp ( −B ( 1 ζ + (zζ) 1 1−α )) zdζ ≤ cz2−m 2 ∞∫ 0 ζ1−m 2 exp ( −B 1 ζ ) dζ ≤ cz2−m 2 . (5.10) Using (5.8), (5.9), (5.10), we get (5.7). Substituting (5.7) and z = |x|2 tα in (5.6), we obtain (3.19). 5.3. The development of formula (3.57) Estimate (3.24) implies |(G ∗2 Ψ)(x, t)| ≤ c|Ψ|Rn−1 T t∫ 0 τβ−1dτ ≤ c|Ψ|Rn−1 T tβ, so (G ∗2 Ψ)(x, t)|t=0 = 0. By definitions (2.5), (2.7) and assumption (3.5), we see ∂αt (G ∗2 Ψ) = Dα t (G ∗2 Ψ) = ∂ ∂t ( Iα−1 t (G ∗2 Ψ) ) . Now we introduce a sequence uε(x, t) = t−ε∫ 0 dτ ∫ Rn−1 Iα−1 t G(x′ − y′, xn, t− τ)Ψ(y′, τ)dy′. We need to prove that lim ε→0 ∂ ∂tuε is equal to the right-hand side of (3.57). First we obtain ∂ ∂t uε(x, t) = t−ε∫ −∞ dτ ∫ Rn−1 Dα t G(x′ − y′, xn, t− τ)Ψ(y′, τ)dy′ + ∫ Rn−1 Iα−1 t G(x′ − y′, xn, ε)Ψ(y′, τ − ε)dy′ Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 75 M.V. Krasnoschok = ∞∫ ε dτ ∫ Rn−1 Dα t G(x′ − y′, xn, τ)(Ψ(y′, t− τ)−Ψ(y′, t− ε))dy′. Then we consider the difference between ∂ ∂tuε and the right-hand side of (3.57) δε = ∂ ∂t uε(x, t)− ∞∫ 0 dτ ∫ Rn−1 Dα t G(x′ − y′, xn, τ)(Ψ(y′, t− τ)−Ψ(y′, t))dy′ = ∞∫ ε dτ ∫ Rn−1 Dα t G(x′ − y′, xn, τ)(Ψ(y′, t)−Ψ(y′, t− ε))dy′ + ε∫ 0 dτ ∫ Rn−1 Dα t G(x′ − y′, xn, τ)(Ψ(y′, t− τ)−Ψ(y′, t))dy′. We claim that lim ε→0 δε = 0. Indeed, by (3.24), we get |δε| ≤ c〈Ψ〉 ( 1+θ 2 α) t,Rn−1 T ε 1+θ 2 α ∞∫ ε τ−1−βdτ + ε∫ 0 τ θ 2 α−1dτ  ≤ c〈Ψ〉( 1+θ 2 α) t,Rn−1 T ε θ 2 α. References [1] M. Caputo, Models of Flux in Porous Media with Memory. — Water Resources Research 36 (2000), No. 3, 693–705. [2] Ph. Clément, S.-O. Londen, and G. Simonett, Quasilinear Evolutionary Equations and Continuous Interpolation Spaces. — J. Diff. Eqs. 196 (2004), No. 2, 418–447. [3] S.D. Eidelman and A.N. Kochubei, Cauchy Problem for Fractional Diffusion Equa- tions. — J. Diff. Eqs. 199 (2004), 211–255. [4] H. Engler, Strong Solutions of Quasilinear Integro-Differential Equations with Sin- gular Kernles in Several Space Dimensions. — Electronic J. Diff. Eqs. (1995), No. 2, 1–16. [5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Sums, Series and Products. Fizmatgiz, Moscow, 1963. (Russian) [6] J. Kemppainen, Existence and Uniqueness of the Solution for a Time-Fractional Diffusion Equation with Robin Boundary Condition. Abstract and Applied Analysis 2011, Article ID 321903, 11 pages. 76 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 Solvability in Hölder Space of an Initial Boundary Value Problem [7] A.A. Kilbas, Fractional Calculus of the Generalized Wright Functions. — Fractional Calculus and Applied Analysis 8 (2005), No. 2, 113–126. [8] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Frac- tional Differential Equations. North Holland, Mathematical studies, 204, Elsevier Science B.V., Amsterdam, 2006. [9] A.N. Kochubei, Fractional-Order Diffusion. — Diff. Eqs. 26 (1990), 485–492. [10] A.N. Kochubei, Fractional Parabolic Systems. — Potential Analysis 37 (2012), 1–30. [11] M. Krasnoschok and N. Vasylyieva, On a Solvability of Nonlinear Fractional Reaction-Diffusion System in the Hölder Spaces. — Nonlinear Studies 20 (2013), No. 4, 591–621. [12] O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, Linear and Quasilinear Parabolic Equations. Transl. Math. Monogr. 23 AMS, Providence, RI, 1968. [13] H.P. Lopushans’ka and A.O. Lopushans’kyi, Space-Time Fractional Cauchy Prob- lem in Spaces of Generalized Functions. — Ukr. Math. J. 64 (2013), No. 8, 1215– 1230. [14] R. Metzler and J. Klafter, The Random Walk’s Guide to Anomalous Diffusion: a Fractional Dynamics Approach. — Phys. Rep. 339 (2000), 1–77. [15] G.M. Mophou and G.M. N’Guérékata, On a Class of Fractional Differential Equa- tions in a Sobolev Space. — Applicable Analysis 91 (2012), No. 1, 15–34. [16] A.M. Nahushev, Fractional Calculus and Its Applications. Nauka, Moscow, 2003. (Russian) [17] I. Podlubny, Fracrional Differential Equations. Academic Press, San-Diego, 1999. [18] R. Ponce, Hölder Continuous Solutions for Fractional Differential Equations and Maximal Regularity. — J. Diff. Eqs. 255 (2013), 3284–3304. [19] A.V. Pskhu, A Fundamental Solution for a Fractional Diffusion Wave Equation. — Izvestia RAN 73 (2009), 141–181. (Russian) [20] A.V. Pskhu, Partial Differential Equations of the Fractional Order. Nauka, Moscow, 2005. (Russian) [21] K. Sakamoto and M. Yamamoto, Initial Value Boundary Value Problems for Frac- tional Diffusion-Wave Equations and Applications to Some Inverse Problems. — J. Math. Anal. Appl. 382 (2011), 426–447. [22] W.R. Schneider and W. Wyss, Fractional Diffusion and Wave Equations. — J. Math. Phys. 30 (1989), 134–144. [23] V. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. Fields and Media. Higher Education Press, Beijing and Springer-Verlag, Berlin, Heidelberg, 2010. [24] R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions. Ph. D. Thesis, Martin-Luther-Universität, Halle-Wittenberg (2003). Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 1 77